球化剂孕育剂培训讲义
- 格式:ppt
- 大小:1.20 MB
- 文档页数:36
球化剂加入量对照表
850kg铁水时球化剂/孕育剂加入量对照表
800kg铁水时球化剂/孕育剂加入量对照表
750kg铁水时球化剂/孕育剂加入量对照表
700kg铁水时球化剂/孕育剂加入量对照表
650kg铁水时球化剂/孕育剂加入量对照表
600kg铁水时球化剂/孕育剂加入量对照表
500kg铁水时球化剂/孕育剂加入量对照表
400kg铁水时球化剂/孕育剂加入量对照表
控制要领
一、炉内原铁水C以热分析仪为准,Si、Mn、P、S以光谱报
二、一次孕育后(QSi)要求2.4—2.6,二次孕育后(终S
三、球化处理后铁水要求在10分钟之内浇注完毕,否则应
四、铁水出炉温度控制在1520—1540℃之间。
五、每炉铁水热分析和光谱试样应各取两块。
六、在保证铁水温度和化学成分合格的前提下方可出炉浇
对照表(Kg)
对照表(Kg)
对照表(Kg)
对照表(Kg)
对照表(Kg)
对照表(Kg)
对照表(Kg)
对照表(Kg)
光谱报告为准。
(终Si)要求2.6—2.8.否则应回炉。
出炉浇注。
球铁生产中的几项技术处理球铁生产中的几项技术处理摘要:讨论了球铁的熔炼方案和炉料选择;分析了脱硫方法与工艺;阐述了球化剂、孕育剂中元素的作用,选用原则及使用要点。
近年来,我国球铁产量增长很快,由1998年的143万吨增至2001年的近300万吨,它在铸件总产量中约占21%,高于一般国家而比工业发达国家低8~10%。
随着制造业的世界性转移,未来我国作为世界加工业工厂的地位必将加强,我国球铁的产量和品质也将会有更大的发展。
本文仅简述球铁生产中的几项技术处理。
一、熔炼方案优质球铁需由高温、低硫、洁净,且化学成分准确而少干扰元素的原铁液为保障。
高温熔炼有利于铁液的洁净化。
因此,足够高的熔炼温度和必要的出炉温度十分重要。
除了市政类铸件外,机械、动力、容器和离心铸管等类球铁件,应采用感应熔炼或冲天炉-感应炉双联。
由于焦炭价格上涨和环保方面的考虑,新建铸造厂采用感应炉熔炼的倾向十分明显。
感应炉熔炼元素烧失少,成分把握准确,过热温度容易调整。
由于电磁搅拌作用,铁液的含气量、含氧量较低,成分与温度的均匀度高,也没有冲天炉的焦炭增硫。
不过,电磁搅拌清除固体夹渣物的作用并不彻底。
因此,感应炉熔炼仍希望炉料尽量洁净。
与工频炉相比,中频炉的电效率和热效率高,熔炼时间短,用电省,占地较少,投资较低,无需开炉块(或留液),生产灵活,改变铁液牌号方便,优势明显。
随着变频器功率的大型化,原来工频炉在大容量炉子中的地位也将为中频炉所替代。
当今,中频炉的发展方向是:①提高吨功率,实现高效、快熔。
②功率连续可调,适应不同升温和保温能力的需要。
③变频。
如在熔化期用高频率,提升功率快速熔化;在后期用低频率,以加大搅拌力,促进增碳和合金成分的调整。
④双供电,即一套电源两个换炉开关,分别联系两个炉体。
在两炉间任意分配功率,实现两炉同熔,或一熔一保,确保随时能向浇注线提供铁液。
也可以在一炉熔炼的同时另一炉进行炉衬烧结。
⑤自动化管理。
如对熔化保温,炉衬预热烧结实行可编程自动化作业,对电源和炉衬状况进行诊断和故障处理等。
球化剂是一种非常常见的金属或合金,一般用于铸造使用,很多厂家在选择这类产品的时候会比较迷茫,不知道怎么才能选到比较好的产品,下面就让马鞍山京华实业公司为您简单介绍球化剂怎么选的,希望可以帮助到您!
(1)含镁量4%、5%、5.5%属于低镁球化剂,RE在1%-2%之间,多用于中频炉熔炼、低硫铁液的球化处理。
它具有球化反应和缓、球化元素易于充分吸收的优点。
(2)含镁量6%、7%属中镁系列球化剂,多用于冲天炉、电炉双联熔炼,或中频炉熔炼珠光体型铸态球墨铸铁铸件。
根据铸件壁厚和原铁水含硫量,确定合适的球化剂加入量,适用范围广,球化处理工艺宽泛。
(3)高镁系列球化剂,适合冲天炉熔炼、含硫量0.06%-0.09%的铁液,加入量在1.6%-2.0%之间。
(4)低铝球化剂使用于容易产生皮下气孔缺陷的铸件,以及对铁液含铝量有要求的铸件。
(5)纯Ce、纯La生产的球化剂,球化处理后铁液纯净夹杂物少、石墨球圆整。
钇基重稀土生产的球化剂适合于大断面铸件,延缓球化衰退、防止块状石墨。
含Sb球化剂用于珠光体型球墨铸铁。
(6)低硅球化剂适用于使用大量回炉料的铸造工厂;镍镁球化剂则用于高镍奥氏体球墨铸铁。
马鞍山京华实业公司是炼钢、铸造用增碳剂、煅后石油焦以及石墨化增碳剂,孕育剂,碳化硅等专业生产厂家。
公司能按增碳剂客户的要求加工成各种粒度规格的增碳剂,对产品高质量的追求户及对顾客称心满意的服务是马鞍山京华的经营宗旨。
马鞍山京华实业公司秉承着“凭质量铸造现在,靠信誉开拓未来”的经营理念,为客户提供最优质的增碳剂和贴心的服务。
如果您想进一步了解,可以直接点击官网马鞍山京华实业公司进行在线咨询。
球铁退火热处理工艺是什么?(1)消除应力退火球铁的弹性模量较高,因此,铸造后产生的残余内应力一般比灰铸铁高1~2倍。
特别是形状复杂、壁厚相差悬殊的铸件,残余内应力较大,故必须进行消除应力退火。
球铁消除应力退火的方法是:将铸件在室温或低于200~300℃入炉,以50~100℃/h的速度缓慢加热,铁素体基体球铁的退火温度为600~650℃。
珠光体体积球铁的退火温度为500~600℃,保温2~8h,然后冷却至150~200℃出炉空冷。
经退火后可消除铸件中90%~95%内应力。
(2)高温石墨化退火在球铁生产中,如果化学成分选择不当,球化剂加入量过多或孕育剂量加入不足,在铸态组织中会出现一定数量的自由渗碳体,使铸件加工困难。
因此,必须采用高温石墨化退火,使自由渗碳体在高温下分解成奥氏体和石墨,以改善铸件的切削加工性。
球铁的高温石墨化退火是:将铸件加热至920~960℃,保温1~4h。
如果铸件中自由渗碳体在5%以上,而且碳、硅含量又较低时,应选择较高的退火温度(950~960℃,保温2~5h)。
退火后的冷却方法应根据铸件所要求的基体组织和性能而定。
如要求获得高韧性的铁素体球铁,在高温石墨化后随炉冷至720~760℃,等温2~8h,使奥氏体分解为铁素体+石墨,然后随炉冷至600~650℃出炉空冷,也可以在高温石墨化后随炉冷至600℃出炉空冷,使奥氏体在缓慢冷却过程中直接分解为铁素体+石墨。
(3)低温石墨化退火如果球铁铸件中不存在自由渗碳体,而是珠光体+石墨或铁素体+珠光体+石墨组织,为了获得高韧性的铁素体球铁,可采用低温石墨化退火使共析渗碳体分解为铁素体+石墨。
低温石墨化退火是将铸件加热至720~760℃,保温2~6h,随炉冷至600℃出炉空冷。
Nodular Iron铸态QT700-10球墨铸铁的研制张军,文宏,郑言彪,齐基(湖北省机电研究设计院股份公司,湖北武汉430070)摘要:介绍了QT700-10球墨铸铁的生产工艺:合理设计化学成分,采用0.5t中频电炉熔炼;选用FeSiMg8RE3球化剂,包内孕育剂选用75SiFe,二次孕育及随流孕育采用自行配制含有Sb、Ba、Ca等多种元素的复合孕育剂,冲入法进行球化及孕育处理。
生产结果显示:从浇注的Y型试块及铸,检测得到的铸学均符合技术要求,随后进行了批生产,试棒结果:球化等1~3,墨6~7,+铁素,中,珠光体体积分数50%~70%,抗拉强度700-750MPa,伸长率10%~13.5%,硬度220-250HB。
关键词:球墨铸铁;;中图分类号:TG255文献标志码:B文章编号:1003-8345(2020)06-0011-03D0I:10.3969/j.issn.1003-8345.2020.06.003Development of As-cast QT700-10Nodular IronZHANG Jun,WEN Hong,ZHENG Yan-biao,Qi Ji(Hubei Mechanical and Electrical Research and Design Institute Co.,Ltd.,Wuhan430070,China)Abstract:The production process of QT700-10nodular iron was introduced:using0.5t medium frequency furnace to conduct melting,using FeSiMg8RE3nodularizing alloy,choosing75SiFe for ladle inoculation,for secondary inoculation and stream inoculation using self-made composite inoculants containing multiple elements including Sb,Ba,Ca,adopting pour-over processto conduct nodularization and inoculation treatment.The production results showed:by sampling from Y-type test block andfrom casting body,detected metallographic structure and mechanical properties met technical requirements.Subsequently,small batch production was carried out,the inspection results of casting body test bar were as following:nodularizing gradewas of1-3grade,graphite size was of6-7grade,the matrix structure was of pearlite+ferrite,and the volume fraction of pearlitewas of50%-70%,tensile strength was of700-750MPa,elongation was of10%-13.5%,hardness was of220-250HB.Key words:nodular iron;high strength;high toughness中制2025化政策要求,、球墨铸铁的合要求GF公司、公司等采用、、等的铸球墨铸铁生产高,技术处,的低端球墨铸铁为主c1d,公司了收稿日期:2020-06-11修订日期:2020-11-28作者简介:张军(1979—),男,安徽阜+人,硕士,/0工程3,主要从事ADI、铸态/强度、耐疲劳球墨铸铁和耐磨铸铁材料的研I及管理工作。
第三节球化处理工艺球化处理主要包括以下内容:(1)铸铁化学成分的选择;(2)球化剂的选择、加入量;(3)球化处理方法;(4)球墨铸铁的孕育处理;(5)球化效果的检验。
球墨铸铁球化处理工艺的制订应充分考虑球墨铸铁的牌号及其对组织的要求、铸件几何形状及尺寸、铸型的冷却能力、浇注时间和浇注温度、铁液中微量元素的影响以及车间生产条件等因素。
一、球墨铸铁化学成分的选择同普通灰铸铁一样,球墨铸铁化学成分主要包括碳、硅、锰、硫、磷五大常见元素。
对于一些对组织及性能有特殊要求的铸件,还包括少量的合金元素。
同普通灰铸铁不同的是,为保证石墨球化,球墨铸铁中还须含有微量的残留球化元素。
下面着重介绍这些元素在球墨铸铁中的作用及其选择原则。
1、碳及碳当量碳是球墨铸铁的基本元素,碳高有助于石墨化。
由于石墨呈球状后石墨对机械性能的影响已减小到最低程度,球墨铸铁的含碳量一般较高,在~%之间,碳当量在~%之间。
铸件壁薄、球化元素残留量大或孕育不充分时取上限;反之,取下限。
将碳当量选择在共晶点附近不仅可以改善铁液的流动性,对于球墨铸铁而言,碳当量的提高还会由于提高了铸铁凝固时的石墨化膨胀提高铁液的自补缩能力。
但是,碳含量过高,会引起石墨漂浮。
因此,球墨铸铁中碳当量的上限以不出现石墨漂浮为原则。
2、硅硅是强石墨化元素。
在球墨铸铁中,硅不仅可以有效地减小白口倾向,增加铁素体量,而且具有细化共晶团,提高石墨球圆整度的作用。
但是,硅提高铸铁的韧脆性转变温度(见图4—6),降低冲击韧性,因此硅含量不宜过高,尤其是当铸铁中锰和磷含量较高时,更需要严格控制硅的含量。
球墨铸铁中终硅量一般在—%。
选定碳当量后,一般采取高碳低硅强化孕育的原则。
硅的下限以不出现自由渗碳体为原则。
图4—6 硅对铁素体球墨铸铁脆性转变温度的影响球墨铸铁中碳硅含量确定以后,可用图4—7进行检验。
如果碳硅含量在图中的阴影区,则成分设计基本合适。
如果高于最佳区域,则容易出现石墨漂浮现象。
教育训练教材A 各化学元素的作用及控制范围。
碳硅碳硅比(碳当量)灰铸铁的含碳量大多在2.6%-3.6%,含硅量在1.2%-3.0%,碳硅都是强烈的促进石墨化的元素。
可用碳当量CE (CE%=C%+1/3(P+SI)%)来说明他们对灰铸铁金相组织和力学性能的影响。
提高CE值促进石墨片变粗,数量增加,强度和硬度下降。
降低CE值可减少石墨,细化石墨,但回导致铸造性能降低,铸件断面敏感性增大,铸件应力增大,硬度上升,加工困难。
CE值较低时,适当提高SI C。
强度性能会有所提高,但要注意缩松倾向增加和铁素体减少。
CE值提高时,提高C SI 反使强度下降,但没有减少反白口的倾向。
球铁中碳促进石墨化,减少白口,既减少渗碳体珠光体,增加铁素体,降低硬度,改善加工性能。
锰和硫普通灰铸铁的锰含量在0.4%-1.2%,硫含量在0.02%-0.15%。
锰和硫都是稳定碳化物,阻碍石墨化的元素,只要防止铁水氧化,正确使用孕育剂防白口的能力,锰量增加不仅增加并能细化珠光体。
为确保孕育剂的孕育效果,灰铸铁硫含量一般不低于0.05%-0.06%,硫与镁稀土亲和力很强,由于硫的消耗作用使有效的残留球化元素含量过低则降低球化率。
硫还促进形成夹渣,皮下气孔。
磷灰铁铸件的含磷量一般小于0.20%,磷可提高灰铸铁的耐磨性和硬度,随着磷的提高,韧性和致密性降低,磷量高往往是铸件冷裂的原因。
磷可促进白口化元素增加,铬(CR)铬能强烈形成碳化物,稳定珠光体,降低韧性塑性,提高强度硬度。
钼强烈形成碳化物,稳定并细化珠光体。
钛TI<0.2%能促进石墨化,稀土含量不足以抑制钛的反球化作用时,能降低球化率,严重降低力学性能。
锡稳定珠光体并增加珠光体强度,锡阻碍球化,不得超过0.1.%。
锑微量锑可细化石墨,改善石墨形态,抑制厚大断面出现碎快石墨。
强烈稳定珠光体,少量SB与MN 复合添加可改善铸态强度。
B.基体组织在铸铁中的作用铁素体改善韧性塑性,降低强度硬度,降低耐磨性,加工性良好。
球化喂线机球化工艺是将需要加入到铁水中的各种添加剂(球化剂、孕育剂)破碎成一定的粒度,再用冷轧钢带将其包裹成为一条具有任意长度的符合材料(即通常所说的合金包芯线),然后借助于铸造专用喂线机将含有合金元素的包芯线连续不断的射入到铁水包底部,由于高温铁液的作用,芯皮被熔化,合金元素随即与铁液接触,发生球化处理过程,并达到脱硫、球化、孕育、成份调整的目的。
喂丝球化工艺主要应用于铁水的球化与孕育环节,采用钢带将稀土镁合金粉料包裹其中,制成合金包芯线,然后用喂丝机将其喂入到铁水处理包的底部,使包费材料在处理包的底部与铁液进行反应,来实现球化的目的。
球化处理时,用喂丝机将球化线或孕育线定时、定量射入到带有包盖的铁水包中,由于铁液高度的压力作用和包盖隔断空气的有效流动,再加之镁芯线是以一定速度连续加入,这样既可避免镁蒸气的瞬间犬量爆发,保证高镁合金的安全加入,又可避免镁的大量逸出和烧损,提高镁在铁液中的吸收率。
在铸造行业被广泛应用,铸造球化一般采用冲入法,随着时代的进步,冲入法
已不能满足环保和铸造工艺的技术要求,采用喂线法进行球化孕育,可单独进行球化,也可同时进行球化和孕育。
喂线法可提高产品球化率,提高球的完整度,并且每吨球铁可节约材料成本10-15元。
并且自动除烟除尘,环保安全,降低了工人的劳动强度,提高了工效,我厂可对各种球化站进行制造。
巩义市华丰机械制造有限公司是集科研和生产于一体的实力型机械制造企业,主要产品有WⅩ系列喂丝机、球化专用喂丝机、结晶器专用喂丝机、pB系列喷补机等。
球墨铸铁提高球化率的工艺方案球墨铸铁提高球化率的工艺实用方案国内普通球墨铸铁铸件的球化级别要求达到4级以上,(即球化率70%,)一般铸造厂达到的球化率为85%左右.近年来,随着球墨铸铁生产的发展,尤其是在风电铸件生产和铸件质量要求较高的行业,要求球化级别达到2级,即球化率达到90%以上.笔者公司通过对QT4_-_原采用的球化.孕育处理工艺以及球化剂.孕育剂进行分析.改进,使球墨铸铁的球化率达到了90%以上.1.原生产工艺原生产工艺:熔炼设备采用2.0T中频炉和1.5T工频炉;QT4_-_原铁液成分为(C)=3.75%_3.95%.. (Si)=1.4%_1.7%. (Mn) 0.40%. (P) 0._%. (S) 0._5%;球化处理所用球化剂为 1.3%_l.5%的RE3Mg8SiFe合金;孕育处理所用孕育剂为0.7%_0.9%的75SiFe-C合金.球化处理采用两次出铁冲入法:先出铁55%_60%,进行球化处理,然后加入孕育剂,再补加其余铁液.由于球化.孕育采用传统的方式,用25 mm厚的单铸楔形试块检测得到的球化率一般在80%左右,即球化级别3级.2.提高球化率的试验方案为提高球化率,对原来的球化和孕育处理工艺进行了改进,主要措施是:增大球化剂和孕育剂加入量.净化铁液.脱硫处理等.球化率仍然采用25 mm的单铸楔形试块进行检测,具体方案如下:(1)分析原工艺球化率偏低的原因,曾认为是球化剂用量较少,故将球化剂加入量由1.3%_1.4%增加到1.7%,但球化率并未达到要求.(2)另一种猜测是认为球化率偏低可能是由于孕育不良或孕育衰退引起,因而试验加大孕育剂量,由0.7%_0.9%增加到1.1%,球化率亦未达到要求.(3)继续分析认为铁液夹杂较多.球化干扰元素偏高等可能是造成球化率偏低的原因,因而对铁液进行高温净化,高温净化温度一般控制在1 5_ _℃,但其球化率仍未突破90%.(4) (S)量高严重消耗球化剂量并加速球化衰退,因此增加脱硫处理,将原铁液(S)量从原来的0._5%降低到0._0%以下,但球化率也只达到86%.以上4种方案的试验结果如表1所示,楔形试块的组织和力学性能均未达到要求.3.最后采用的改进方案3.1具体改进措施原材料采用生铁.无锈或少锈的废钢和回炉料;对原铁液进行炉外加纯碱(Na2CO3)脱硫;采用福士科390预处理剂在包内进行预脱氧处理;采用福士科球化剂进行球化处理;采用碳化硅和硅铁联合孕育.新工艺原铁液成分控制: (C)=(3.70%_3.90%. (Si)=0.80%_1._%[铸件 (Si 终)=2.60%_3._%]. (Mn) 0.30%. (P) 0._%. (S) 0._%.当原铁液 (S)量超过0._%时,采用工业用纯碱进行炉前脱硫处理,因脱硫反应是吸热反应,要求脱硫温度控制在__℃左右,纯碱加入量根据炉前熔清时的 (S)量高低控制在 1.5 % _2.5 %.同时,球化处理包采用普通的堤坝式处理包,首先把福士科NODALLOY7RE牌号球化剂1.7%加入包底堤坝一侧,扒平压实,用0.2%的粉末状碳化硅和0.3%的小块状75SiFe先后覆盖一层,捣实后用压铁盖上,在铁液包的另一侧加入0.3%的福士科390孕育剂.出铁时首先冲入总铁液量的55%_60%,待球化反应完毕后,加入1.2%的75SiFe-C孕育剂后冲入剩余铁液,扒渣浇注.3.2试验结果原铁液脱硫前后的的成分见表2.表3,25mm单铸楔形试块对应的力学性能和金相组织见表4,金相组织中球化率的评定方法采用金相图像分析系统自动检测.4.结果分析4.1主要元素对球化率的影响C.Si:C能促进石墨化,减少白口倾向,但 (C)量高会使CE过高而容易产生石墨漂浮,一般控制在3.7%_3.9%.Si能加强石墨化能力,消除渗碳体.Si以孕育剂的方式加入时,可大大降低铁液的过冷能力.为了提高孕育效果,原铁液的 (Si)量从原来的1.3% _1.5%降到0.8%_1.2% , (Si终)量控制在2.60%_3._% .Mn:在结晶过程中,Mn增加铸铁的过冷倾向,促进形成碳化物(FeMn) 3C.在共析转变过程中,Mn降低共析转变温度,稳定并细化珠光体.Mn对球化率没有太大的影响.因受原材料的影响,一般控制 (Mn) 0.30%.P:当 (P) 0._%时固溶于Fe,难以形成磷共晶,对球铁的球化率影响不是很大.S:S是反球化元素,S在球化反应时消耗球化剂中的Mg和RE,阻碍石墨化,降低球化率.硫化物夹渣还会在铁液凝固之前回硫,再次消耗球化元素,加快球化衰退,进一步影响球化率.为了达到高的球化率,应该使原铁液的 (S)量降低到0._%以下.4.2脱硫处理当炉料熔清后,取样分析化学成分,当 (S)量高于0._%时要进行脱硫处理.纯碱脱硫的原理为:将一定量的纯碱置于浇包内,利用铁液流冲入而搅拌,纯碱在高温下分解,反应式为Na2CO3=Na2O+CO2 :生成的Na2O又与铁液中硫化合生成Na2S,(Na2O)+[FeS]=(Na2S) +(FeO).Na2CO3分解析出CO2引起铁液剧烈搅动,促进脱硫过程进行.纯碱渣极易流动.很快上浮,脱硫反应时间很短,脱硫后应及时扒渣,否则会回硫.4.3预脱氧处理.球化处理及孕育处理福士科390预处理剂在包内起到预脱氧处理的作用,同时增加石墨形核核心.增加单位面积石墨球数,还可以提高Mg的吸收率,大幅度提高抗衰退能力,提高球化率.福士科孕育剂含 (Si) =60%_70%. (Ca)=0.4%_2.0%. (Ba)=7%__%,其中Ba 可以延长有效孕育时间.选用福士科球化剂牌号为NODALLOY7RE,其 (Si)=40%_50%. (Mg)=7.0% _ 8.0%. (RE)=0.3%_1.0%. (Ca)=1.5%_2.5%. (Al) 1.0%.由于铁液经过了脱硫和预脱氧处理,铁液中消耗球化剂的元素大量减少,因此选用了 (RE)量低的球化剂,以减少RE对球状石墨形态的恶化;起球化作用的元素主要是Mg;Ca和Al可以起到加强孕育的作用.采用碳化硅和硅铁联合孕育处理,碳化硅的熔点在__℃左右,并在凝固时增加石墨结晶晶核,采用大剂量的硅铁孕育,可以防止球化衰退.5.结论生产铁素体球墨铸铁,要求球化率达到90%以上时,可以采用以下措施:(1)选用优质炉料,减少炉料中的反球化元素.(2)选用 (RE)量低的球化剂,减少RE对球状石墨形态的恶化影响.(3)原铁液的 (S)量应小于0._0%,这样可以减少球化剂的消耗量,特别是硫化渣二次回硫所消耗的球化元素.(4)对铁液进行预脱氧处理,增加单位面积石墨球数,提高球化率,大幅度提高抗衰退能力,延长有效孕育时间.(5)降低原铁液中 (Si)量,增加球化剂.孕育剂和各种预处理剂的加入量,强化孕育处理.。