当前位置:文档之家› 基于图像处理的心音图特征提取技术的研究

基于图像处理的心音图特征提取技术的研究

基于图像处理的心音图特征提取技术的研究
基于图像处理的心音图特征提取技术的研究

图像纹理检测与特征提取技术研究综述

龙源期刊网 https://www.doczj.com/doc/b33725443.html, 图像纹理检测与特征提取技术研究综述 作者:李秀怡 来源:《中国管理信息化》2017年第23期 [摘要] 图像纹理作为图像数据的重要信息,是符合人类视觉特征的重要信息之一。纹理 检测与特征提取是纹理分类与分割的基础前提,可以应用到医疗、工业、农业、天文等多个领域,也是近几十年来一个经久不衰的热点研究。随着图像处理领域各种技术的发展,纹理特征分析提取方法也得到不断创新。文章在对相关文献进行调研的基础上,叙述了纹理特征提取方法的发展历程及研究现状,并重点对近十年纹理特征提取方法进行了论述,最后指出了该领域的发展趋势及问题。 [关键词] 图像纹理;特征提取;小波;支持向量机 doi : 10 . 3969 / j . issn . 1673 - 0194 . 2017. 23. 088 [中图分类号] TP311 [文献标识码] A [文章编号] 1673 - 0194(2017)23- 0175- 04 1 引言 随着大数据时代的到来,相对于一般数据,图像信息作为一种更直观更形象的数据表现形式,其应用已经深入到医学、工业、航空、农业等各行业领域中。而纹理作为图像的重要特征之一,可以充分反映图像的整体特征,因此也成为了诸多图像后处理技术所必备的研究条件。但是,纹理的复杂多样性使得研究者们对其分析和准确识别是非常困难。而解决这个困难的方法之一是对图像提取纹理,然后对提取的纹理进行分析研究。这也是模式识别、图像检索、和计算机视觉等研究的基础。在纹理研究的每个阶段内,随着国内外学者研究对图像纹理提取模型及算法的不断创新,以及纹理提取的广泛的应用价值,促使着大家对这一领域进行更深入的研究。 2 纹理的基本定义及特性 目前,人们对纹理的精确定义还没有完全统一,当前几个类别的定义基本上按不同的应用类型形成相对的定义。一般认为,纹理是图像色彩或者灰度在空间上的重复或变化形成纹理。通常,人们将组成纹理的基本单元称为纹理基元或纹元(texture element)。 尽管关于纹理的定义尚未统一,但人们对纹理信息所具有的如下特性达成共识: (1)纹理基元是纹理存在的基本元素,并一定是按照某种规律排列组合形成纹理;(2)纹理信息具有局部显著性,通常可以表现为纹理基元序列在一定的局部空间重复出现;(3)纹理有周期性、方向性、密度、强度和粗糙程度等基本特征,而与人类视觉特征相一致的周期

图像颜色特征提取原理

一、颜色特征 1 颜色空间 1.1 RGB 颜色空间 是一种根据人眼对不同波长的红、绿、蓝光做出锥状体细胞的敏感度描述的基础彩色模式,R、 G、B 分别为图像红、绿、蓝的亮度值,大小限定在 0~1 或者在 0~255。 1.2 HIS 颜色空间 是指颜色的色调、亮度和饱和度,H表示色调,描述颜色的属性,如黄、红、绿,用角度 0~360度来表示;S 是饱和度,即纯色程度的量度,反映彩色的浓淡,如深红、浅红,大小限定在 0~1;I 是亮度,反映可见光对人眼刺激的程度,它表征彩色各波长的总能量,大小限定在 0~1。 1.3 HSV 颜色模型 HSV 颜色模型依据人类对于色泽、明暗和色调的直观感觉来定义颜色, 其中H (Hue)代表色度, S (Saturat i on)代表色饱和度,V (V alue)代表亮度, 该颜色系统比RGB 系统更接近于人们的经验和对彩色的感知, 因而被广泛应用于计算机视觉领域。 已知RGB 颜色模型, 令M A X = max {R , G, B },M IN =m in{R , G,B }, 分别为RGB 颜色模型中R、 G、 B 三分量的最大和最小值, RGB 颜色模型到HSV 颜色模型的转换公式为: S =(M A X - M IN)/M A X H = 60*(G- B)/(M A X - M IN) R = M A X 120+ 60*(B – R)/(M A X - M IN) G= M A X 240+ 60*(R – G)/(M A X - M IN) B = M A X V = M A X 2 颜色特征提取算法 2.1 一般直方图法 颜色直方图是最基本的颜色特征表示方法,它反映的是图像中颜色的组成分布,即出现了哪些颜色以及各种颜色出现的概率。其函数表达式如下: H(k)= n k/N (k=0,1,…,L-1) (1) 其中,k 代表图像的特征取值,L 是特征可取值的个数,n k是图像中具有特征值为 k 的象素的个数,N 是图像象素的总数。由上式可见,颜色直方图所描述的是不同色彩在整幅图像中所占的比例,无法描述图像中的对象或物体,但是由于直方图相对于图像以观察轴为轴心的旋转以及幅度不大的平移和缩放等几何变换是不敏感的,而且对于图像质量的变化也不甚敏感,所以它特别适合描述那些难以进行自动分割的图像和不需要考虑物体空间位置的图像。 由于计算机本身固有的量化缺陷,这种直方图法忽略了颜色的相似性,人们对这种算法进行改进,产生了全局累加直方图法和局部累加直方图法。 2.2 全局累加直方图法 全局累加直方图是以颜色值作为横坐标,纵坐标为颜色累加出现的频数,因此图像的累加直方空间 H 定义为:

图像特征提取方法

图像特征提取方法 摘要 特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点、连续的曲线或者连续的区域。 至今为止特征没有万能和精确的图像特征定义。特征的精确定义往往由问题或者应用类型决定。特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点。因此一个算法是否成功往往由它使用和定义的特征决定。因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像所提取的特征应该是相同的。 特征提取是图象处理中的一个初级运算,也就是说它是对一个图像进行的第一个运算处理。它检查每个像素来确定该像素是否代表一个特征。假如它是一个更大的算法的一部分,那么这个算法一般只检查图像的特征区域。作为特征提取的一个前提运算,输入图像一般通过高斯模糊核在尺度空间中被平滑。此后通过局部导数运算来计算图像的一个或多个特征。 常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。当光差图像时,常 常看到的是连续的纹理与灰度级相似的区域,他们相结合形成物体。但如果物体的尺寸很小 或者对比度不高,通常要采用较高的分辨率观察:如果物体的尺寸很大或对比度很强,只需 要降低分辨率。如果物体尺寸有大有小,或对比有强有弱的情况下同事存在,这时提取图像 的特征对进行图像研究有优势。 常用的特征提取方法有:Fourier变换法、窗口Fourier变换(Gabor)、小波变换法、最 小二乘法、边界方向直方图法、基于Tamura纹理特征的纹理特征提取等。

设计内容 课程设计的内容与要求(包括原始数据、技术参数、条件、设计要求等):一、课程设计的内容 本设计采用边界方向直方图法、基于PCA的图像数据特征提取、基于Tamura纹理特征的纹理特征提取、颜色直方图提取颜色特征等等四种方法设计。 (1)边界方向直方图法 由于单一特征不足以准确地描述图像特征,提出了一种结合颜色特征和边界方向特征的图像检索方法.针对传统颜色直方图中图像对所有像素具有相同重要性的问题进行了改进,提出了像素加权的改进颜色直方图方法;然后采用非分割图像的边界方向直方图方法提取图像的形状特征,该方法相对分割方法具有简单、有效等特点,并对图像的缩放、旋转以及视角具有不变性.为进一步提高图像检索的质量引入相关反馈机制,动态调整两幅图像相似度中颜色特征和方向特征的权值系数,并给出了相应的权值调整算法.实验结果表明,上述方法明显地优于其它方法.小波理论和几个其他课题相关。所有小波变换可以视为时域频域的形式,所以和调和分析相关。所有实际有用的离散小波变换使用包含有限脉冲响应滤波器的滤波器段(filterbank)。构成CWT的小波受海森堡的测不准原理制约,或者说,离散小波基可以在测不准原理的其他形式的上下文中考虑。 通过边缘检测,把图像分为边缘区域和非边缘区域,然后在边缘区域内进行边缘定位.根据局部区域内边缘的直线特性,求得小邻域内直线段的高精度位置;再根据边缘区域内边缘的全局直线特性,用线段的中点来拟合整个直线边缘,得到亚像素精度的图像边缘.在拟合的过程中,根据直线段转角的变化剔除了噪声点,提高了定位精度.并且,根据角度和距离区分出不同直线和它们的交点,给出了图像精确的矢量化结果 图像的边界是指其周围像素灰度有阶跃变化或屋顶变化的那些像素的集合,边界广泛的存在于物体和背 景之间、物体和物体之间,它是图像分割所依赖的重要特征.边界方向直方图具有尺度不变性,能够比较好的 描述图像的大体形状.边界直方图一般是通过边界算子提取边界,得到边界信息后,需要表征这些图像的边 界,对于每一个边界点,根据图像中该点的梯度方向计算出该边界点处法向量的方向角,将空间量化为M级, 计算每个边界点处法向量的方向角落在M级中的频率,这样便得到了边界方向直方图. 图像中像素的梯度向量可以表示为[ ( ,),),( ,),)] ,其中Gx( ,),),G ( ,),)可以用下面的

数字图像目标分割与提取研究背景意义目的与现状

数字图像目标分割与提取研究背景意义目的与现状 1 背景 数字图像目标分割与提取是数字图像处理和计算机视觉领域中一个备受关注的研究分支。因为在目标分割与提取过程中可以利用大量的数字图像处理的方法,加上其在计算机视觉、模式识别等领域中的广泛应用,都吸引了众多研究者的注意。相信对这一问题的深入研究不仅会不断完善对这一问题的解决,而且必将推动模式识别、计算机视觉、人工智能等计算机科学分支的发展。图像分割和边缘检测的问题在近二十年中得到了广泛的关注和长足的发展,国内外很多研究人士提出了很多方法,在不同的领域取得了一定的成果。但是对于寻找一种能够普遍适用于各种复杂情况的准确率很高的分割和检测算法,还有很大的探索空间。边缘提取和分割是图像分析的经典研究课题之一,目前的理论和方法仍存在许多不足之处,仍在不断改进和发展。 由于图像的多义性和复杂性,许多分割的工作无法依靠计算机自动完成,而手工分割又存在工作量大,定位不准确的难题,因此,人们提出了一些人工交互和计算机自动定位相结合的方法,利用各自的优势,实现目标轮廓的快速定位。相信这些交互式方法的应用,必将推动图像目标分割与提取这一既具有广阔的应用前景又具有重要的学术价值的课题的进一步研究,也必将成为一个更为独立和活跃的研究领域[1]。近年来,DSP技术的发展不断将数字信号处理领域的理论研究成果应用到实际系统中,并且推动了新的理论和应用领域的发展,对图像处理等领域的技术发展也起到了十分重要的推动作用。基于DSP的图像处理系统也被广泛的应用于各种领域。 从图像处理技术的发展来看,实时性在实际中有着广泛的应用。实时图像处理系统设计的难点是如何在有限的时间内完成大量图像数据的处理。因为要对图像进行实时处理,所以为了实现实时和快速,高效的处理,在这个系统中要求我们的图像处理速度要达到一定的速度,而图像处理的速度是由算法的执行时间、视频输入输出延迟以及外部数据存储器与DSP的数据交换效率等因素决定。算法执行时间与CPU 速度有关;图像处理的速度既图像处理所要用的时间,它主要是由算法决定的。算法执行的指令的多少决定了处理速度。而图像的处理的算法包含有大量的算法指令,为了快速的处理大数据量的多媒体信息,特别是活动图像信息,同时又能灵活的支持多种不同的应用,DSP的应用势在必行。相比于通用的DSP,用于多媒体应用的专用DSP集成了许多专用模块,这些模块用硬件加速很多通用的多媒体方面的大量算法明晰的处理、实时性强等要求.由于图像处理的数据量大,数据处理相关性高,实时的应用环境决定严格的帧、场时间限制,因此实时图像处理系统必须具有强大的运算能力。各种高性能DSP不仅

图像分割和特征提取技术研究

毕业设计 图像分割和特征提取技术研究 摘要 图像分割是图像分析的第一步,是图像理解的重要组成部分,在有关图像处理的几乎所有领域具有广泛的应用。因此,图像分割一直受到高度重视,对其研究具有十分重要的意义。长期以来,研究人员提出了许多实用的分割算法。随着统计学理论,神经网络,小波理论等在图像分割中的应用日益广泛,遗传算法、尺度空间、非线性扩散方程等近期涌现的新方法和新思想也不断被用于解决分割问题,许多国内外学者也针对一些具体应用提出了许多实用有效的方法。 本文介绍了数字图像处理技术中图像分割技术的基本理论和三种图像分割方法(1)基于阈值图像分割;(2)基于边缘检测及算子分割;(3)基于区域特性的图像分割。对基于点的分割方法进行了较全面的叙述,主要研究了图像分割方法中的边缘检测法,区域提取法和阈值分割法。通过大量的理论研习。并编写了MATLAB软件程序,对各分割方法进行了仿真实验,得到分割图像。最后对于仿真进行了数据处理分析,验证了Canny算子的整体效果最好, Prewitt算子分割细致。但对于一幅图像仅仅只有只用一种方法达不到很好的效果,而根据待分割图象的不同特点,结合已知的先验知识,研究符合具体图象特性的分割模型,才是提高图象分割的重要手段。 关键词:图像分割;边缘法;区域法;阈值法;分水岭分割法

Lmage Segmentation And Feature Extraction Technology Research Abstract Image segmentation is the first step in image analysis, image segmentation is an important component of image understanding, in almost all areas of the image processing has widely application. As a result, image segmentation has been attached great importance to, its research has the very vital significance. For a long time,researchers put forward many practical segmentation algorithm. With statistics theory, the neural network, wavelet theory has been used increasingly in image segmentation, such as genetic algorithm, scale space, and nonlinear diffusion equation with the recent emergence of new methods and new ideas are constantly being used to solve the segmentation problem, many scholars at home and abroad for some specific application put forward many practical and effective method. Digital image processing techniques were introduced in This paper introduces the digital image processing technology of image segmentation technology in basic theory and three methods of image segmentation. (1) based on threshold image segmentation. (2) segmentation based on edge detection and operator; (3) the image segmentation based on region feature. On the segmentation method based on the point of narrative, mainly studies the edge of image segmentation method, region extraction method and threshold segmentation method. Through a lot of theory study. And write the MATLAB software, the segmentation method, the simulation experiment for image segmentation. Finally analyzed the data processing for simulation.Verify the Canny operator of the overall effect is best. Prewitt operator segmentation and detailed. But for an image only only one way to reach a good effect, and according to the different characteristics of for image segmentation, combined with the known prior knowledge, research in accordance with the specific image segmentation model, is an important means to improve the image segmentation. KEYWORDS:Segmentation;edge method;the regional method;threshold;watershed segmentation

图像处理技术的研究现状和发展趋势

图像处理技术的研究现状和发展趋势 庄振帅 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程。数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理都发挥了巨大的作用。数字图像处理取得的另一个巨大成就是在医学上获得的成果。1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计算机断层摄影装置,也就是我们通常所说的CT(Computer Tomograph)。CT的基本方法是根据人的头部截面的投影,经计算机处理来重建截面图像,称为图像重建。1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。1979年,这项无损伤诊断技术获得了诺贝尔奖,说明它对人类作出了划时代的贡献。与此同时,图像处理技术在许多应用领域受到广泛重视并取得了重大的开拓性成就,属于这些领域的有航空航天、生物医学过程、工业检测、机器人视觉、公安司法、军事制导、文化艺术等,使图像处理成为一门引人注目、前景远大的新型学科。随着图像处理技术的深入发展,从70年代中期开

运动目标图像的识别与跟踪

运动目标图像的识别与跟踪 本文主要目的是将视频摄像头中的运动目标从背景中提取出来,并加以跟踪。首先考虑的是常见的目标检测的算法,其次考虑对于噪声的滤除,最后是对运动目标的跟踪。 一、基本目标检测算法 我们主要考虑的目标检测的算法主要有三种,光流场法、背景模型法以及时域差分法。 1.1光流场法 光流主要是图像亮度模式的表现运动。而光流场则是指灰度模式的表面运动。一般条件下,我们可以根据图像的运动,进行估算相对运动。 光流场法的基本理论是光流场基本方程: 0=++t y x I vI uI (1.1) 式中我们根据亮度守恒,利用泰勒公式展开,忽略高阶项与二次项。其中x I 、y I 和t I 是图像在对数轴x 、y 两个方向和t 的的导数,()v u ,就是这个点的光流坐标。 光流场法的目标检测,在摄像机运动时候也可以做出判断,但是图像的噪声太过明显,使得计算数据庞杂,计算的公式更加复杂,这样并不适合我们的对于目标跟踪的高精度的摄像系统。 1.2背景模型法 背景模型法,也被称为背景差法,主要利用当前的图像和背景的图像的二值化做差,然后取阈值,分割运动目标。 首先根据: ()()()y x b y x f y x D t t t ,,,-= (1.2) 我们可以得到当前的图像帧数()y x f t ,和背景图像的帧数),(y x b t 做差,然后以公式对图像进行二值化的处理。 ???≤>=)(,0)(,1),(BackGround T D ForeGround T D y x P t t t (1.3) 上面),(y x P t 是二值化模板图。假设某一区域大于一个给定的面积的时候,该区域就是我们要找的目标区域。 背景模型法的算法简单,可以快速反应,并且可以提供运动目标的大略特征等数据。但是对于复杂背景下,比如人流较大的公共场所,或者有光照等干扰时,就需以其他的算法以不断更新背景信息来进行弥补。

数字图像处理技术的研究现状及其发展方向

目录 绪论 (1) 1数字图像处理技术 (1) 1.1数字图像处理的主要特点 (1) 1.2数字图像处理的优点 (2) 1.3数字图像处理过程 (3) 2数字图像处理的研究现状 (4) 2.1数字图像的采集与数字化 (4) 2.2图像压缩编码 (5) 2.3图像增强与恢复 (8) 2.4图像分割 (9) 2.5图像分析 (10) 3数字图像处理技术的发展方向 (13) 参考文献 (14)

绪论 图像处理技术基本可以分成两大类:模拟图像处理和数字图像处理。数字图像处理是指将图像信号转换成数字信号并利用计算机进行处理的过程。其优点是处理精度高,处理内容丰富,可进行复杂的非线性处理,有灵活的变通能力,一般来说只要改变软件就可以改变处理内容。困难主要在处理速度上,特别是进行复杂的处理。数字图像处理技术主要包括如下内容:几何处理、算术处理、图像增强、图像复原、图像重建、图像编码、图像识别、图像理解。数字图像处理技术的发展涉及信息科学、计算机科学、数学、物理学以及生物学等学科,因此数理及相关的边缘学科对图像处理科学的发展有越来越大的影响。 数字图像处理的早期应用是对宇宙飞船发回的图像所进行的各种处理。到了70年代,图像处理技术的应用迅速从宇航领域扩展到生物医学、信息科学、资源环境科学、天文学、物理学、工业、农业、国防、教育、艺术等各个领域与行业,对经济、军事、文化及人们的日常生活产生重大的影响。 数字图像处理技术发展速度快、应用范围广的主要原因有两个。最初由于数字图像处理的数据量非常庞大,而计算机运行处理速度相对较慢,这就限制了数字图像处理的发展。现在计算机的计算能力迅速提高,运行速度大大提高,价格迅速下降,图像处理设备从中、小型计算机迅速过渡到个人计算机,为图像处理在各个领域的应用准备了条件。第二个原因是由于视觉是人类感知外部世界最重要的手段。据统计,在人类获取的信息中,视觉信息占60%,而图像正是人类获取信息的主要途径,因此,和视觉紧密相关的数字图像处理技术的潜在应用范围自然十分广阔。近年来,数字图像处理技术日趋成熟,它广泛应用于空间探测、遥感、生物医学、人工智能以及工业检测等许多领域,并促使这些学科产生了新的发展。 1数字图像处理技术 1.1数字图像处理的主要特点 (1)目前数字图像处理的信息大多是二维信息,处理信息量很大,因此对计

图象视觉特征的提取与表示

第1章图像视觉特征的提取和表示 1.1引言 图像视觉特征的提取和表示是将图像的视觉信息转化成计算机能够识别和处理的定量形式的过程,是基于视觉内容的图像分类与检索的关键技术,因此,图像视觉特征的提取和表示一直是图像内容分析领域中一个非常活跃的课题。 图像底层视觉特征一定程度上能够反映图像的内容,可以描述图像所表达的意义,因此,研究图像底层视觉特征是实现图像分类与检索的第一步。一般来说,随着具体应用的不同,选用的底层特征也应有所不同,在特定的具体应用中,不同底层视觉特征的选取及不同的描述方式,对图像分类与检索的性能有很大的影响。通常认为,一种良好的图像视觉特征的提取和表示应满足以下几个要求: (1)提取简单,时间和空间复杂度低。 (2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。 (3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。 (4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,旋转不变性。 本章重点讨论当前比较成熟的特征提取方法,在此基础上选取合适的特征提取方法,用于图像分类与检索系统的特征提取模块。接下来,将依次介绍颜色,纹理,形状等特征的提取和表示方法,最后对各种特征的特点加以比较。 1.2颜色特征的提取和表示 颜色是图像视觉信息的一个重要特征,是图像分类与检索中最为广泛应用的特征之一。一般来说同一类别的图像之间颜色信息具有一定的相似性,不同类别的图像,其颜色信息具有一定的差异。相对几何特征而言,颜色特征稳定性好,有对大小、方向不敏感等特点。因此,颜色特征的提取受到极大重视并得到深入研究。本章首先介绍几种常用的颜色空间模型,然后介绍各种颜色特征提取和表示方法。 1.2.1颜色空间模型 为了正确地使用颜色这一特征,需要建立颜色空间模型,通常的颜色空间模型可用三个基本量来描述,所以建立颜色空间模型就是建立一个3-D坐标系,其中每个空间点都代表某一种颜色。通常来说,对于不同的应用,应该选取不同的颜色空间模型。常用的颜色空间模型主要有:RGB、HIS、HSV、YUV、YIQ、Munsell、Lu*v*和La*b*等。颜色空间模型的选取需要符合一定的标准,下面就这一标准和最常用的颜色空间模型作一些介绍。 文献[错误!未找到引用源。]中介绍了选择颜色空间模型的标准主要有以下几个: (1)观察角度的鲁棒性

数字图像处理技术的现状及其发展方向(笔记)

数字图像处理技术的现状及其发展方向 一、数字图像处理历史发展 数字图像处理(Digital Image Processing)将图像信号转换成数字信号并利用计算机对其进行处理。 1.起源于20世纪20年代。 2.数字图像处理作为一门学科形成于20世纪60年代初期,美国喷气推进 实验室(JPL)推动了数字图像处理这门学科的诞生。 3.1972年英国EMI公司工程师Housfield发明了用于头颅诊断的X射线计 算机断层摄影装置即CT(Computer Tomograph),1975年EMI公司又成功研制出全身用的CT装置,获得了人体各个部位鲜明清晰的断层图像。 4.从70年代中期开始,随着计算机技术和人工智能、思维科学研究的迅速 发展,数字图像处理向更高、更深层次发展,人们已开始研究如何用计算机系统解释图像,实现类似人类视觉系统理解外部世界,其中代表性的成果是70年代 末MIT的Marr提出的视觉计算理论。 二、数字图像处理的主要特点 1.目前数字图像处理的信息大多是二维信息,处理信息量很大,对计算机的计算速度、存储容量等要求较高。 2.数字图像处理占用的频带较宽,在成像、传输、存储、处理、显示等各个环节的实现上,技术难度较大,成本也高,这就对频带压缩技术提出了更高的要求。 3.数字图像中各个像素是不独立的,其相关性大。因此,图像处理中信息压缩的潜力很大。 4.由于图像是三维景物的二维投影,一幅图像本身不具备复现三维景物的全部几何信息的能力,要分析和理解三维景物必须作合适的假定或附加新的测量。在理解三维景物时需要知识导引,这也是人工智能中正在致力解决的知识工程问题。 5.一方面,数字图像处理后的图像一般是给人观察和评价的,因此受人的因素影响较大,作为图像质量的评价还有待进一步深入的研究;另一方面,计算 机视觉是模仿人的视觉,人的感知机理必然影响着计算机视觉的研究,这些都是 心理学和神经心理学正在着力研究的课题。 三、数字图像处理的优点 1.再现性好;图像的存储、传输或复制等一系列变换操作不会导致图像质 量的退化。 2.处理精度高;可将一幅模拟图像数字化为任意大小的二维数组,现代扫描仪可以把每个像素的灰度等级量化为16位甚至更高。 3.适用面宽;图像可以来自多种信息源,图像只要被变换为数字编码形式后,均是用二维数组表示的灰度图像组合而成,因而均可用计算机来处理。 4.灵活性高;数字图像处理不仅能完成线性运算,而且能实现非线性处理, 即凡是可以用数学公式或逻辑关系来表达的一切运算均可用数字图像处理实现。

运动人体图像识别

学习报告 一.意义和背景 随着信息技术的快速发展壮大和应用的普及,利用计算机视觉的技术在图像处理方面和模式识别领域中研究,并对视频图像进行人体运动特征提取与有效识别已成为人们关注的热点问题。计算机视觉技术对人体运动的视频或者图像进行识别是基于对其视频或者图像的序列进行分析处理;对检测出的人体运动目标进行运动特征提取和分类识别,从而达到理解和描述其行为的目的。基于视频图像的人体运动特征分析在智能视频监控、智能接口、虚拟现实等领域有着相当广阔的应用前景。 人体运动特征的提取与识别需要结合生物识别技术来识别和判断运动中人的行为、区别个体身份。所谓生物识别技术,其具体操作就是利用人体与生俱来的生物特征进行个体身份认证,最显著的特点是具有不变性和唯一性。 人体运动特征包括:肢体摆动特征,步态特征,人体轮廓投影特征,人体对称特征等,其中从视觉监控的角度来看,步态特征是远距离场景条件下最具有代表性最典型的人体运动特征,近年来备受关注,同时也涌现出大量富有意义的步态识别算法。 二.人体运动特征识别研究 运动特征识别在当今的科研领域中涉及面广泛,主要涉及到图像处理,多传感器技术,虚拟现实,模式识别,计算机视觉和图形学,

计算机辅助设计,可视化技术,智能机器人等一系列研究领域。针对人体运动图像序列进行分析处理的运动人体视觉分析技术,一般情况下可分为以下几个过程,运动目标检测,运动目标特征提取以及识别复杂背景下的运动目标身份。 图1 典型的运动特征识别系统 运动特征识别的主要研究方法 目前运动特征识别中的运动特征包含了两种分量:结构化分量和动态分量。其中结构化分量也就是静态分量,它负责记录运动人体的身高,步幅等身体形状信息;而动态分量则形象地表征出了在运动过程中人体的胳膊摆动,肢体倾斜度,迈腿方式等运动特征,依据上述两种类型分量,现有的运动特征识别算法大致分为两类:基于统计的方法和基于模型的方法。

图像特征提取与分析复习资料

图像分割概念:图像分割就是把图像分成各特性的区域并提取出感兴趣目标的技术和过程。这些区域互相不交叉,每一个区域都满足特定区域的一致性。医学图像的特点:成像设备的局限性、组织的蠕动-----伪影和噪声局部体效应------组织边缘模糊病变组织---------病变边缘不明确不均匀的组织器官-------灰度不均匀模糊、不均匀、个体差异、复杂多样医学图像分割方法的特点1、分割算法一般面向具体的分割任务,没有通用的方法2、重视多种分割算法的有效结合3、需要利用医学中大量领域的知识4、交互式分割方法受到日益重视图像分割算法基于区域的分割方法基于边缘的分割方法基于数学形态学的分割方法灰度阈值法:灰度值域法是把图像的灰度分成不同的等级,然后用设置灰度阈值的方法确定有意义的区域或分割物体的边界. 令f(x,y)原始图像 阈值的选取:1直方图法(极小值点阈值) 2 最小误差阈值 3 迭代阈值分割 4 最大方差阈值分割边缘检测(Edge Detection):基本思想是先检测图像中的边缘点,再按照某种策略将边缘沿点连接成轮廓,从而构成分割区域。边缘:指图像局部亮度变化显著的部分. 边缘的检测方法:最简单的边缘检测方法是并行微分算子法。利用相邻区域的像素值不连续的性

质,采用一阶或二阶导数来检测边缘点。一阶导数求极值点,二阶导数求过零点。一阶梯度算子:Roberts交叉算子Sobel算子 Priwitt 算子二阶拉普拉斯算子:在此基础上LoG 算子 Canny算子 :推导了最优边缘检测算子区域生长(region growing) 基本思想:将具有相似性质的像素集合起来构成区域。具体步骤:先对每个需要分割的区域找一个种子象素作为生长的起点,然后将种子象素周围邻域中与种子象素具有相同或相似性质的像素(根据某种事先确定的生长或相似准则来判定)合并到种子象素所在的区域中。将这些新象素当作新的种子象素继续进行上面的过程,直到在没有满足条件的像素可被包括进来。这样一个区域就生长了。解决的问题:① 如何选择一组能正确代表所需区域的种子象素; ② 如何确定在生长过程中能将相邻象素包括近来的准则;③如何确定生长终止的条件或规则例如:每一步所接受的邻近点的灰度级与先前物体的平均灰度级相差小于2。起始第二步第三步558655865586 48974897 4897 228322832283 333333333333 分裂合并(splitting and merging) 基本思想:从整幅图像开始通过不断分裂得到各个区域.具体步骤:先把图像分成任意大小且不重叠的区域,然后再合并或分裂这些区域以满足

图像识别技术发展状况及前景

医学图像配准技术 罗述谦综述 首都医科大学生物医学工程系(100054) 吕维雪审 浙江大学生物医学工程研究所(310027) 摘要医学图像配准是医学图像分析的基本课题,具有重要理论研究和临床应用价 值。本文较全面地介绍了医学图像配准的概念、分类、配准原理、主要的配准技术及评 估方法。 关键词医学图像配准多模 1 医学图像配准的概念 在做医学图像分析时,经常要将同一患者的几幅图像放在一起分析,从而得到该患者的多方面的综合信息,提高医学诊断和治疗的水平。对几幅不同的图像作定量分析,首先要解决这几幅图像的严格对齐问题,这就是我们所说的图像的配准。 医学图像配准是指对于一幅医学图像寻求一种(或一系列)空间变换,使它与另一幅医学图像上的对应点达到空间上的一致。这种一致是指人体上的同一解剖点在两张匹配图像上有相的空间位置。配准的结果应使两幅图像上所有的解剖点,或至少是所有具有诊断意义的点及手术感兴趣的点都达到匹配。 医学图像配准技术是90年代才发展起来的医学图像处理的一个重要分支。涉及“配准”的技术名词除registration外,mapping、matching、co-registration、integration、align-ment和fusion 等说法也经常使用。从多数文章的内容看,mapping偏重于空间映射;fu-sion指图像融合,即不仅包括配准,而且包括数据集成后的图像显示。虽然在成像过程之前也可以采取一些措施减小由身体移动等因素引起的空间位置误差,提高配准精度(称作数据获取前的配准preacquisition),但医学图像配准技术主要讨论的是数据获取后的(post-acquisition)配准,也称作回顾式配准(retrospective registration)。当前,国际上关于医学图像配准的研究集中在断层扫描图像( tomographic images,例如CT、MRI、SPECT、PET等)及时序图像(time seriesimages,例如fMRI及4D心动图像)的配准问题。 2 医学图像基本变换 对于在不同时间或/和不同条件下获取的两幅图像I1(x1,y1,z1)和I2(x2,y2,z2)配准,就是寻找一个映射关系P:(x1,y1,z1) (x2,y2,z2),使I1的每一个点在I2上都有唯一的点与之相对应。并且这两点应对应同一解剖位置。映射关系P表现为一组连续的空间变换。常用的空间几何变换有刚体变换(Rigid body transformation)、仿射变换(Affine transformation)、投影变换(Projec-tive transformation)和非线性变换(Nonlin-ear transformation)。 (1)刚体变换: 所谓刚体,是指物体内部任意两点间的距离保持不变。例如,可将人脑看作是一个刚体。 处理人脑图像,对不同方向成像的图像配准常使用刚体变换。刚体变换可以分解为旋转和平移:P(x)=Ax+b(1) x=(x,y,z)是像素的空间位置;A是3×3的旋转矩阵,b是3×1的平移向量。

图像分割和特征提取毕业设计

图像分割和特征提取技术研究 摘要 图像分割是图像分析的第一步,是图像理解的重要组成部分,在有关图像处理的几乎所有领域具有广泛的应用。因此,图像分割一直受到高度重视,对其研究具有十分重要的意义。长期以来,研究人员提出了许多实用的分割算法。随着统计学理论,神经网络,小波理论等在图像分割中的应用日益广泛,遗传算法、尺度空间、非线性扩散方程等近期涌现的新方法和新思想也不断被用于解决分割问题,许多国内外学者也针对一些具体应用提出了许多实用有效的方法。 本文介绍了数字图像处理技术中图像分割技术的基本理论和三种图像分割方法(1)基于阈值图像分割;(2)基于边缘检测及算子分割;(3)基于区域特性的图像分割。对基于点的分割方法进行了较全面的叙述,主要研究了图像分割方法中的边缘检测法,区域提取法和阈值分割法。通过大量的理论研习。并编写了MATLAB软件程序,对各分割方法进行了仿真实验,得到分割图像。最后对于仿真进行了数据处理分析,验证了Canny算子的整体效果最好, Prewitt算子分割细致。但对于一幅图像仅仅只有只用一种方法达不到很好的效果,而根据待分割图象的不同特点,结合已知的先验知识,研究符合具体图象特性的分割模型,才是提高图象分割的重要手段。 关键词:图像分割;边缘法;区域法;阈值法;分水岭分割法

Lmage Segmentation And Feature Extraction Technology Research Abstract Image segmentation is the first step in image analysis, image segmentation is an important component of image understanding, in almost all areas of the image processing has widely application. As a result, image segmentation has been attached great importance to, its research has the very vital significance. For a long time,researchers put forward many practical segmentation algorithm. With statistics theory, the neural network, wavelet theory has been used increasingly in image segmentation, such as genetic algorithm, scale space, and nonlinear diffusion equation with the recent emergence of new methods and new ideas are constantly being used to solve the segmentation problem, many scholars at home and abroad for some specific application put forward many practical and effective method. Digital image processing techniques were introduced in This paper introduces the digital image processing technology of image segmentation technology in basic theory and three methods of image segmentation. (1) based on threshold image segmentation. (2) segmentation based on edge detection and operator; (3) the image segmentation based on region feature. On the segmentation method based on the point of narrative, mainly studies the edge of image segmentation method, region extraction method and threshold segmentation method. Through a lot of theory study. And write the MATLAB software, the segmentation method, the simulation experiment for image segmentation. Finally analyzed the data processing for simulation.Verify the Canny operator of the overall effect is best. Prewitt operator segmentation and detailed. But for an image only only one way to reach a good effect, and according to the different characteristics of for image segmentation, combined with the known prior knowledge, research in accordance with the specific image segmentation model, is an important means to improve the image segmentation. KEYWORDS:Segmentation;edge method;the regional method;threshold;watershed segmentation

相关主题
文本预览
相关文档 最新文档