我国高光谱遥感的发展历程
- 格式:pdf
- 大小:251.53 KB
- 文档页数:3
无人机高光谱遥感平台研究进展与应用第一篇范文无人机高光谱遥感平台作为一种新兴的遥感技术,近年来在我国得到了广泛的研究和应用。
它通过搭载高光谱传感器,能够获取地物反射、辐射和散射的光谱信息,为地表覆盖分类、资源调查、环境监测等方面提供了有力支持。
本文将梳理无人机高光谱遥感平台的研究进展与应用情况,以期为相关领域的研究和实践提供参考。
一、无人机高光谱遥感平台的研究进展1. 平台技术无人机高光谱遥感平台技术主要包括无人机飞行器技术、高光谱传感器技术、数据处理与分析技术等。
近年来,我国在高光谱遥感领域取得了一系列关键技术突破,如高光谱成像光谱仪、激光雷达、多角度成像等,为无人机高光谱遥感平台的研究提供了有力保障。
2. 数据处理与分析无人机高光谱遥感数据处理与分析主要包括数据预处理、辐射校正、大气校正、水汽校正、光谱分类、光谱重建等。
我国科研团队在高光谱数据处理与分析方面取得了显著成果,开发了一系列具有自主知识产权的高光谱数据处理软件。
二、无人机高光谱遥感平台的应用1. 地表覆盖分类无人机高光谱遥感平台在地表覆盖分类方面具有显著优势,可以实现对农田、森林、水体、城市等多种地物的精确识别。
通过对高光谱数据的处理与分析,可以获取地物的光谱特征,从而实现地表覆盖的精细分类。
2. 资源调查无人机高光谱遥感平台在资源调查方面具有广泛应用前景。
例如,在矿产资源调查中,可以通过分析高光谱数据中的光谱特征,识别出矿物的种类和分布;在农业资源调查中,可以监测作物生长状况、估测产量等。
3. 环境监测无人机高光谱遥感平台在环境监测领域具有重要作用。
例如,可以通过分析高光谱数据,监测大气污染、水体污染、土壤侵蚀等环境问题,为环境保护和治理提供科学依据。
4. 灾害监测与评估无人机高光谱遥感平台在灾害监测与评估方面具有显著优势。
例如,在地震、洪水、干旱等自然灾害发生时,可以通过高光谱数据实时获取受灾地区的地表状况,为灾害救援和恢复提供支持。
【遥感微课堂】⾼光谱图像处理和分析下载练习数据:/s/zrSeGYf9h2k_i下载详细操作⽂档:/s/zrSeGYf9h2kXH光学遥感技术的发展经历了:全⾊(⿊⽩)—>彩⾊摄影—>多光谱扫描成像—>⾼光谱遥感四个历程。
⾼光谱分辨率遥感(HyperspectralRemote Sensing)⽤很窄(10-2λ)⽽连续的光谱通道对地物持续遥感成像的技术。
在可见光到短波红外波段其光谱分辨率⾼达纳⽶(nm)数量级,通常具有波段多的特点,光谱通道数多达数⼗甚⾄数百个以上,⽽且各光谱通道间往往是连续的,因此⾼光谱遥感⼜通常被称为成像光谱(Imaging Spectrometry)遥感。
⾼光谱图像分类很多地⽅也叫⾼光谱物质制图(Mapping),主要原理利⽤反映地物物理光学性质的光谱曲线来识别地物,即利⽤⼀种匹配⽅法,分析已知的波谱曲线(端元波谱)和⾼光谱图像每个像素波谱曲线(光谱剖⾯)匹配程度对图像进⾏分类。
⾼光谱图像分类过程同时也是光谱识别的过程;⽤已知的波谱曲线去识别图像中的地物,这也是⾼光谱遥感最⼤的优点,可⽤于特定⽬标的识别和探测,其结果是“有”或者“没有”。
本课堂以航空⾼光谱数据为例介绍从⾼光谱的波谱识别过程,包括⾼光谱数据的预处理(⼤⽓校正)、⾼光谱数据维数判断和降维、端元波谱选择、波谱识别等。
将会使⽤FLAASH⼯具、ENVI的波谱分析⼯具等。
由于数据的原因,本课堂使⽤了两种数据AVIRIS和HyMap航空⾼光谱数据。
以下所有操作在ENVI5 classic下完成,感兴趣的可以在ENVI5下操作。
ENVI下推荐使⽤的波谱识别流程(如图1所⽰)。
⼤致可以分为五个部分:⼤⽓校正、数据维数判断、端元波谱选择、波谱识别和结果分析。
图 1波谱识别流程(1)⼤⽓校正:使⽤FLAASH⼤⽓校正⼯具;(2)数据维数判断:对图像做MNF变换,根据特征值判断数据的维数;(3)端元波谱选择端元波谱作为⾼光谱分类、地物识别和混合像元分解等过程中的参考波谱,与监督分类中的分类样本具有类似的作⽤,直接影响波谱识别与混合像元分解结果的精度。
航天返回与遥感第44卷第6期12 SPACECRAFT RECOVERY & REMOTE SENSING2023年12月星载高光谱成像系统发展综述刘思田卢慧王栋李晓兰朱春丽边丽蘅*(北京理工大学复杂环境智能感测技术工信部重点实验室,北京100081)摘要高光谱遥感技术通过记录地表物体在多个连续波段下的光谱信息,实现高精度的地球观测与分析。
为了获取更多地物目标的细节信息,研究人员提出了对高光谱成像系统各项参数指标的新要求,国内外开展了大量相关研究。
随着卫星技术的成熟,高光谱遥感平台从最初的机载平台逐渐发展到星载平台,促进了高光谱遥感图像在地质、农林业、环境监测等领域的广泛应用。
目前,多数光谱成像系统选用传统的光学器件来实现分光,将计算光学与高光谱遥感结合,有利于集成更紧凑便捷的成像系统。
文章首先介绍了高光谱成像系统的主要类型和原理,随后对近30年来典型的星载高光谱成像系统及载荷进行了综述,梳理了典型国内外星载高光谱成像系统的发展现状,并对不同国家成像系统的性能指标进行了对比分析,总结了相应的发展历程,并对未来星载高光谱成像系统的发展作出了展望。
关键词高光谱成像系统遥感载荷星载光谱成像仪发展趋势中图分类号:V248.1;TP391.41文献标志码: A 文章编号: 1009-8518(2023)06-0012-15 DOI: 10.3969/j.issn.1009-8518.2023.06.002Overview of Development Analysis of Space-Borne HyperspectralImaging SystemLIU Sitian LU Hui WANG Dong LI Xiaolan ZHU Chunli BIAN Liheng*(MIIT Key Laboratory of Complex-Field Intelligent Sensing, Beijing Institute of Technology, Beijing 100081, China)Abstract Hyperspectral remote sensing technology provides high-precision earth observation and analysis by recording the spectral information of ground objects over multiple continuous wavelength bands. To obtain more detailed information about the earth’s surface, researchers worldwide have conducted extensive studies on various parameters of hyperspectral remote sensing payloads. With satellite technology maturing, hyperspectral remote sensing has shifted from airborne platforms to satellites, broadening applications in geology, agriculture, forestry, and environmental monitoring. Most spectral imaging systems now rely on traditional optical components for spectral separation. Combining computational optics with hyperspectral remote sensing is conducive to integrating more compact and convenient imaging systems. This paper initiates by introducing the principal types and principles of hyperspectral imaging instruments. It subsequently offers an overview of conventional space-borne hyperspectral remote sensing payloads spanning the last three decades. It analyses the present status of typical hyperspectral payloads on both domestic and international fronts, undertaking a comparative evaluation of their performance metrics. Finally, the paper concludes by encapsulating the associated trends in development. Furthermore, this paper offers insights into the future收稿日期:2023-09-25基金项目:国家自然科学基金面上项目(61971045);国家优秀青年科学基金项目(62322502)引用格式:刘思田, 卢慧, 王栋, 等. 星载高光谱成像系统发展综述[J]. 航天返回与遥感, 2023, 44(6): 12-26.LIU Sitian, LU Hui, WANG Dong, et al. Development Analysis of Spaceborne Hyperspectral Imaging System[J].Spacecraft Recovery & Remote Sensing, 2023, 44(6): 12-26. (in Chinese)第6期刘思田等: 星载高光谱成像系统发展综述 13trends of hyperspectral remote sensing payloads, providing valuable references for advancing research and applications of hyperspectral remote sensing payloads in China.Keywords hyperspectral imager; remote sensing payload; space-borne spectral imager; development trend0 引言高光谱遥感是一种基于成像光谱理论的遥感方法,旨在同时捕获地物的光谱信息和空间位置关系,以实现对地球表面的精确观测和深入分析。
第11卷 第3期2013年6月光学与光电技术OPTICS &OPTOELECTRONIC TECHNOLOGYVol.11,No.3 June,2013收稿日期 2012-09-29; 收到修改稿日期 2012-12-13作者简介 张达(1981-),男,博士,副研究员,硕士生导师,主要从事空间光学遥感仪器的研制、空间光学成像,以及光谱探测技术方面的研究。
E-mail:zhangda@ciomp.ac.cn基金项目 国防预研基金(SA050),国家863高技术研究发展计划(2010AA1221091001),吉林省科技发展计划(201101079)资助项目文章编号:1672-3392(2013)03-0067-07高光谱遥感的发展与应用张 达 郑玉权(中国科学院长春光学精密机械与物理研究所,吉林长春130033)摘要 阐述了高光谱遥感的特点、优势,以及在航空及航天领域的发展情况,列举了几种典型高光谱成像仪的光学系统原理和主要技术指标。
在此基础上,概述了高光谱遥感在植被生态、大气环境、地质矿产、海洋、军事等领域的应用情况。
最后对高光谱遥感发展趋势提出了几点建议,包括低反射率目标遥感、高信噪比、高空间分辨率及宽覆盖范围等方面。
关键词 高光谱遥感;发展;应用;成像光谱仪中图分类号 TP70 文献标识码 A1 引 言遥感技术是20世纪60年代发展起来的对地观测综合性技术[1],随着20世纪80年代成像光谱技术的出现,光学遥感进入了高光谱遥感阶段。
从20世纪90年代开始,高光谱遥感已成为国际遥感技术研究的热门课题和光电遥感的最主要手段。
高光谱遥感技术作为对地观测技术的重大突破[2],其发展潜力巨大。
高光谱遥感实现了遥感数据图像维与光谱维信息的有机融合,在光谱分辨率上有巨大优势,是遥感发展的里程碑。
随着高光谱遥感技术的日趋成熟,其应用领域也日益广泛,已渗透到国民经济的各个领域,如环境监测、资源调查、工程建设等,对于推动经济建设、社会进步、环境的改善和国防建设起到了重大的作用。
遥感技术光谱成像技术发展概况张海峰北京信息技术研究所摘要本文阐述了光谱成像技术的分类和光谱波段段的划分及其应用背号,进一步综述了光谱成像的发展历史及其典型的遥感用的光谱成像仪,并对未来的发展趋势进行了展望.关键词光谱成像多光谱超光谱极光谱遥感1引言自20世纪80年代初美国喷气推进实验室(3PL)提出光谱成像仪新概念后,遥感技术正在发生革命性飞跃。
光谱成像技术将成像技术和光谱技术结合在一起,是一种将光学、光谱学、精密机械、电子技术以及计算机技术融于一体的新型遥感技术。
由于光谱成像仪具有高光谱分辨率的巨大优势,在探测物体空间特征的同时对每个空间像元色散形成几十个到上百个波段带宽为tonm左右的连续光谱信息,达到从空间直接识别地球表面物质的目的,因而在经济建设和军事上均有极高应用价值。
光谱成像技术根据场景成像方式的不同可分为掸扫型光谱成像仪、推扫型(亦称推帚型)光谱成像仪和凝视型光谱成像仪。
按照波段数目和光谱分辨率的不同,目前大致分为三类:多光谱multi.spectra/)成像:其波段数为10~50个,光谱分辨率(△^/^)为0.I。
超光谱(hyper-spectral)成像:其波段数为50~1000个,光谱分辨率(△^/^)为O.0l。
超光谱成像技术员原先就是为军事应用开发的,工作波段通常落在0.4哪~1.5bun波段上,设计用于发现伪装目标。
例如.美国u.2高空侦察机早期不能实时获取情报,更不能发现难以探测的目标如掩埋的目标。
为此,美国空军制定了多传感器侦察系统(Mars)改进计划,其中包括ASARS.2合成孔径雷达、多光谱成像仪和新的超光谱成像仪。
(接第251页)图像的自动连续制图以及缺少地面控制点地区的遥感制图具有十分重要的意义。
由于SOM投影的理论复杂性,目前仅有美国使用。
在我国,目前对影像的处理仍然沿用系统校正和多项式校正的混合处理方法,处理效率低,几何保真度差,因此开展SOM投影的应用研究具有极端重要性。
遥感技术的发展和我国成就遥感是一门相对年轻的学科,是过去30一40年内迅速发展起来的一门综合性应用技术,它极大地增强了人类在区域乃至全球尺度上开发资源、动态监测地表信息变化的能力。
20世纪初,莱特兄弟发明了第一架飞机。
1915年世界上第一台航空摄影专用相机诞生。
此后航空遥感技术被广泛应用于军事侦察领域,直到1920年以后航空遥感才开始在民用领域得到应用。
1957年,前苏联第一颗人造卫星的升空标志着人类进入了太空时代,随后美国阿波罗宇宙飞行器发回了第一张地球影像图,从此人类开始以全新的视觉重新认识地球。
20世纪60年代,美国和苏联发射了多颗各种用途的遥感卫星,包括气象、资源及登月项目。
1972年美国发射了第一颗地球资源技术卫星ERTS—l(后更名为陆地卫星一号Landsat—1),用于专门收集地表资源信息,标志着遥感技术新时代的开始。
随后,美国发射了陆地卫星2号和3号,其携带的传感器为多光谱扫描仪,有4个波段,分辨率为80米。
20世纪80年代初,美国又发射了第二代试验型地球资源卫星Landsat一4和Landsat一5。
卫星在技术上有了较大改进,平台采用新设计的多任务模块,投入使用的专题制图仪TM有7个波段,其分辨率为30米,第6波段为120米。
1986年以来,法国相继发射了SPOT系列卫星,SPOT—l、SPOT一2、SPOT 一3上均装有两台高分辨率可见光相机,可获取10米分辨率的全色波段遥感图像以及20米分辨率的三波段遥感图像。
SPOT一4增加了新的中红外波段,还装载了一个植物仪,增强了对植物的识别能力。
进入20世纪90年代,欧空局、日本相继发射了ERS和JERS系列卫星,印度、俄罗斯也相继发射了IRS和RESURS系列卫星。
1985年加拿大发射了DARSAT—l雷达卫星,标志着卫星微波遥感技术的重大进展。
我国在1998年的长江抗洪抢险中,采用了DARSAT—l雷达卫星提供的图像进行水情分析。
遥感基础遥感是20世纪60年代发展起来的对地观测综合性技术,其发展经历了如下四个阶段:无记录的地面遥感阶段(1608~1838);有记录的地面遥感阶段(1839~1857);空中摄影遥感阶段(1858~1956);航天遥感阶段(1957年至今)。
遥感技术具有以下几个特点:大面积的同步观测;时效性;数据的综合性和可比性强;经济效益和社会效益高。
随着科技的发展,遥感技术也在不断进步,遥感探测的波段不断延伸,波段的分割越来越精细,从单一谱段向多谱段发展;成像雷达所获取的信息也向多频率、多角度、多极化、多分辨率的方向发展;激光测距和遥感成像的结合使得三维实时成像成为可能,各种传感器的空间分辨率不断提高;数字成像技术的发展,打破了传统摄影与扫描成像的界限。
此外,多种探测技术的集成日趋成熟,如雷达、多光谱成像与激光测高、GPS的集成可同时取得经纬度坐标和地面高程数据。
遥感信息融合包括数据层融合、特征层融合和决策层融合。
决策层融合有望在高光谱遥感信息智能处理中发挥重要作用,一方面高光谱遥感信息本身可以分成若干组,每一组分别进行分类后,按照证据理论将各组分类结果进行融合,得到最后的分类结果;另一方面高光谱遥感信息可以和其他信息进行融合,对于高空间分辨率或其它遥感信息分类精度不够、同物异谱或同谱异物现象可以通过高光谱遥感信息辅助解决,最后将分类结果惊醒融合即可。
其中一个关键的技术问题是如何根据不同情况设计有效的融合算法。
高光谱遥感技术的特点:高光谱遥感是高光谱分辨率遥感(Hyper spectral Remote Sensing)的简称,它是在电磁波谱的可见光、近红外、中红外和热红外波段范围内,获取许多非常窄的光谱连续的影像数据的技术。
高光谱遥感技术的特点:1)高光谱遥感的成像光谱仪可以分离成几十甚至数百个很窄的波段来接受信息,光谱分辨率高(5~10nm),波段连续性强(在0.4um~2.5um范围内有几百个波段);2)所有波段排列在一起能形成一条连续的完整的光谱曲线;3)光谱的覆盖范围从可见光到热红外的全部电磁辐射波谱范围;4)高光谱数据是一个光谱图像的立方体,其空间图像维描述地表二维空间特征,其光谱维揭示图像每一像元的光谱曲线特征,由此实现了遥感数据图像维与光谱维信息的有机融合。
我国高光谱遥感的发展历程
遥感对地观测要解决的两个重要问题,一是几何问题,二是物理问题。前者正是摄影测量的目标,后
者则要回答观测的对象是什么?这就是遥感问题。图像和光谱是人们在纷繁的大千世界中认识事物,以至
识别所要寻求的对象最重要的两种依据。图像为解决地物少儿英语 剑桥少儿英语 的几何问题提供了基础,
光谱往往反映了地物所特有的物理性状。现代遥感技术的发展,使得地物的成像范围不仅延伸到人们不可
见的紫外和红外波长区,而且可以在人们需要的任何波段独立成像或连续成像。高光谱遥感的光谱分辨率
高于百分之一波长达到纳米(nm)数量级,其光谱通道数多达数十甚至数百。高光谱或成像光谱技术就是将
由物质成分决定的地物光谱与反映地物存在格局的空间影像有机地结合起来,对空间影像的每一个像素都
可赋予对它本身具有特征的光谱信息。遥感影像和光谱的合一英语培训 英语培训学校 ,实现了人们认识
论中逻辑思维和形象思维的统一,大大提高了人们对客观世界的认知能力,为人们观测地物、认识世界提
供了一种犀利手段,这无疑是遥感技术发展历程中的一项重大创新。
20多年来,高光谱遥感已发展成一个颇具特色的前沿技术,并孕育形成了一门成像光谱学的新兴学
科门类。它的出现和发展将人们通过遥感技术观测和认识事物的能力带入了又一次飞跃,续写和完善了光
学遥感从全色经多光谱到高光谱的全部影像信息链。由于高光谱遥感影像提供了更为丰富的地球表面信息,
因此受到国内外学者的很大关注,并有了快速发展地物光谱仪 荧光光谱仪 。其应用领域已涵盖地球科学
的各个方面,在地质找矿和制图、大气和环境监测、农业和森林调查、海洋生物和物理研究等领域发挥着
越来越重要的作用。
1983年,世界第一台成像光谱仪AIS-1在美国研制成功,并在矿物填图、植被生化特征等研究方面
取得了成功,初显了高光谱遥感的魅力。在此后,许多国家先后研制了多种类型的航空成像光谱仪。如美
国的AVIRIS、DAIS,加拿大的FLI、CASI,德国的ROSIS,澳大利亚的HyMap等。
在经过航空试验和成功运行应用之后,90年代末期终于迎来了高光谱遥感的航天发展。1999年美国地
球观测计划(EOS)的Terra综合平台上的中分辨率成像光谱仪(MODIS)、号称新千年计划第一星的EO-1,
欧洲环境卫星(ENVISAT)上的MERIS,以及欧洲的CHRIS卫星相继升空,宣告了航天高光谱时代的来
临。
上世纪80年代初、中期,在国家科技攻关项目和863计划的支持下,我国亦开展了高光谱成像技术的
独立发展计划。我国高光谱仪的发展,经历了从多波段到成像光谱扫描,从光学机械扫描到面阵推扫的发
展过程。根据我国海洋环境监测和森林探火的需求,研制发展了以红外和紫外波段以及以中波和长波红外
为主体的航空专用扫描仪。80年代中期 紫外光谱仪 超声波测厚仪 ,面向地质矿产资源勘探,又研制了
工作在短波红外光谱区间(2.0-2.5 mm)的6—8波段细分红外光谱扫描仪(FIMS)和工作波段在8-12mm
光谱范围的航空热红外多光谱扫描仪(ATIMS)。在此基础上于80年代后期又研制和发展了新型模块化航
空成像光谱仪(MAIS)。这一成像光谱系统在可见—近红外—短波红外具有64波段,并可与6-8波段的热
红外多光谱扫描仪集成使用,从而使其总波段达到70—72个。这一系列高光谱仪器的研制成功,为中国遥
感科学家提供了新的技术手段。通过在我国西部干旱环境下的地质找矿试验,证明这一技术对各种矿物的
识别以及矿化蚀变带的制图十分有利,成为地质研究和填图的有效工具。
此后,中国又自行研制了更为先进的推帚式成像光谱仪(PHI)和实用型模块化成像光谱仪(OMIS)
等,并在国内外得到多次应用,成为世界航空成像光谱仪大家庭中的一员。PHI成像光谱仪在可见到近红
外光谱区具有244个波段,其光谱分辨率优于5nm;OMIS则具有更宽泛的光谱范围,如OMIS-1具有128
波段,其中可见—近红外光谱区(0.46—1.1μm)32波段,短波红外区(1.06—1.70μm及2.0—2.5μm)48
波段,中波红外区(3.0—5.0μm)8波段,热红外区(8.0—12.5μm)6—8波段。新的成像光谱系统不仅继
续在地质和固体地球领域研究中发挥作用,而且在生物地球化学效应研究、农作物和植被的精细分类、城
市地物甚至建筑材料的分类和识别方面都有很好的结果。
在航空高光谱技术取得成功的基础上,2002年3月在我国载人航天计划中发射的第三艘试验飞船“神
舟三号”中,搭载了一台我国自行研制的中分辨率成像光谱仪。这是继美国EOS计划MODIS之后,几乎与
欧洲环境卫星(ENVISAT)上的MERIS同时进入地球轨道的同类仪器。它在可见光到热红外波长范围
(0.4-12.5μm)具有34个波段。2007年10月24日我国发射的“嫦娥-1”探月卫星上,成像光谱仪也作为一
种主要载荷进入月球轨道。这是我国的第一台基于富里叶变换的航天干涉成像光谱仪,它具有光谱分辨率
高的特点。在我国计划于2008年发射的环境与减灾小卫星(HJ-1)星座中,也将搭载一台工作在可见光—
近红外光谱区(0.45—0.95μm)、具有128个波段光栅光谱仪 近红外光谱仪 便携式光谱仪、光谱分辨率优
于5nm的高光谱成像仪。它将对广大陆地及海洋环境和灾害进行不间断的业务性观测。即将发射升空的我
国“风云-3”气象卫星也将中分辨率光谱成像仪作为基本观测仪器,纳入大气、海洋、陆地观测体系,为对
地球的全面观测和监测提供服务。高光谱遥感系统在我国的普遍应用,标志着我国的高光谱遥感已逐步走
向成熟。特别应该指出的是中国科学院上海技术物理研究所和西安光学精密机械研究所在发展我国航空航
天高光谱成像系统中作出了重大贡献。
高光谱遥感影像数据的一个重要特征是超多波段和大数据量,对它的处理也就成为其成功应用的关键
问题之一。对于高光谱图像处理和分析来说,其研究的热点和重点主要体现在对高光谱图像的压缩、纠正
和地物分类、目标识别等方面。在高光谱图像的大气纠正方面,除了基于地面光谱辐射测量和大气模型的
纠正方法之外,基于图像自身大气吸收波段的大气纠正模型是当前的热点;而基于平台精确姿态和位置的
图像几何纠正算法已在我国大面积航空高光谱图像几何自动纠正方面取得了很好的效果。
高光谱图像的分类和识别,归纳起来主要有两种方法,即基于地物光谱特征的分类识别方法和基于统
计的分类识别方法。前者是利用光谱库中已知的光谱数据,采用匹配算法来鉴别和识别图像中地物类型。
这种方法既可采用全波长的比较和匹配,也可用感兴趣的光谱特征或部分波长的光谱或光谱组合参量进行
匹配,达到分类和识别的目的。
基于统计特征的分类,可采用非监督和监督分类两种方法,非监督方法甚至不需要有对数据的先验知
识,也可以直接应用原始高光谱遥感图像数据来进行分类,虽然精度有所欠缺,但简单易行,也是常用的
方法之一。
高光谱遥感应用的普及和深入在很大程度上与处理分析软件的发展息息相关。伴随着航空航天遥感的
不断发展,国际上遥感商业软件的市场竞争也日益激烈。到目前为止,国际上已经开发了十余套专用的高
光谱图像处理与分析软件系统,对高光谱遥感技术应用的普及和发展起到了很大的推动作用。自上世纪90
年代末期,中国科学院遥感应用研究所着手对高光谱遥感图像处理和分析系统进行开发。近年来,在863
计划支持下,利用国家重点实验室这一平台,已形成了具有完全自主知识产权的高光谱遥感图像处理和分
析软件系统(HIPAS V1.0)。这一系统采用了模块化思路和组件技术,具有很强的可移植性和跨平台支持能
力;它的开放式外存储结构,几乎能兼容业内所有主流遥感影像格式。HIPAS系统的一个重要特点是它的
专业应用模块,如光谱分析模块、矿物填图模块、目标提取模块等。
高光谱遥感在我国的顺利发展体现了需求牵引和前沿引导两个重要的特点。目前无论在航空还是航天
领域,均有我国科学家自行研制和发展的高光谱技术系统在运行。在应用领域中,我国自主研制的高光谱
影像处理、分析系统和相应的软件也在不断完善,并在各行业和多学科的应用中发挥作用。高光谱遥感在
我国的发展展现了良好的前景