学习运筹学的心得体会
- 格式:doc
- 大小:29.00 KB
- 文档页数:3
运筹学学习心得从初步接触到深入理解,运筹学这门学科带给我无尽的探索与思考。
这篇文章将详细分享我学习运筹学的过程、体验、收获与感悟。
一、初识运筹学的魅力起初,我对运筹学的理解仅停留在“解决问题”的表面。
但随着学习的深入,我逐渐领略到它背后的逻辑美和实用价值。
运筹学能将复杂问题转化为数学模型,通过科学方法找到最优解。
1. 数学建模的运用现实中的问题往往错综复杂,而运筹学提供了一种系统的方法来抽象和描述这些问题。
我学会了如何将实际问题转化为数学模型,这为后续的求解打下了坚实的基础。
2. 优化思想的体现运筹学强调的是在有限的资源下追求最优解。
这一思想不仅仅局限于数学模型和算法,更在于培养我们一种高效的思维方式。
3. 实际问题的解决学习过程中,我接触到了许多实际问题,如物资调度、资源分配等。
通过案例分析和实践操作,我体验到了运筹学在实际问题解决中的强大作用。
二、深入学习中的感悟随着学习的不断深入,我对运筹学的理解也更为全面和深入。
我意识到,运筹学不仅仅是一门科学,更是一种思维方式。
4. 培养系统思维学习运筹学让我学会了从全局和整体的角度看待问题,意识到系统内的各个部分是相互关联的。
在解决复杂问题时,这种系统思维尤为重要。
5. 追求效率与效益的平衡运筹学不仅追求问题的最优解,还强调在达到最优解的过程中实现效率和效益的平衡。
这一点在许多实际场景中都得到了体现,如路线规划、物流配送等。
6. 理论与实践的结合理论学习让我对运筹学有了深入的理解,而实践则让我真正感受到它的魅力。
通过参与项目和案例分析,我学会了如何将理论知识应用于实际问题中。
三、展望未来与应用领域学习的最终目的是为了应用。
我对运筹学的未来发展及其应用领域充满期待。
7. 人工智能与运筹学的结合随着人工智能技术的不断发展,运筹学有望在智能决策、自动化系统等领域发挥更大的作用。
例如,机器学习算法在解决复杂优化问题上的应用前景广阔。
8. 实际应用领域的拓展除了传统的物流、生产调度等领域,运筹学还可以应用于金融、医疗、环境保护等多个领域。
运筹学学习的心得体会5则范文第一篇:运筹学学习的心得体会浅谈我对运筹学的认识《史记·高祖本纪》有云:“夫运筹帷幄之中,决胜于千里之外”。
先从运筹学的名字谈起。
运筹学的英文原名叫做Operations Research,从名字就可以看出,运筹学主要就是“研究(Research)”,就是研究在经营管理活动中如何行动,如何以尽可能小的代价,获取尽可能好的结果,即所谓“最优化”问题。
中国学者把这门学科意译为“运筹学”,就是取自古语“运筹于帷幄之中,决胜于千里之外”,其意为运算筹划,出谋献策,以最佳策略取胜。
这就极为恰当地概括了这门学科的精髓。
当我首次听说这门课程时,心里充满了畏惧与神圣感,畏惧是因为我对这门课还未收悉,看名字就觉得很难很高深;神圣感则是因为自己可以学习这门高深的课程。
粗略的翻过课本与听了老师的简介之后,我觉得自己大致明白了这门课的方向,主要还是将数学运用到生活中,运用到管理活动中。
所以我就将这门课定义为了数学与管理的一个综合。
慢慢的经过一学期的学习,我认识到运筹学不仅是数学与管理活动的结合,还是数学和经济活动、生态、技术,甚至于政治的结合。
下面引用一段资料我国运筹学的应用是在1957年始于建筑业和纺织业。
1958年开始在交通运输、工业、农业、水利建设、邮电等方面都有应用,尤其是运输方面,提出了“图上作业法”并从理论上证明了其科学性。
在解决邮递员合理投递路线问题时,管梅谷教授提出了国外称之为“中国邮路问题”解法。
从60年代起,运筹学在我国的钢铁和石油部门得到了全面和深入的应用。
1965年起统筹法的应用在建筑业、大型设备维修计划等方面取得了可喜进展。
从70年代起,在全国大部分省市推广优选法。
70年代中期最优化方法在工程设计界得到广泛的重视。
在光学设计、船舶设计、飞机设计、变压器设计、电子线路设计、建筑结构设计和化工过程设计等方面都有成果。
70年代中期的排队论开始应用于研究港口、矿山、电讯和计算机设计等方面。
学习运筹学的心得[5篇范文]第一篇:学习运筹学的心得学习运筹学的心得一直以来就对经济类很感兴趣,但是被分配到机械专业,不过我也一直都在关注有关经济,所以这次选修课,我毫不犹豫的选了运筹学,对于运筹学,我还是有一些了解的,知道他同我这机械专业的联系,运筹学在生活中的应用非常广泛,工程,物流,人事安排等很多方面都牵扯到运筹。
基本上需要资源优化配置的都有运筹学的影响。
你在家里面做个简单的事情安排都由运筹学的影响。
比如家务安排,怎么安排最节省人力时间,就运用到了运筹学。
运筹学是从生活实践中总结发展出来的学科,影响很广泛,很多人没有接触过运筹学,不知道什么是运筹学,但是在处理问题的时候都用到了运筹学。
刚开始学运筹学对我来说也许有点难度,但我还是会拿起那本厚厚的书静静的看下去,不知不觉就喜欢上它了,觉得它是我学习的课程最有用的一门学科。
也许不光是课程本身的实用性吧!每次看完一点我都要慢慢去体会,原来如此复杂的问题这样就解决了,有点不可思议!晚上休息的时候也会不知不觉就想起,以至与舍友说我是运筹学学疯了,也许吧!最近发觉自己有个毛病,总会把运筹学和人生联系到一起,不知不觉就会想到它学习理论的目的就是为了解决实际问题,下面就谈谈我对运筹学的理解及我学习运筹学的心得。
其实,运筹思想和方法,早在我国上古就曾闪烁过光辉。
《孙子兵法》十分强调决策信息作用,“知己知彼,百战不殆”。
我国历史上运筹思想及其应用,在军事上和工程上都有过不少光辉范例。
“赤壁鏖兵”、“火烧连营”、“淝水之战”,都因运筹有方,结果以寡胜众。
“都江堰水利工程”和北宋修复皇宫“一举三济”的故事,至今仍广为传颂。
运筹学是研究各种广义资源的运用、筹划以及相关决策等问题的,其目的是根据问题的需求,通过数学的分析和运算,做出综合性的、合理的优化安排,以便更有效地发展有限资源的效益。
在学习运筹学前我们必须理解这么学科到底是做什么的,并且学习时我们要知道如何运用它达到所需的目的。
运筹学学习心得运筹学是一门研究如何做出最优决策的学科,它主要涉及数学、统计学和计算机科学等领域。
通过学习运筹学,我深刻认识到它在解决实际问题中的重要性和应用广泛性。
以下是我对运筹学学习的心得体会。
一、运筹学的基本概念和原理运筹学的核心概念是最优化,即在给定的约束条件下,找到使目标函数取得最优值的决策变量。
它涉及到线性规划、整数规划、动态规划、网络优化等方法和技术。
通过学习这些方法,我了解到如何建立数学模型,并运用相应的算法求解最优解。
二、线性规划的应用线性规划是运筹学中最基础和最常用的方法之一。
它适用于许多实际问题,如生产计划、资源分配、物流运输等。
通过学习线性规划,我学会了如何将实际问题转化为数学模型,并运用单纯形法、对偶理论等方法求解最优解。
例如,在生产计划中,通过线性规划可以确定每个产品的生产数量,以最大化利润或最小化成本。
三、整数规划的求解在一些实际问题中,决策变量需要取整数值,这就涉及到整数规划。
整数规划的求解相对复杂,需要运用分支定界法、割平面法等高级算法。
通过学习整数规划,我了解到如何处理这类问题,并掌握了相应的求解技巧。
例如,在物流配送中,整数规划可以帮助确定最佳的配送路线和车辆调度方案。
四、动态规划的思想和应用动态规划是一种通过递推关系求解最优化问题的方法。
它适用于具有重叠子问题和最优子结构性质的问题。
通过学习动态规划,我了解到如何分析问题的结构,并构造递推方程求解最优解。
例如,在投资决策中,动态规划可以帮助确定最佳的投资策略,以最大化收益或最小化风险。
五、网络优化的应用网络优化是运筹学中的一个重要分支,它主要研究网络流问题和图论相关的优化问题。
通过学习网络优化,我了解到如何建立网络模型,并运用最小生成树算法、最短路径算法等方法求解最优解。
例如,在交通规划中,网络优化可以帮助确定最佳的交通流分配方案,以提高交通效率和减少拥堵。
六、运筹学在实际问题中的应用运筹学作为一门应用学科,广泛应用于各个领域。
运筹学学习心得运筹学是一门研究如何在有限资源下做出最优决策的学科,它涉及到数学、统计学、经济学等多个领域的知识。
通过学习运筹学,我深刻认识到了它在实际生活和工作中的广泛应用,以及它对决策的重要性。
以下是我对运筹学学习的心得体会。
首先,运筹学的核心思想是优化。
它通过建立数学模型,利用数学方法来求解最优解。
在学习过程中,我了解到了各种常用的优化方法,如线性规划、整数规划、动态规划等。
这些方法可以帮助我们在决策过程中找到最优解,提高效率,降低成本。
例如,在生产调度中,我们可以利用线性规划来确定最佳的生产计划,以最大程度地利用资源,提高生产效率。
其次,运筹学还包括决策分析和风险管理。
在学习中,我了解到了多种决策分析方法,如决策树、灰色关联分析等。
这些方法可以帮助我们在面对多种选择时做出明智的决策。
同时,风险管理也是运筹学的重要内容之一。
通过学习风险管理,我了解到了如何通过评估和控制风险来降低决策的不确定性。
在实际工作中,我们可以利用风险管理的方法来制定风险应对策略,保证项目的顺利进行。
此外,运筹学还涉及到排队论、库存管理、供应链管理等内容。
通过学习这些内容,我了解到了如何通过合理的排队策略来提高服务效率,如何通过库存管理来平衡成本和服务水平,以及如何通过供应链管理来优化整个供应链的运作。
这些知识对于企业的运营和管理具有重要意义。
在学习运筹学的过程中,我也进行了一些实践应用。
例如,我利用线性规划方法解决了一个生产调度问题,通过优化生产计划,实现了资源的最大利用和生产效率的提高。
我还利用决策树方法对一个投资项目进行了评估,通过分析各种可能的结果和概率,帮助决策者做出了正确的决策。
这些实践应用让我更加深入地理解了运筹学的应用和意义。
在学习运筹学的过程中,我也遇到了一些困难和挑战。
例如,运筹学涉及到较多的数学和统计知识,需要一定的数学基础。
在遇到复杂的问题时,需要耐心和细心地分析和求解。
此外,运筹学的应用也需要一定的实践经验和业务理解。
运筹学实验的心得体会范文(通用3篇)运筹学实验的心得体会1古人作战讲“夫运筹帷幄之中,决胜千里之外”。
在现代商业社会中,更加讲求运筹学的应用。
作为一名物流管理的学生,更应该能够熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题。
即:应用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行统筹安排。
本着这样的心态,在本学期运筹学即将结课之时,我得出以下关于运筹学的知识。
是虽上机考试没有通过,感到不安,但是我明白要将理论联系实际,才能更好的发挥。
线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。
解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。
简单的设计2个变量的线性规划问题可以直接运用图解法得到。
但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。
单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。
将所得的量的值代入目标函数,得出最优值。
遇到评价同类型的组织的工作绩效相对有效性的问题时,可以用数据包络进行分析,运用数据包络分析的的决策单元要有相同的投入和相投的产出。
对偶理论:其基本思想是每一个线性规划问题都涉及一个与其对偶的问题,在求一个解的时候,也同时给出另一问题的解。
对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。
非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标标准形式的对偶问题。
随着现代科学技术的飞速发展,运筹学作为一门应用广泛的交叉学科,已经渗透到了各个领域。
在大学期间,我有幸选修了运筹学这门课程,并通过上机实践深入学习了运筹学的基本原理和应用方法。
以下是我对运筹学上机实践的一些心得体会。
一、理论与实践相结合的重要性运筹学是一门理论与实践相结合的学科。
在课堂学习中,我们学习了线性规划、整数规划、网络流、决策分析等基本理论。
然而,这些理论知识的掌握仅仅停留在书本上,对于实际问题的解决能力还是有限的。
通过上机实践,我们可以将理论知识与实际问题相结合,提高解决实际问题的能力。
在上机实践中,我深刻体会到了理论与实践相结合的重要性。
首先,通过编程实现算法,可以让我们更加直观地理解算法的原理和步骤。
例如,在学习线性规划时,我们通过编写代码求解线性规划问题,可以清楚地看到目标函数、约束条件以及算法的迭代过程。
这种直观的理解有助于我们更好地掌握线性规划的基本原理。
其次,上机实践可以帮助我们检验和巩固课堂所学知识。
在编写代码的过程中,我们会遇到各种问题,如算法错误、数据异常等。
这些问题需要我们运用所学知识进行分析和解决。
通过不断尝试和修正,我们不仅能够巩固已学的知识,还能够提高自己的编程能力。
二、编程能力的提升运筹学上机实践对编程能力的要求较高。
在实践过程中,我逐渐认识到编程能力的重要性。
以下是我对编程能力提升的一些体会:1. 熟练掌握编程语言:在上机实践中,我们通常会使用一种或多种编程语言进行算法实现。
因此,熟练掌握编程语言是进行运筹学上机实践的基础。
我通过学习Python、MATLAB等编程语言,提高了自己的编程能力。
2. 熟悉算法实现:运筹学中的各种算法都有相应的编程实现方法。
在上机实践中,我们需要了解并掌握这些算法的实现方法。
例如,在求解线性规划问题时,我们需要了解单纯形法、内点法等算法的编程实现。
3. 优化代码结构:在编写代码时,我们需要注意代码的可读性、可维护性和可扩展性。
一、引言运筹学作为一门应用数学分支,广泛应用于经济、管理、工程、军事等领域。
在我国高等教育体系中,运筹学是经济管理类专业的核心课程之一。
作为一名运筹学教师,我深感责任重大。
在教学过程中,我不断总结经验,努力提高教学质量,现将教学心得体会总结如下。
二、教学目标与理念1. 教学目标(1)使学生掌握运筹学的基本理论和方法;(2)培养学生运用运筹学解决实际问题的能力;(3)提高学生的逻辑思维和创新能力;(4)培养学生严谨的学术态度和团队协作精神。
2. 教学理念(1)注重理论与实践相结合,使学生能够将所学知识应用于实际;(2)激发学生的学习兴趣,提高学生的学习积极性;(3)关注学生的个体差异,因材施教;(4)培养学生的自主学习能力和创新意识。
三、教学内容与方法1. 教学内容运筹学教学内容主要包括线性规划、整数规划、网络优化、非线性规划、决策分析、排队论、库存论等。
在教学过程中,我注重以下几个方面:(1)基础知识:系统地讲解运筹学的基本概念、原理和方法,使学生掌握运筹学的基本框架;(2)典型应用:结合实际案例,介绍运筹学在各个领域的应用,提高学生的实际操作能力;(3)前沿动态:介绍运筹学的研究进展和最新成果,激发学生的学习兴趣和探索欲望。
2. 教学方法(1)启发式教学:通过提问、讨论等方式,引导学生主动思考,培养他们的逻辑思维和创新能力;(2)案例教学:结合实际案例,让学生分析问题、解决问题,提高他们的实际操作能力;(3)小组合作学习:将学生分成小组,共同探讨问题,培养学生的团队协作精神;(4)实践教学:组织学生参加科研项目、实习实训等,将所学知识应用于实际。
四、教学评价与反思1. 教学评价(1)课堂表现:关注学生的出勤、课堂纪律、发言积极性等;(2)作业完成情况:检查学生的作业质量,了解他们的学习进度;(3)考试与测验:通过考试和测验,评估学生的掌握程度;(4)学生反馈:定期收集学生对教学内容的意见和建议,改进教学方法。
运筹学学习心得标题:运筹学学习心得引言概述:运筹学是一门研究如何优化决策和资源利用的学科,它的应用广泛,涉及到各个领域。
在学习运筹学的过程中,我深刻体味到了它的重要性和实用性。
本文将结合个人学习经验,从五个方面详细阐述我对运筹学的学习心得。
一、理论基础1.1 深入了解运筹学的定义和基本概念,明确其研究对象和目标。
1.2 学习运筹学的数学模型和方法,包括线性规划、整数规划、动态规划等。
1.3 掌握运筹学的基本原理和解题技巧,如对偶理论、灵敏度分析等。
二、实际应用2.1 学习如何将运筹学方法应用于实际问题的求解,如生产调度、物流配送等。
2.2 理解运筹学在供应链管理、项目管理等领域的应用,掌握实际案例分析方法。
2.3 了解运筹学在金融、交通、能源等行业中的重要性和应用前景。
三、决策优化3.1 学习如何进行决策优化,通过运筹学方法找到最优解决方案。
3.2 掌握运筹学在决策支持系统中的应用,提高决策效率和准确性。
3.3 理解决策风险与不确定性对运筹学决策的影响,学习相应的风险管理方法。
四、数据分析4.1 学习如何采集、整理和分析与运筹学相关的数据,为决策提供支持。
4.2 掌握运筹学中常用的数据处理和建模技巧,提高问题求解的准确性和效率。
4.3 了解数据挖掘和机器学习在运筹学中的应用,拓展运筹学的研究领域。
五、团队合作5.1 学习如何与团队成员合作,共同解决运筹学问题。
5.2 掌握团队决策的协调与沟通技巧,提高团队工作效率。
5.3 通过团队合作学习不同的解题思路和方法,培养创新能力和解决问题的能力。
总结:通过学习运筹学,我深刻认识到它在实际问题中的重要性和应用价值。
掌握运筹学的理论基础、实际应用、决策优化、数据分析和团队合作等方面的知识和技能,不仅可以提高问题求解的效率和准确性,还可以培养创新能力和团队合作精神。
我相信在今后的学习和工作中,运筹学将成为我解决问题的有力工具。
运筹学实验心得(精选5篇)运筹学实验心得篇1实验心得:1.背景与目标:运筹学是一门决策支持学科,它使用数学模型和算法来解决实际生活中的优化问题。
本实验的目标是通过学习运筹学的基本理论和方法,提高自己在实际问题中的决策能力和解决问题的能力。
2.实验内容:本实验包括了几个重要的运筹学主题,包括线性规划、整数规划、非线性规划和动态规划等。
我们首先学习了这些基本概念和算法,然后通过具体案例进行了实践操作,并运用所学知识对实际生活中的一些问题进行了分析和解决。
3.实验结果与收获:通过实验,我们成功地运用运筹学方法解决了一些实际问题。
例如,我们使用线性规划算法解决了货物配送问题,并使用整数规划算法解决了人员调度问题。
同时,我们也收获了一些理论知识和实践经验。
我们学会了如何使用数学模型和算法来解决实际问题,并提高了自己的决策能力和解决问题的能力。
4.反思与建议:在实验过程中,我们遇到了一些困难和挑战。
例如,有时候我们无法理解复杂的数学模型和算法,或者无法找到合适的实际问题来验证我们的知识。
因此,我们建议在学习运筹学时,应该注重基本概念和算法的学习,并积极寻找合适的实际问题来巩固和应用所学知识。
总的来说,这次实验让我们更加深入地了解了运筹学的魅力和价值,也让我们更加坚定了自己的学习方向和目标。
运筹学实验心得篇2当然,我可以帮助您撰写一篇运筹学实验的心得体会。
以下是一个可能的示例:---标题:运筹学实验:理论到实践的桥梁摘要:这篇*分享了一次运筹学实验的经历,描述了实验中的问题、解决方法以及所学到的经验教训。
关键词:运筹学,实验,问题解决,学习经验---运筹学是我在大学期间最喜爱的科目之一。
它提供了一种实用且富有挑战性的方法来理解和解决现实世界中的优化问题。
然而,真正将理论与实际联系起来的,是我的第一次运筹学实验。
实验开始时,我被一大堆复杂的数学模型和计算机程序搞得眼花缭乱。
理论知识和抽象的模型使我有些晕头转向,但我还是勇敢地面对了挑战。
学习运筹学的体会与心得
古人作战讲“夫运筹帷幄之中,决胜千里之外”。
在现代商业社会中,更加讲求运筹学的应用。
运筹学是一门具有多科学交叉特点的边缘科学,至今没有一个统一的定义。
综合种种定义,本书从直观、明了的角度将运筹学定义为:“通过构建、求解数学模型,规划、优化有限资源的合理利用,为科学决策提供量化一句的系统知识体系。
”作为一名管理学院的学生,更应该能够熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题。
即:应用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行统筹安排。
线性规划是运筹学的一个重要分支。
线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。
其数学模型有目标函数和约束条件组成。
解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。
简单的设计2个变量的线性规划问题可以直接运用图解法得到。
但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。
单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。
将所得的量的值代入目标函数,得出最优值。
每一个线性规划问题都有和它伴随的另一个问题,若一个问题称为原问题,则另一个称为其对偶问题,原问题和对偶问题有着非常密切的关系,以至于可以根据一个问题的最优解,得出另一个问题的最优解的全部信息。
对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。
非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标准形式的对偶问题。
因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。
灵敏度分析:分析在线性规划问题中,一个或几个参数的变化对最优解的影响问题。
可以分析目标函数中变量系数、约束条件的右端项、增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。
如果将问题转化为研究参数值在保持最优解或最优基不变时的允许范围或改变到某一值时对问题最优解的影响时,就属于参数线性规划的内容。
运输问题是解决多个产地和多个销地之间的同品种物品的规划问题。
根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。
表上作业法先找出运输问题的基可
行解,方法有:最小元素法、西北角法、沃格尔法。
其中沃格尔法得出的解最接近最优解。
然后利用闭回路法或对偶变量法对得到解进行最优性判别。
当检验的结果为非最优解时,进行解的改进,然后再进行最优性判别,直到所有的非基变量检验数全非负,得到最优解。
在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。
整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定界法。
整数规划中的0-1规划整数问题是一个非常有用的方法。
在实际问题中,该方法能够解决很多问题。
0-1整数规划的解决方法有枚举法和隐枚举法。
指派问题是0-1整数规划中的特例,现在采用的解法一般为匈牙利法,由于指派问题的特殊性,使用匈牙利法可以有效的减少计算量。
图论:在日常生活和生产中,人们会经常碰到各种各样的图,如零件加工图、公路或铁路交通图、管网图等。
图论中图是上述各种类型图的抽象和概括,它用点表示研究对象,用边表示这些对象之间的联系。
最小部分树的求法:破圈法、避圈法;最短路问题:Dijkstra 算法、Floyd算法;最大流问题,寻求最大流标号法,找增广链,调整量,直到找不到增广链,此时的流即为网络的最大流。
学习理论的目的就是为了解决实际问题。
图论为计算机领域也奠定了基础,运筹学的计算方法可以借用计算机来完成。
线性规划的理论对我们的实际生活指导意义很大。
当我们遇到一个问题,需要认真考察该问题。
如果它适合线性规划的条件,那么我们就利用线性规划的理论解决该问题。
但是很多时候我们遇到的问题用线性规划解决耗时、准确度低或者根本无法用线性规划解决。
那么我们就要寻找别的理论方法来解决问题。
通过对运筹学的学习我掌握运筹学的基本概念、基本原理、基本方法和解题技巧,对于一些简单的问题可以根据实际问题建立运筹学模型及求解模型。
运筹学对我们以后的生活也讲有不小的影响,将运筹学运用到实际问题上去,学以致用。
以上就是我对本学期学习运筹学的总结和体会。
Welcome !!! 欢迎您的下载,资料仅供参考!。