(完整版)二项分布、超几何分布、正态分布总结归纳及练习
- 格式:doc
- 大小:120.51 KB
- 文档页数:5
一、基础知识考点1二项分布若将事件A 发生的次数设为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n kn P X k p q-==,其中0,1,2,,k n =.于是得到X 的分布列X1… k… nP00C nn p q111C n n p q- …C k k n kn p q- …C n n n p q由于表中的第二行恰好是二项展开式00111()C C C C n n n k k n kn n n n n n q p p q p qp qp q --+=++++各对应项的值,所以称这样的散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . 二项分布的均值与方差:若离散型随机变量X 服从参数为n 和p 的二项分布,则 ()E X np =,()D x npq = (1)q p =-.考点2 超几何分布设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N MnNP X m --==(0m l ≤≤,l 为n 和M 中较小的一个). 我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.在超几何分布中,只要知道N ,M 和n ,就可以根据公式求出X 取不同值时的概率()P X m =,从而列出X 的分布列.超几何分布的期望和方差:若离散型随机变量X 服从参数为N M n ,,的超几何分布,则()nME X N=,2()()()(1)n N n N M MD X N N --=-.考点3正态分布如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.正态变量概率密度曲线的函数表达式为 22()21()2πx f x eμσσ--=⋅,x ∈R ,其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作2(,)N μσ.正态变量的概率密度函数的图象叫做正态曲线.标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布.正态分布的均值与方差对于正态分布2(,)N μσ,正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内取值的概率分别是%26.68,%44.95,%74.99.正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率不足0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函数,特别的,2~(01)N ξμσ-,,称221()2t x x e dt φ--∞=⎰π为标准正态分布函数.()()x P x μξφσ-<=.标准正态分布的值可以通过标准正态分布表查得.二、例题精析【例题1】设ξ~),(p n B ,且ξE =12,ξD =4,求p n ,.【例题2】在12个同类型的零件中有2个次品,抽取3次进行检验,每次任取一个,并且取出不再放回,若以ξ和η分别表示取出次品和正品的个数.求ξη,的分布列.【例题3】某中学200名考生的高考数学成绩近似服从正态分布)10,120(2N ,则此校数学成绩在140分以上的考生人数约为__________.【例题4】某种消炎新药服用后,出现发热、头晕等不良反应的概率为20.0,现有5人服用了该药,至少有3人出现不良反应的概率为 .【例题5】(1)设X ~N (10,1),设P (X ≤2)=a ,求P (10<X <18).(2)某人乘车从A 地到B 地,所需时间(分钟)服从正态分布N (30,100),求此人在40分钟至50分钟到达目的地的概率.【例题6】(1)已知随机变量X 服从正态分布),2(2σN ,8.0)40(=<<X P ,则=>)4(X P ( )A .0.1 B. 0.2 C. 0.4 D. 0.6(2)已知随机变量ξ服从正态分布),3(2σN ,且3.0)2(=<ξP ,则=<ξ<)42(P ( )A. 0.5B. 0.2C. 0.3D. 0.4三、课堂运用【基础】1. 已知随机变量X 服从正态分布)1,3(N ,且6826.0)42(=<<X P ,则=>)4(X P ( )A. 0.1588B. 0.1587C. 0.1586D. 0.15852.某班有50名学生,一次考试的成绩ξ服从正态分布),100(2σN , 已知3.0)10090(=≤≤ξP ,估计该班数学成绩在110分以上的人数为__________.3.在某项测量中,测量结果X 服从正态分布N (1,σ2)(σ>0).若X 在(0,1) 内取值的概率为0.4,则X 在(0,2)内取值的概率为________.4.一台X 型号的自动机床在一小时内不需要人照看的概为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是( ) A .0.1536 B .0.1808 C .0.5632 D .0.9728 【巩固】5.设在4次独立重复试验中,事件A 发生的概率相同,若已知事件A 至少发生一次的概率等于6581,求事件A 在一次试验中发生的概率.6. 在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则落在(0,80)内的概率为( )A. 0.05B. 0.1C. 0.15D. 0.2【拔高】7.已知随机变量服从正态分布2(,)N μσ,且(22)0.9544P X μσμσ-<<+=, ()0.6826P X μσμσ-<<+=,若4,1μσ==, 则(56)P X <<=( )A. 0.1358B. 0.1359C. 0.2716D. 0.27188. 若随机变量X 的概率分布密度函数是()228,1(),()22x x e x R μσφπ+-=∈,则 )12(-X E = .四、课程小结对于正态分布2(,)N μσ,正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内取值的概率分别是%26.68,%44.95,%74.99.正态分布的3σ原则正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.五、课后作业【基础】1.已知随机变量ξ服从二项分布,1~(4)3B ξ,,则(2)P ξ=等于 .2.某篮球运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率 .(用数值表示)X3.某人参加一次考试,4道题中解对3道则为及格,已知他的解题正确率为0.4,则他能及格的概率为_________(保留两位小数)4.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,则恰有3人出现发热反应的概率为 .5.从一批由9件正品,3件次品组成的产品中,有放回地抽取5次,每次抽一件,求恰好抽到两次次品的概率(结果保留2位有效数字).6.已知随机变量X 服从正态分布N (3,σ2)则P (X <3)等于( ) A. 15 B. 14 C. 13 D. 127. 某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( )A. 32B. 16C. 8D. 208.已知随机变量ξ服从正态分布)9,2(N ,若)1()1(-<=+>c P c P ξξ,则c 等于( ) A. 1 B. 2 C. 3 D. 49.已知随机变量ξ服从正态分),2(2σN ,且8.0)4(=<ξP ,则)20(<<ξP 等于( ) A. 0.6 B. 0.4 C. 0.3 D. 0.210.已知随机变量ξ服从正态分布),2(2σN ,(4)0.84P ξ=≤,则(0)P ξ≤等于( ) A. 0.16 B. 0.32 C. 0.68D. 0.8411.已知随机变量ξ服从正态分布),3(2σN ,(4)0.842P ξ=≤,则(2)P ξ≤等于( )A. 0.842B. 0.158C. 0.421D. 0.316【巩固】12.在投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学投篮的命中率为0.6,且各次投篮是否投中互相独立,则该同学通过测试的概率为( ) A. 0.648 B. 0.432 C. 0.36 D. 0.31213.现有4名学生参加演讲比赛,有A ,B 两个题目可供选择,组委会决定让选手通过掷一枚质地均匀的骰子选择演讲的题目,规则如下:选手掷出能被3整除的数则选择A 题目,掷出其他的数则选择B 题目.那么4名选手中恰有1人选择B 题目的概率为____.14.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 .15.已知随机变量X 服从正态分布),0(2σN ,若023.0)2(=>X P ,则(22)P X -≤≤等于( )A. 0.477B. 0.628C. 0.954D. 0.97716. 某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为f (x )=12π·102(80)200x e -- (x ∈R ),则下列命题不正确的是 ( )A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为1017. 已知随机变量)2,3(2N X ~,若X =2η+3,则Dη等于 ( )A .0B .1C .2D .418.在一次英语考试中,考试的成绩服从正态分布)36,100(,那么考试成绩在区间(]112,88内的概率是 ( )A .0.6826B .0.3174C .0.9544D .0.9974【拔高】19.甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为( )A .827B .6481C .49D .8920.一个袋中有大小相同的标有1,2,3,4,5,6的6个小球,某人做如下游戏,每次从袋中随机拿一个球(拿后放回),记下标号.若拿出球的标号是3的倍数,则得1分,否则得1-分.⑴ 求拿4次至少得2分的概率;⑵ 求拿4次所得分数ξ的分布列和数学期望.。
第7讲 二项分布、超几何分布及正态分布[学生用书P207])1.事件的相互独立性(1)定义:设A ,B 为两个事件,如果P (AB )=P (A )·P (B ),则称事件A 与事件B 相互独立. (2)性质:①若事件A 与B 相互独立,则P (B |A )=P (B ),P (A |B )=P (A ),P (AB )=P (A )·P (B ). ②如果事件A 与B 相互独立,那么A 与B -,A -与B ,A -与B -也都相互独立. 2.独立重复试验与二项分布 (1)独立重复试验在相同条件下重复做的n 次试验称为n 次独立重复试验,A i (i =1,2,…,n )表示第i 次试验结果,则P (A 1A 2A 3…A n )=P (A 1)P (A 2)…P (A n ).(2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率是p ,此时称随机变量X 服从二项分布,记作X ~B (n ,p ),并称p 为成功概率,在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X =k )=C k n p k (1-p )n -k(k =0,1,2,…,n ). (3)二项分布的均值与方差若随机变量X 服从参数为n ,p 的二项分布,即X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).3.超几何分布(1)定义:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P (X =k )=C k M C n -kN -M C nN,k =0,1,2,…,m ,其中m =min{M ,n },且n ≤N ,M ≤N ,n ,M ,N ∈N *,即如果随机变量X 的分布列具有下表形式则称随机变量X 服从超几何分布.(2)均值若X 服从参数为N ,M ,n 的超几何分布,则E (X )=nMN .4.正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x =μ对称; (3)曲线在x =μ处达到峰值1σ2π; (4)曲线与x 轴之间的面积为1;(5)当σ一定时,曲线随着μ的变化而沿x 轴平移;(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.1.辨明两个易误点(1)两事件互斥是指两事件不可能同时发生,两事件相互独立是指一个事件的发生与否对另一个事件发生的概率没有影响,两个事件相互独立不一定互斥.(2)运用公式P (AB )=P (A )P (B )时一定要注意公式成立的条件,只有当事件A 、B 相互独立时,公式才成立.2.理解事件中常见词语的含义(1)A ,B 中至少有一个发生的事件为A ∪B ; (2)A ,B 都发生的事件为AB ; (3)A ,B 都不发生的事件为A - B -; (4)A ,B 恰有一个发生的事件为A B -∪A -B ; (5)A ,B 至多一个发生的事件为A B -∪A -B ∪A - B -. 3.正态分布的三个常用数据 (1)P (μ-σ<X ≤μ+σ)≈0.682 7; (2)P (μ-2σ<X ≤μ+2σ)≈0.954 5; (3)P (μ-3σ<X ≤μ+3σ)≈0.997 3.1.若事件E 与F 相互独立,且P (E )=P (F )=14,则P (EF )的值等于( )A .0B .116C.14 D .12[答案] B2.已知随机变量X 服从正态分布N (0,σ2).若P (X >2)=0.023,则P (-2≤X ≤2)=( ) A .0.477 B .0.628 C .0.954D .0.977 C [解析] 因为μ=0,所以P (X >2)=P (X <-2)=0.023, 所以P (-2≤X ≤2)=1-2×0.023=0.954.3.(2015·高考全国卷Ⅰ)投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312A [解析] 3次投篮投中2次的概率为P (X =2)=C 23×0.62×(1-0.6),投中3次的概率为P (X =3)=0.63,所以通过测试的概率为P (X =2)+P (X =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.4.教材习题改编 抛掷两枚骰子,当至少一枚5点或一枚6点出现时,就说这次试验成功,则在10次试验中成功次数的均值为________.[解析] 抛掷两枚骰子,当两枚骰子不出现5点和6点时的概率为46×46=49,所以至少有一次出现5点或6点的概率为1-49=59,用X 表示10次试验中成功的次数,则X ~B ⎝⎛⎭⎫10,59,E (X )=10×59=509.[答案]5095.教材习题改编 国庆节放假,甲去北京旅游的概率为13,乙去北京旅游的概率为14,假定二人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为________.[解析] 记在国庆期间“甲去北京旅游”为事件A ,“乙去北京旅游”为事件B ,又P (A - B -)=P (A -)·P (B -)=[1-P (A )][1-P (B )]=⎝⎛⎭⎫1-13⎝⎛⎭⎫1-14=12, 甲、乙二人至少有一人去北京旅游的对立事件为甲、乙二人都不去北京旅游,故所求概率为1-P (A - B -)=1-12=12.[答案] 12相互独立事件的概率[学生用书P 208][典例引领](2016·高考山东卷节选)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求“星队”两轮得分之和X 的分布列和数学期望E (X ).【解】 由题意,随机变量X 可能的取值为0,1,2,3,4,6. 由事件的独立性与互斥性,得 P (X =0)=14×13×14×13=1144,P (X =1)=2×(34×13×14×13+14×23×14×13)=10144=572, P (X =2)=34×13×34×13+34×13×14×23+14×23×34×13+14×23×14×23=25144,P (X =3)=34×23×14×13+14×13×34×23=12144=112.P (X =4)=2×(34×23×34×13+34×23×14×23)=60144=512,P (X =6)=34×23×34×23=36144=14.可得随机变量X 的分布列为所以数学期望E (X )=0×1144+1×572+2×25144+3×112+4×512+6×14=236.利用相互独立事件求复杂事件概率的解题思路(1)将待求复杂事件转化为几个彼此互斥简单事件的和.(2)将彼此互斥简单事件中的简单事件,转化为几个已知(易求)概率的相互独立事件的积事件.(3)代入概率的积、和公式求解.(2017·开封市第一次模拟)某生物产品,每一个生产周期成本为20万元,此产品的产量受气候影响、价格受市场影响均具有随机性,且互不影响,其具体情况如下表:(1)设X 表示1个生产周期此产品的利润,求X 的分布列;(2)连续3个生产周期,求这3个生产周期中至少有2个生产周期的利润不少于10万元的概率.[解] (1)设A 表示事件“产品产量为30吨”,B 表示事件“产品市场价格为0.6万元/吨”,则P (A )=0.5,P (B )=0.4,因为利润=产量×市场价格-成本, 所以X 的所有值为50×1-20=30,50×0.6-20=10, 30×1-20=10,30×0.6-20=-2,则P (X =30)=P (A -)P (B -)=(1-0.5)×(1-0.4)=0.3,P (X =10)=P (A -)P (B )+P (A )P (B -)=(1-0.5)×0.4+0.5×(1-0.4)=0.5, P (X =-2)=P (A )P (B )=0.5×0.4=0.2,则X 的分布列为(2)设C i 表示事件“第i 个生产周期的利润不少于10万元”(i =1,2,3),则C 1,C 2,C 3相互独立,由(1)知,P (C i )=P (X =30)+P (X =10)=0.3+0.5=0.8(i =1,2,3),连续3个生产周期的利润均不少于10万元的概率为P (C 1C 2C 3)=P (C 1)P (C 2)P (C 3)=0.83=0.512,连续3个生产周期中有2个生产周期的利润不少于10万元的概率为P (C 1C -2C 3)+P (C 1C 2C 3)+P (C 1C 2C -3)=3×0.82×0.2=0.384,所以连续3个生产周期中至少有2个生产周期的利润不少于10万元的概率为0.512+0.384=0.896.独立重复试验与二项分布(高频考点)[学生用书P 209]独立重复试验与二项分布是高考命题的热点,多以解答题的形式呈现,试题难度稍大,多为中高档题目.高考对独立重复试验与二项分布的考查主要有以下两个命题角度: (1)已知二项分布,求二项分布列及均值;(2)已知随机变量服从二项分布,求某种情况下的概率.[典例引领](2017·沈阳质量监测)某学校举行联欢会,所有参演的节目都由甲、乙、丙三名专业老师投票决定是否获奖.甲、乙、丙三名老师都有“获奖”“待定”“淘汰”三类票各一张.每个节目投票时,甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响.若投票结果中至少有两张“获奖”票,则决定该节目最终获一等奖;否则,该节目不能获一等奖.(1)求某节目的投票结果是最终获一等奖的概率;(2)求该节目投票结果中所含“获奖”和“待定”票票数之和X 的分布列及数学期望. 【解】 (1)设“某节目的投票结果是最终获一等奖”这一事件为A ,则事件A 包括:该节目可以获两张“获奖”票,或者获三张“获奖”票.因为甲、乙、丙三名老师必须且只能投一张票,每人投三类票中的任何一类票的概率都为13,且三人投票相互没有影响, 所以P (A )=C 23⎝⎛⎭⎫132⎝⎛⎭⎫231+C 33⎝⎛⎭⎫133=727.(2)所含“获奖”和“待定”票票数之和X 的可能取值为0,1,2,3. P (X =0)=⎝⎛⎭⎫133=127;P (X =1)=C 13⎝⎛⎭⎫231⎝⎛⎭⎫132=627=29; P (X =2)=C 23⎝⎛⎭⎫232⎝⎛⎭⎫131=1227=49;P (X =3)=⎝⎛⎭⎫233=827. 因此X 的分布列为所以X 的数学期望为EX =0×127+1×627+2×1227+3×827=2.(1)独立重复试验满足的条件独立重复试验是在同样的条件下重复地、各次之间相互独立地进行的一种试验.在这种试验中,每一次试验只有两种结果,即某事件要么发生,要么不发生,并且任何一次试验中发生的概率都是一样的.(2)二项分布满足的条件①每次试验中,事件发生的概率是相同的. ②各次试验中的事件是相互独立的.③每次试验只有两种结果:事件要么发生,要么不发生. ④随机变量是这n 次独立重复试验中事件发生的次数.[题点通关]角度一 已知二项分布,求二项分布列及均值1.小王在某社交网络的朋友圈中,向在线的甲、乙、丙随机发放红包,每次发放1个. (1)若小王发放5元的红包2个,求甲恰得1个的概率;(2)若小王发放3个红包,其中5元的2个,10元的1个.记乙所得红包的总钱数为X ,求X 的分布列和期望.[解] (1)设“甲恰得1个红包”为事件A ,则P (A )=C 12×13×23=49.(2)X 的所有可能取值为0,5,10,15,20. P (X =0)=⎝⎛⎭⎫233=827, P (X =5)=C 12×13×⎝⎛⎭⎫232=827,P (X =10)=⎝⎛⎭⎫132×23+⎝⎛⎭⎫232×13=627, P (X =15)=C 12×⎝⎛⎭⎫132×23=427,P (X =20)=⎝⎛⎭⎫133=127. 所以X 的分布列为E (X )=0×827+5×827+10×627+15×427+20×127=203.角度二 已知随机变量服从二项分布,求某种情况 下的概率2.设随机变量X ~B (2,p ),Y ~B (4,p ),若P (X ≥1)=59,则P (Y ≥2)的值为( )A.3281 B .1127C.6581D .1681B [解析] 因为随机变量X ~B (2,p ),Y ~B (4,p ),又P (X ≥1)=1-P (X =0)=1-(1-p )2=59,解得p =13,所以Y ~B ⎝⎛⎭⎫4,13,则P (Y ≥2)=1-P (Y =0)-P (Y =1)=1127.超几何分布[学生用书P209][典例引领](2017·云南省第一次统一检测)某市教育与环保部门联合组织该市中学参加市中学生环保知识团体竞赛,根据比赛规则,某中学选拔出8名同学组成参赛队,其中初中学部选出的3名同学有2名女生;高中学部选出的5名同学有3名女生,竞赛组委会将从这8名同学中随机选出4人参加比赛.(1)设“选出的4人中恰有2名女生,而且这2名女生来自同一个学部”为事件A ,求事件A 的概率P (A );(2)设X 为选出的4人中女生的人数,求随机变量X 的分布列和数学期望.【解】 (1)由已知,得P (A )=C 22C 23+C 23C 23C 48=635. 所以事件A 的概率为635.(2)由题意知,X 服从超几何分布, 随机变量X 的所有可能取值为1,2,3,4.由已知得P (X =k )=C k 5C 4-k 3C 48(k =1,2,3,4).所以随机变量X 的分布列为随机变量X 的数学期望E (X )=1×114+2×37+3×37+4×114=52.超几何分布的特点(1)对于服从某些特殊分布的随机变量,其分布列可直接应用公式给出.(2)超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数,随机变量取值的概率实质上是古典概型.一个袋中有大小相同的黑球和白球共10个.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列和数学期望.[解] (1)记“从袋中任意摸出2个球,至少得到1个白球”为事件A ,设袋中白球的个数为x ,则P (A )=1-C 210-xC 210=79,得到x =5.故白球有5个.(2)X 服从超几何分布,其中N =10,M =5,n =3,P (X =k )=C k 5C 3-k 5C 310,k =0,1,2,3.于是可得其分布列为则E (X )=0×112+1×512+2×512+3×112=32.正态分布[学生用书P210] [典例引领](1)(2017·长春质检)已知随机变量X 服从正态分布N (1,σ2),若P (X >2)=0.15,则P (0≤X ≤1)=( )A .0.85B .0.70C .0.35D .0.15(2)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)≈68.27%,P (μ-2σ<ξ<μ+2σ)≈95.45%)A .4.56%B .13.59%C .27.18%D .31.74%【解析】 (1)P (0≤X ≤1)=P (1≤X ≤2)=0.5-P (X >2)=0.35.(2)由正态分布的概率公式知P (-3<ξ<3)≈0.682 7,P (-6<ξ<6)≈0.954 5,故P (3<ξ<6)=P (-6<ξ<6)-P (-3<ξ<3)2=0.954 5-0.682 72=0.135 9=13.59%,故选B .【答案】 (1)C (2)B正态分布下的概率计算常见的两类问题(1)利用正态分布密度曲线的对称性研究相关概率问题,涉及的知识主要是正态曲线关于直线x =μ对称,及曲线与x 轴之间的面积为1.(2)利用3σ原则求概率问题时,要注意把给出的区间或范围与正态变量的μ,σ进行对比联系,确定它们属于(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)中的哪一个.[通关练习]1.设随机变量ξ服从正态分布N (μ,σ2),函数f (x )=x 2+4x +ξ没有零点的概率是12,则μ等于________.[解析] 根据题意,函数f (x )=x 2+4x +ξ没有零点时,Δ=16-4ξ<0,即ξ>4,根据正态曲线的对称性,当函数f (x )=x 2+4x +ξ没有零点的概率是12时,μ=4.[答案] 42.(2017·福建省毕业班质量检测)若随机变量X ~N (μ,σ2),且P (X >5)=P (X <-1)=0.2,则P (2<X <5)=________.[解析] 因为随机变量X ~N (μ,σ2),所以正态曲线关于直线x =μ对称.又P (X >5)=P (X <-1)=0.2,所以μ=5-12=2,所以P (2<X <5)=P (X >2)-P (X >5)=0.5-0.2=0.3.[答案] 0.3[学生用书P210])——离散型随机变量的综合问题(本题满分12分)某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.[思维导图](1)记事件A 1={从甲箱中摸出的1个球是红球}, A 2={从乙箱中摸出的1个球是红球},B 1={顾客抽奖1次获一等奖},B 2={顾客抽奖1次获二等奖},C ={顾客抽奖1次能获奖}.由题意知A 1与A 2相互独立,A 1A 2与A 1 A 2互斥,B 1与B 2互斥,且B 1=A 1A 2,B 2=A 1A 2+A 1A 2,C =B 1+B 2.因为P (A 1)=410=25,P (A 2)=510=12,(2分)所以P (B 1)=P (A 1A 2)=P (A 1)P (A 2)=25×12=15,(3分)P (B 2)=P (A 1A 2+A 1A 2)=P (A 1A 2)+P (A 1A 2) =P (A 1)P (A 2)+P (A 1)P (A 2) =P (A 1)(1-P (A 2))+(1-P (A 1))P (A 2) =25×⎝⎛⎭⎫1-12+⎝⎛⎭⎫1-25×12=12.(5分) 故所求概率为P (C )=P (B 1+B 2)=P (B 1)+P (B 2)=15+12=710.(6分)(2)顾客抽奖3次可视为3次独立重复试验,由(1)知,顾客抽奖1次获一等奖的概率为15,所以X ~B ⎝⎛⎭⎫3,15.(7分) 于是P (X =0)=C 03⎝⎛⎭⎫150⎝⎛⎭⎫453=64125, P (X =1)=C 13⎝⎛⎭⎫151⎝⎛⎭⎫452=48125,P (X =2)=C 23⎝⎛⎭⎫152⎝⎛⎭⎫451=12125,P (X =3)=C 33⎝⎛⎭⎫153⎝⎛⎭⎫450=1125.(10分)故X 的分布列为(11分)X 的数学期望为E (X )=3×15=35.(12分)(1)解答此类问题,应注意答题要求,严格按照题目及相关知识的要求答题.(2)注意分布列要用表格的形式列出来,不要认为求出各个相应的概率就结束了.[学生用书P376(独立成册)]1.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一个发生的概率是( )A.512 B .12C.712D .34C [解析] 依题意,得P (A )=12,P (B )=16,且事件A ,B 相互独立,则事件A ,B 中至少有一个发生的概率为1-P (A -·B -)=1-P (A -)·P (B -)=1-12×56=712,故选C.2.已知⎝⎛⎭⎫1x 2+x 64展开式中的常数项为a ,且X ~N (1,1),则P (3<X <a )=( ) (附:若随机变量X ~N (μ,σ2),则P (μ-σ<X <μ+σ)≈68.27%,P (μ-2σ<X <μ+2σ)≈95.45%,P (μ-3σ<X <μ+3σ)≈99.73%)A .0.043B .0.021 4C .0.341 3D .0.477 2B [解析] 因为⎝⎛⎭⎫1x 2+x 64展开式中的常数项为a ,所以a =C 14⎝⎛⎭⎫1x 23x 6=4.因为X ~N (1,1),所以正态曲线关于直线x =1对称,因为P (-1<X <3)=P (1-2<X <1+2)≈95.45%,P (-2<X <4)=P (1-3<X <1+3)≈99.73%,所以P (3<X <4)=12[P (-2<X <4)-P (-1<X <3)]=12(99.73%-95.45%)=0.021 4,故选B .3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为________.[解析] 记不发芽的种子数为Y ,则Y ~B (1 000,0.1),所以E (Y )=1 000×0.1=100.又X =2Y ,所以E (X )=E (2Y )=2E (Y )=200. [答案] 2004.(2017·贵州省七校第一次联考)在某校2016年高三11月月考中理科数学成绩X ~N (90,σ2)(σ>0),统计结果显示P (60≤X ≤120)=0.8,假设该校参加此次考试的有780人,那么试估计此次考试中,该校成绩高于120分的有________人.[解析] 因为成绩X ~N (90,σ2),所以其正态曲线关于直线x =90对称.又P (60≤X ≤120)=0.8,由对称性知成绩在120分以上的人数约为总人数的12(1-0.8)=0.1,所以估计成绩高于120分的有0.1×780=78人.[答案] 785.(2016·高考天津卷)某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.[解] (1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2.P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以随机变量X 的分布列为随机变量X 的数学期望E (X )=0×415+1×715+2×415=1.6.为督导学校课外选修课的开展情况,某市教育督导部门从一所高中的四个选修专业中利用分层抽样的方法选出了14名学生进行调查,已知样本中各专业学生人数如下表:(1)若从这14名学生中随机选出两名,求这两名学生来自同一选修专业的概率; (2)现要从这14名学生中随机选出两名学生参加座谈,设其中来自剪纸专业的人数为X ,令Y =2X -1,求随机变量Y 的分布列及数学期望E (Y ).[解] (1)设“两名学生来自同一选修专业”为事件A ,则P (A )=C 22+C 23+C 24+C 25C 214=2091.故两名学生来自同一选修专业的概率为2091.(2)因为剪纸专业有3人,非剪纸专业有11人,所以来自剪纸专业的人数X 服从超几何分布H (14,2,3).则X 的所有可能取值是0,1,2,其中P (X =i )=C i 3C 2-i11C 214(i =0,1,2),对应的Y 的所有可能取值为-1,1,3.则P (Y =-1)=P (X =0)=C 03C 211C 214=5591;P (Y =1)=P (X =1)=C 13C 111C 214=3391;P (Y =3)=P (X =2)=C 23C 011C 214=391.所以Y 的分布列为所以E (Y )=(-1)×5591+1×3391+3×391=-17.7.(2017·石家庄市第一次模考)某篮球队对篮球运动员的篮球技能进行统计研究,针对篮球运动员在投篮命中时,运动员到篮筐中心的水平距离这项指标,对某运动员进行了若干场次的统计,依据统计结果绘制如下频率分布直方图:(1)依据频率分布直方图估算该运动员投篮命中时,他到篮筐中心的水平距离的中位数; (2)在某场比赛中,考察他前4次投篮命中时到篮筐中心的水平距离的情况,并且规定:运动员投篮命中时,他到篮筐中心的水平距离不少于4米的记1分,否则扣掉1分.用随机变量X 表示第4次投篮后的总分,将频率视为概率,求X 的分布列和数学期望.[解] (1)设该运动员到篮筐中心的水平距离的中位数为x ,因为0.20×1=0.20<0.5,且(0.40+0.20)×1=0.6>0.5, 所以x ∈(4,5).由0.40×(5-x )+0.20×1=0.5,解得x =4.25,所以该运动员到篮筐中心的水平距离的中位数是4.25米.(2)由频率分布直方图可知投篮命中时到篮筐中心距离超过4米的概率为P =35,随机变量X 的所有可能取值为-4,-2,0,2,4. P (X =-4)=⎝⎛⎭⎫254=16625, P (X =-2)=C 14⎝⎛⎭⎫253⎝⎛⎭⎫351=96625, P (X =0)=C 24⎝⎛⎭⎫252⎝⎛⎭⎫352=216625, P (X =2)=C 34⎝⎛⎭⎫251⎝⎛⎭⎫353=216625, P (X =4)=⎝⎛⎭⎫354=81625, 所以X 的分布列为E (X )=(-4)×16625+(-2)×96625+0×216625+2×216625+4×81625=45.8.在2016年全国高校自主招生考试中,某高校设计了一个面试考查方案:考生从6道备选题中一次性随机抽取3题,按照题目要求独立回答全部问题.规定:至少正确回答其中2题的便可通过.已知6道备选题中考生甲有4题能正确回答,2题不能回答;考生乙每题正确回答的概率都为23,且每题正确回答与否互不影响.(1)分别写出甲、乙两考生正确回答题数的分布列,并计算其数学期望; (2)试用统计知识分析比较两考生的通过能力.[解] (1)设考生甲、乙正确回答的题目个数分别为ξ,η,则ξ的可能取值为1,2,3,P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12C 36=35,P (ξ=3)=C 34C 02C 36=15,所以考生甲正确回答题数的分布列为E (ξ)=1×15+2×35+3×15=2.又η~B ⎝⎛⎭⎫3,23,其分布列为所以E (η)=np =3×23=2.(2)因为D (ξ)=(2-1)2×15+(2-2)2×35+(2-3)2×15=25,D (η)=np (1-p )=3×23×13=23,所以D (ξ)<D (η). 因为P (ξ≥2)=35+15=0.8,P (η≥2)=1227+827≈0.74,所以P (ξ≥2)>P (η≥2).从回答对题数的数学期望考查,两个水平相当;从回答对题数的方差考查,甲较稳定;从至少完成2题的概率考查,甲通过的可能性大.因此可以判断甲的通过能力较强.9.(2017·湖南衡阳一中月考)网上购物逐步走进大学生活,某大学学生宿舍4人积极参加网购,大家约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物,掷出点数为1或2的人去淘宝网购物,掷出点数大于2的人去京东商城购物,且参加者必须从淘宝网和京东商城中选择一家购物.(1)求这4个人中恰有2人去淘宝网购物的概率;(2)用X ,Y 分别表示这4个人中去淘宝网购物的人数和去京东商城购物的人数,求这4个人中去淘宝网购物的人数大于去京东商城购物的人数的概率;(3)记ξ=|X -Y |,求随机变量ξ的分布列与数学期望E (ξ).[解] (1)每个人去淘宝网购物的概率都为13,去京东商城购物的概率都为1-13=23,这4个人中恰有2人去淘宝网购物的概率为C 24⎝⎛⎭⎫132⎝⎛⎭⎫1-132=827. (2)由题意可知X ~B (4,p )⎝⎛⎭⎫其中p =13, 则P (X =k )=C k 4p k (1-p )4-k(k =0,1,2,3,4), 这4个人中去淘宝网购物的人数大于去京东商城购物的人数的概率为P (X =3)+P (X =4)=19.(3)ξ可取0,2,4,P (ξ=0)=P (X =2)=827,P (ξ=2)=P (X =1)+P (X =3)=4081,P (ξ=4)=P (X =0)+P (X =4)=1781. 所以随机变量ξ的分布列为E (ξ)=14881.10.云南省2016年全省高中男生身高统计调查数据显示:全省100 000名高中男生的身高服从正态分布N (170.5,16).现从云南省某校高三年级男生中随机抽取50名测量身高,测量发现被测学生身高全部介于157.5 cm 和187.5 cm 之间,将测量结果按如下方式分成6组:第1组[157.5,162.5),第2组[162.5,167.5),…,第6组[182.5,187.5],如图是按上述分组方式得到的频率分布直方图.(1)试评估该校高三年级男生在全省高中男生中的平均身高状况; (2)求这50名男生身高在177.5 cm 以上(含177.5 cm)的人数;(3)从这50名男生身高在177.5 cm 以上(含177.5 cm)的人中任意抽取2人,该2人中身高排名(从高到低)在全省前135名的人数记为ξ,求ξ的数学期望.参考数据:若ξ~N (μ,σ2),则 P (μ-σ<ξ≤μ+σ)≈0.682 7, P (μ-2σ<ξ≤μ+2σ)≈0.954 5, P (μ-3σ<ξ≤μ+3σ)≈0.997 3.[解] (1)由频率分布直方图知,该校高三年级男生平均身高为160×0.1+165×0.2+170×0.3+175×0.2+180×0.1+185×0.1=171.5(cm),该校高三年级男生的平均身高高于全省高中男生身高的平均值170.5(cm).(2)由频率分布直方图知,后两组频率和为0.2,所以人数和为0.2×50=10,即这50名男生中身高在177.5 cm 以上(含177.5 cm)的人数为10.(3)因为P (170.5-3×4<ξ≤170.5+3×4)≈0.997 3, 所以P (ξ≥182.5)=1-0.997 32=0.001 35,又0.001 35×100 000=135.所以身高在182.5 cm 以上(含182.5 cm)的高中男生可排进全省前135名.因为该校这50名男生中身高在182.5 cm 以上(含182.5 cm)的有5人,身高在177.5 cm 以上(含177.5 cm)的有10人,随机变量ξ可取0,1,2,于是P (ξ=0)=C 25C 210=1045=29,P (ξ=1)=C 15C 15C 210=2545=59,P (ξ=2)=C 25C 210=1045=29.所以E (ξ)=0×29+1×59+2×29=1.。
二项分布与超几何分布专题训练一、知识梳理知识点一n重伯努利试验及其特征1.n重伯努利试验的概念将一个伯努利试验独立地重复进行n次所组成的随机试验称为n重伯努利试验.2.n重伯努利试验的共同特征(1)同一个伯努利试验重复做n次.(2)各次试验的结果相互独立.知识点二二项分布一般地,在n重伯努利试验中,设每次试验中事件A发生的概率为p(0<p<1),用X表示事件A发生的次数,则X的分布列为P(X=k)=C n p k(1-p)n-k,k=0,1,2,…,n.称随机变量X服从二项分布,记作X〜B(n,p).知识点三二项分布的均值与方差若X〜B(n,p),则E(X)=np,D(X)=np(1-p).知识点四超几何分布1.定义:一般地,假设一批产品共有N件,其中有M件次品,从N件产品中随机抽取n件(不放回),用X表示抽取的n件产品中的次品数,则X的分布列为P(X=k)=C kMC N-M,k=m,m+1,m+2,其中n,N,M E N*,M W N,n W N,m=max{0,n—N+M},r=min{n,M}.如果随机变量X的分布列具有上式的形式,那么称随机变量X服从超几何分布.2•均值:E(X)=N・二、题型归纳】考点一:超几何与二项分布概念的辨析【例1-1】下列随机变量中,服从超几何分布的有.(填序号)①在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为X;②从3台甲型彩电和2台乙型彩电中任取2台,记X表示所取的2台彩电中甲型彩电的台数;③一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯数为随机变量X.【例1-2】下列例子中随机变量E服从二项分布的有.①随机变量E表示重复抛掷一枚骰子n次中出现点数是3的倍数的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数E;③有一批产品共有N件,其中M件为次品,采用有放回抽取方法,E表示n次抽取中出现次品的件数(M 〈N);④有一批产品共有N件,其中M件为次品,采用不放回抽取方法,E表示n次抽取中出现次品的件数.r.【考点精练】1.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.27 81 现从中任取4个球,有如下几种变量:① X 表示取出的最大号码;② X 表示取出的最小号码;③ 取出一个黑球记2分,取出一个白球记1分,X 表示取出的4个球的总得分;④ X 表示取出的黑球个数.这四种变量中服从超几何分布的是()A.①②B.③④C.①②④D.①②③④2•下列随机事件中的随机变量X 服从超几何分布的是()A. 将一枚硬币连抛3次,记正面向上的次数为XB. 从7男3女共10名学生干部中随机选出5名学生干部,记选出女生的人数为XC •某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为XD.盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,记第一次摸出黑球时摸取的次数为X 3•下列例子中随机变量服从二项分布的个数为()① 某同学投篮的命中率为0.6,他10次投篮中命中的次数g ;② 某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数g ;③ 从装有5个红球,5个白球的袋中,有放回地摸球,直到摸出白球为止,摸到白球时的摸球次数g ;④ 有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,g 表示n 次抽取中出现次品的件数4•下列选项中的随机变量不服从两点分布的是()A. 抛掷一枚骰子,所得点数XB. 某射击手射击一次,击中目标的次数X D.某医生做一次手术,手术成功的次数X 考点二:二项分布的均值与方差【例2】•已知随机变量:,耳满足2C +H =9,且匚〜B (8,p ),E (匚)二2,则E (q ),D (q )分别是()【考点精练】(1、1•设随机变量X,Y 满足:Y=3X-1,X 〜B 2,-,则V(Y)=()V 3丿 A.4B.5C.6D.72•设随机变量B (2,p),q ~B (4,p),若P(g >1)=9,则P (q >2)的值为()9 A.0 B.1 C.2D.3C. 从装有除颜色外其余均相同的5个红球,3个白球的袋中任取1个球,设X 1,取出白球 <0,取出红球A.5,3B.5,6C.8,3D.8,6A. 32 81 D. 16 813•已知随机变量X〜B(5,0.2),随机变量Y=5X+10,则()27 81A.E(Y)=5B.E(Y)=10C.D(Y)=20D.D(Y)=30考点三:二项分布【例3】很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.687288955667891000(1)求这12名新手的平均成绩与方差;(2)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4名参加座谈会,用X表示成绩合格的人数,求X的分布列与数学期望.【考点精练】1.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图.学生视力测试结果666777S12(1)写出这组数据的众数和中位数.(2)若视力测试结果不低于5.0,则称为“好视力”•①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率若从该地区学生(人数较多)中任选3名,记X表示抽到“好视力”学生的人数,求X的分布列.2.甲、乙二人进行定点投篮比赛,已知甲、乙二人每次投进的概率均为丄,两人各投1次称为一轮投篮.2(1)求乙在前3次投篮中,恰好投进2个球的概率;(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量g,求g的分布列与期望.3.某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟)•将统计数据按[5,10),110,15),[15,20),…,[35,40]分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(1)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A;从乙站的乘客中随机抽取1人,记为B.用频率估计概率,求乘客A,B乘车等待时间都小于20分钟的概率;(2)在上班高峰时段,从甲站乘车的乘客中随机抽取3人,X表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X的分布列与数学期望.考点四:超几何分布【例4】某班利用课外活动时间举行了一次“函数求导比赛”活动,为了解本次比赛中学生的总体情况,从中抽取了甲、乙两个小组的样本分数的茎叶图如图所示11叶6 87 24698 1391Z(1)分别求出甲、乙两个小组成绩的平均数与方差,并判断哪个小组的成绩更稳定?(2)从甲组同学成绩不低于70分的人中任意抽取3人,设X表示所抽取的3名同学的得分在[70,80)的人数,求X的分布列及数学期望.【考点精练】1.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行•它被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法某中学培养学生知法懂法,组织全校学生学习《中华人民共和国民法典》并组织知识竞赛.为了解学习的效果,现从高一,高二两个年级中各随机抽取20名学生的成绩(单位:分),绘制成如图所示的茎叶图:~s^rTO高二8986361269765007345799611呂025788771109133589根据学生的竞赛成绩,将其分为四个等级:(1)从样本中任取2名同学的竞赛成绩,在成绩为优秀的情况下,求这2名同学来自同一个年级的概率;(2)现从样本中成绩为良好的学生中随机抽取3人座谈,记X为抽到高二年级的人数,求X的分布列,数学期望与方差.2.为庆祝2021年中国共产党成立100周年,某校高二年级举行“党史知识你我答”活动,共有10个班,每班选5名选手参加了预赛,预赛满分为150分,现预赛成绩全部介于90分到140分之间•将成绩结果按如下方式分成五组:第一组b0,100),第二组1100,110),…,第五组1130,140]•按上述分组方法得到的频率分布直方图如图所示.(1)若成绩大于或等于100分且小于120分认为是良好的,求参赛学生在这次活动中成绩良好的人数;(2)若从第一五组中共随机取出两个成绩,记X为取得第一组成绩的个数,求X的分布列与数学期望.3.已知袋中装有5个白球,2个黑球,3个红球,现从中任取3个球.(1)求恰有一个白球的方法种数;(2)求至少有一个红球的方法种数;(3)设随机变量X为取出3球中黑球的个数,求X的概率分布及数学期望.考点五:二项分布与超几何分布的综合【例5】袋中有6个白球、3个黑球,从中随机地连续抽取2次,每次取1个球.(1)若每次抽取后都放回,设取到黑球的次数为X,求X的分布列;(2)若每次抽取后都不放回,设取到黑球的个数为Y,求Y的分布列.【考点精练】1.某校从高三年级中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1道相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级4名选手,现从每个班级4名选手中随机抽取2人回答这个问题.已知这4人中,甲班级有3人可以正确回答3这道题目,而乙班级4人中能正确回答这道题目的概率均为二,甲、乙两班级每个人对问题的回答都是相4互独立、互不影响的.(1)求甲、乙两个班级抽取的4人都能正确回答的概率.(2)设甲、乙两个班级被抽取的选手中能正确回答题目的人数分别为X,Y,求随机变量X,Y的期望E(X),E(Y)和方差D(X),D(Y),并由此分析由哪个班级代表学校参加大赛更好.2.PM2.5是指大气中直径小于或等于2.5pm的颗粒物,也称为可入肺颗粒物,我国PM2.5标准采用世卫组织设定的最宽限值,即PM2.5日均值在35p g/m3以下空气质量为一级;在35〜75p g/m3之间空气质量为二级;在75p g/m3以上空气质量为污染•某市生态环境局从该市2021年上半年每天的PM2.5监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶)•PM2.5日均值(pg/m123)28537143445638791从这15天的数据中任取1天,求这天空气质量达到一级的概率;2从这15天的数据中任取3天的数据,记g表示其中空气质量达到一级的天数,求g的分布列和数学期望;3以这15天的PM2.5的日均值来估计一年的空气质量情况(一年按365天来计算),则一年中大约有多少天的空气质量达到一级?3.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频863925(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X为质量超过505克的产品数量,求X的分布列;(3)从该流水线上任取2件产品,设Y为质量超过505克的产品数量,求Y的分布列.考点六:二项分布与超几何分布与其他知识综合【例6】某企业为检验某种设备生产的零件质量,现随机选取20个零件进行检验,分出合格品和次品•设每个零件是次品的概率为P(0<P<1),且相互独立.(I)若20个零件中恰有2个次品的概率为f(p),求f(p)的最大值点p;(II)若合格品又分为一等品和二等品,每个零件是二等品的概率为是一等品概率的2倍.已知生产一个一等品可获利100元,生产一个二等品可获利30元,生产一个次品会亏损40元,当每个零件平均获利低于20元时,需对设备进行技术升级.当P满足什么条件时,企业需对该设备进行技术升级?【考点精练】1.某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日送礼,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶A,A,A中的一个,每个乙系列盲盒可以开出123玩偶B1,B2中的一个.(1)记事件E:一次性购买n个甲系列盲盒后集齐玩偶A,A,A玩偶;事件F:—次性购买n个乙系n123n列盲盒后集齐B1,B2玩偶;求概率P(三)及P(佇);(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选2择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为亍,购买乙系113列的概率为-;而前一次购买甲系列的消费者下一次购买甲系列的概率为;,购买乙系列的概率为匚,前344一次购买乙系列的消费者下一次购买甲系列的概率为1,购买乙系列的概率为1;如此往复,记某人第n次22购买甲系列的概率为Q.n①求{Q}的通项公式;n②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.2.由于“新冠肺炎”对抵抗力差的人的感染率相对更高,特别是老年人群体,因此某社区在疫情控制后,及时给老年人免费体检,通过体检发现“高血糖,高血脂,高血压”,即“三高”老人较多为此社区根据医生的建议为每位老人提供了一份详细的健康安排表,还特地建设了一个老年人活动中心,老年人每天可以到该活动中心去活动,以增强体质,通过统计每周到活动中心去运动的老年人的活动时间,得到了以下频率分布直方图.(1)从到活动中心参加活动的老人中任意选取5人.①若将频率视为概率,求至少有3人每周活动时间在[8,9)(单位:h)的概率;②若抽取的5人中每周活动时间在[8,11](单位:h)的人数为2人,从5人中选出3人进行健康情况调查,记3人中每周活动时间在[8,11](单位:h)的人数为求g的分布列和期望;(2)将某人的每周活动时间量与所有老人的每周平均活动时间量比较,当超出所有老人的每周平均活动量不少于0.74h时,则称该老人为“活动爱好者”,从参加活动的老人中随机抽取10人,且抽到k人为“活动爱好者”的可能性最大,试求k的值.(每组数据以区间的中点值为代表)3.现有一批疫苗试剂,拟进入动物试验阶段,将1000只动物平均分成100组,任选一组进行试验.第一轮注射,对该组的每只动物都注射一次,若检验出该组中有9只或10只动物产生抗体,说明疫苗有效,试验终止;否则对没有产生抗体的动物进行第二轮注射,再次检验.如果被二次注射的动物都产生抗体,说明疫苗有效,否则需要改进疫苗.设每只动物是否产生抗体相互独立,两次注射疫苗互不影响,且产生抗体的概率均为P(0<P<1).(1)求该组试验只需第一轮注射的概率(用含P的多项式表示);(2)记该组动物需要注射次数X的数学期望为E(X),求证:10<E(X)<10(2-p)。
新高考数学一轮复习考点知识专题讲解与练习考点知识总结55 二项分布与超几何分布、正态分布高考 概览 高考在本考点的常考题型为选择题、填空题、解答题,分值为5分、12分,中等难度考纲研读1.理解n 次独立重复试验的模型及二项分布2.理解超几何分布及其导出过程,并能进行简单应用3.借助直方图认识正态分布曲线的特点及曲线所表示的意义4.能解决一些简单的实际问题一、基础小题1.设随机变量X ~N (1,52),且P (X ≤0)=P (X ≥a -2),则实数a 的值为() A .4 B .6 C.8 D .10答案 A解析 x =0与x =a -2关于x =1对称,则a -2=2,a =4.故选A.2.设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)=( )A.516 B .316 C.58 D .38答案 A解析 X ~B ⎝ ⎛⎭⎪⎫6,12,由二项分布可得,P (X =3)=C 36×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-123=516. 3.15个村庄中有7个交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( ) A .P (X =2) B .P (X ≤2) C .P (X =4) D .P (X ≤4) 答案 C解析 X 服从超几何分布,故P (X =k )=C k 7C 10-k 8C 1015,k =4. 4.一试验田某种作物一株生长果实个数x 服从正态分布N (90,σ2),且P (x <70)=0.2,从试验田中随机抽取10株,果实个数在[90,110]的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( )A .3B .2.1 C.0.3 D .0.21答案 B解析 ∵x ~N (90,σ2),且P (x <70)=0.2,∴P (x >110)=0.2,∴P (90≤x ≤110)=0.5-0.2=0.3,∴X ~B (10,0.3),则X 的方差为10×0.3×(1-0.3)=2.1.故选B.5.袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A.25 B .35 C.18125 D .54125答案 D解析 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次抽到黄球的概率为P 1=35,所以3次中恰有2次抽到黄球的概率是P =C 23×⎝ ⎛⎭⎪⎫352×⎝ ⎛⎭⎪⎫1-35=54125.6.(多选)抛掷一枚质地均匀的硬币三次,若记出现“三个正面”“三个反面”“二正一反”“一正二反”的概率分别为P 1,P 2,P 3,P 4,则下列结论中正确的是( )A .P 1=P 2=P 3=P 4B .P 3=2P 1C .P 1+P 2+P 3+P 4=1D .P 4=3P 2答案 CD解析 根据伯努利试验的概率计算公式,可得P 1=⎝ ⎛⎭⎪⎫123=18,P 2=⎝ ⎛⎭⎪⎫123=18,P 3=C 23×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-12=38,P 4=C 13×12×⎝ ⎛⎭⎪⎫1-122=38,P 1=P 2<P 3=P 4,故A 错误;P 3=3P 1,故B 错误;P 1+P 2+P 3+P 4=1,故C 正确;P 4=3P 2,故D 正确.故选CD.7.某市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80≤ξ≤100)=0.40,若按成绩采用分层随机抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取的份数为________.答案 10解析 P (ξ>120)=12[1-2P (80≤ξ≤100)]=0.10,所以应从120分以上的试卷中抽取100×0.10=10份.8.甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45;乙第一次射击的命中率为78,若第一次未射中,则乙进行第二次射击,射击的命中率为34,如果又未中,则乙进行第三次射击,射击的命中率为12.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为________,乙射中的概率为________.答案 1256364解析 甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45,则甲击中的次数X ~B ⎝ ⎛⎭⎪⎫3,45,∴甲三次射击命中次数的期望为E (X )=3×45=125.由题意可得乙射中的概率为P =78+18×34+18×14×12=6364.二、高考小题9.(2022·新高考Ⅱ卷)某物理量的测量结果服从正态分布N (10,σ2),下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等答案 D解析 对于A ,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量在一次测量中大于10的概率为0.5,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量在一次测量中小于9.99的概率与大于10.01的概率相等,故C正确;对于D,因为该物理量在一次测量中落在(9.9,10)的概率与落在(10.2,10.3)的概率不同,所以在一次测量中落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D错误.故选D.10.(2022·全国Ⅲ卷)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X =4)<P(X=6),则p=()A.0.7 B.0.6C.0.4 D.0.3答案B解析∵D(X)=np(1-p),∴p=0.4或p=0.6.∵P(X=4)=C410p4(1-p)6<P(X=6)=C610p6(1-p)4,∴(1-p)2<p2,可知p>0.5.∴p=0.6.故选B.三、模拟小题11.(2022·广东惠州第二次模拟)已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-σ≤X≤μ+σ)≈0.6827,若μ=4,σ=1,则P(5<X≤6)≈()A.0.1359 B.0.1859 C.0.2718 D.0.6827答案A解析由P(3≤X≤5)≈0.6827,得P(4≤X≤5)≈0.68272=0.34135,由P(2≤X≤6)≈0.9545,得P(4≤X≤6)≈0.95452=0.47725,所以P(5<X≤6)=P(4≤X≤6)-P (4≤X ≤5)≈0.47725-0.34135=0.1359.故选A.12.(2022·宁夏吴忠市青铜峡市高级中学月考)有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X 表示取得次品的次数,则P (X ≤2)=( )A.38 B .1314 C.45 D .78答案 D解析 因为是有放回地取产品,所以每次取产品取到次品的概率为48=12.从中取3次,X 为取得次品的次数,则X ~B ⎝ ⎛⎭⎪⎫3,12,P (X ≤2)=P (X =2)+P (X =1)+P (X =0)=C 23×⎝ ⎛⎭⎪⎫122×12+C 13×12×⎝ ⎛⎭⎪⎫122+C 03×⎝ ⎛⎭⎪⎫123=78.故选D. 13.(2022·浙江省杭州市高级中学高考仿真模拟)已知在盒中有红色、黄色、白色的球各4个,现从中任意摸出4个球,则摸出白球个数的期望是( )A.13 B .23 C.43 D .53答案 C解析 设摸出的白球的个数为X ,则X =0,1,2,3,4,所以P (X =0)=C 48C 412=1499,P (X =1)=C 14C 38C 412=224495,P (X =2)=C 24C 28C 412=168495,P (X =3)=C 34C 18C 412=32495,P (X =4)=C 44C 08C 412=1495.所以摸出白球的期望是E (X )=0×1499+1×224495+2×168495+3×32495+4×1495=43.14.(多选)(2022·广东肇庆第二次统一检测)已知两种不同型号的电子元件(分别记为X ,Y )的使用寿命均服从正态分布,X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()参考数据:若Z~N(μ,σ2),则P(μ-σ≤Z≤μ+σ)≈0.6827,P(μ-2σ≤Z≤μ+2σ)≈0.9545.A.P(μ1-σ1≤X≤μ1+2σ1)≈0.8186B.P(Y≥μ2)<P(Y≥μ1)C.P(X≤σ2)<P(X≤σ1)D.对于任意的正数t,有P(X≤t)>P(Y≤t)答案ABD解析对于A,P(μ1-σ1≤X≤μ1+2σ1)≈(0.6827+0.9545)×12=0.8186,故A正确;对于B,由正态分布密度曲线,可知μ1<μ2,所以P(Y≥μ2)<P(Y≥μ1),故B正确;对于C,由正态分布密度曲线,可知σ1<σ2,所以P(X≤σ2)>P(X≤σ1),故C错误;对于D,对于任意的正数t,有P(X≤t)>P(Y≤t),故D正确.故选ABD.15.(多选)(2022·辽宁名校联盟高三联考)在3n(n∈N*)次独立重复试验中,每次试验的结果只有A,B,C三种,且A,B,C三个事件之间两两互斥.已知在每一次试验中,事件A,B发生的概率均为25,事件C发生的概率为15.则()A.事件A发生次数的数学期望为6n 5B .A ,B ,C 三个事件发生次数的数学期望之和为3nC .事件B ,C 发生次数的方差之比为43D .A ,B ,C 三个事件各发生n 次的概率为C n 3n C n 2n ⎝ ⎛⎭⎪⎫252n ⎝ ⎛⎭⎪⎫15n 答案 ABD解析 由题意可知,事件B ∪C =∁U A ,A ∪C =∁U B ,A ∪B =∁U C ,所以事件A ,B ,C 均看作二项分布.对于A ,期望值E =3np A =6n 5,即A 正确;对于B ,期望值之和E总=3np A +3np B +3np C =6n 5+6n 5+3n 5=3n ,即B 正确;对于C ,事件B 发生次数的方差D 1=3np B (1-p B )=18n 25,事件C 发生次数的方差D 2=3np C (1-p C )=12n 25,则D 1D 2=1812=32,即C 不正确;对于D ,从3n 次中选择n 次为事件A ,则为C n 3n ,从余下的2n 次中选择n 次为事件B ,则为C n 2n ,所以各发生n 次的概率为C n 3n C n 2n ⎝ ⎛⎭⎪⎫252n ⎝ ⎛⎭⎪⎫15n ,即D 正确. 16.(2022·新高考八省联考)对一个物理量做n 次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差εn ~N ⎝ ⎛⎭⎪⎫0,2n ,为使误差εn 在(-0.5,0.5)内的概率不小于0.9545,至少要测量________次(若X ~N (μ,σ2),则P (|X -μ|<2σ)≈0.9545).答案 32解析 根据正态曲线的对称性知,要使误差εn 在(-0.5,0.5)内的概率不小于0.9545,则(μ-2σ,μ+2σ)⊆(-0.5,0.5),又μ=0,σ=2n ,所以0.5≥22n ,解得n ≥32.17.(2022·福建省宁化第一中学高三9月第二次月考)已知随机变量X ~B (4,p ),方差D (X )的最大值为________,当方差D (X )最大时,⎝⎛⎭⎪⎫4px -1x 6的展开式中1x 2的系数为________.答案 1 60解析 因为随机变量X ~B (4,p ),D (X )=4p (1-p )≤4⎣⎢⎡⎦⎥⎤p +(1-p )22=1,当且仅当p =12时取等号.由题意知⎝ ⎛⎭⎪⎫4px -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6,其展开式的通项公式为T r +1=C r 6(2x )6-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r 26-r C r 6x 6-2r ,令6-2r =-2,则r =4,所以展开式中1x 2的系数为(-1)4×22×C 46=60.一、高考大题1.(2022·天津高考)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X ~B ⎝ ⎛⎭⎪⎫3,23,从而P (X =k )=C k 3⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫133-k ,k =0,1,2,3. 所以随机变量X 的分布列为随机变量X 的数学期望E (X )=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y ~B ⎝ ⎛⎭⎪⎫3,23,且M ={X =3,Y =1}∪{X =2,Y =0}.由题意知事件{X =3,Y =1}与{X =2,Y =0}互斥,且事件{X =3}与{Y =1},事件{X =2}与{Y =0}均相互独立,从而由(1)知P (M )=P ({X =3,Y =1}∪{X =2,Y =0})=P (X =3,Y =1)+P (X =2,Y =0)=P (X =3)P (Y =1)+P (X =2)P (Y =0)=827×29+49×127=20243.2.(2022·全国Ⅰ卷)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=490.②如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于E(X)>400,故应该对余下的产品作检验.3.(2022·全国Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数x-作为μ的估计值μ^,用样本标准差s作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, 0.008≈0.09.解(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X~B(16,0.0026).因此P(X≥1)=1-P(X=0)=1-0.997416≈0.0408.X的数学期望E(X)=16×0.0026=0.0416.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x -=9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.i =116x 2i ≈16×0.2122+16×9.972≈1591.134, 剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09. 二、模拟大题4.(2022·江苏省百校联考高三第一次考试)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届,第24届冬奥会将于2022年在中国北京和张家口举行,为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市多所中小学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在全市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(1)现从这10所学校中随机选取2所学校进行调查,求选出的2所学校参与旱地冰壶人数在30以下的概率;(2)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1,在指导后的考核中,甲同学总考核成绩为“优”,能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.解(1)记“选出的两所学校参与旱地冰壶人数在30以下”为事件A.参与旱地冰壶人数在30以下的学校共6所,随机选择2所学校共C26=15种,所以P(A)=C26C210=1 3.因此选出的2所学校参与旱地冰壶人数在30以下的概率为13.(2)答案不唯一.示例一:可以认为甲同学在指导后总考核达到“优”的概率发生了变化,理由如下:指导前,甲同学总考核为“优”的概率为C23×0.12×0.9+C33×0.13=0.028.指导前,甲同学总考核为“优”的概率非常小,一旦发生,就有理由认为甲同学在指导后总考核达到“优”的概率发生了变化.示例二:无法确定.理由如下:指导前,甲同学总考核为“优”的概率为C23×0.12×0.9+C33×0.13=0.028.虽然概率非常小,但是也可能发生,所以无法确定甲同学在指导后总考核达到“优”的概率发生了变化.5.(2022·山东省潍坊市五县市高三联考)2022年8月,体育总局和教育部联合提出了《关于深化体教融合,促进青少年健康发展的意见》.某地区为落实该意见,初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图所示),且规定计分规则如下表:每分钟[155,165)[165,175)[175,185)[185,215]跳绳个数得分17181920(1)(2)若该校初三年级所有学生的跳绳个数X服从正态分布N(μ,σ2),用样本数据的平均值和方差估计总体的数学期望和方差,已知样本方差s2≈169(各组数据用中点值代替),根据往年经验,该校初三年级学生经过训练,正式测试时跳绳个数都有明显进步,假设中考正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10,现利用所得正态分布模型:①预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)②若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为ξ,求随机变量ξ的分布列和数学期望.附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973.解(1)由频率分布直方图得,得分为17,18的人数分别为100×0.006×10=6,100×0.012×10=12,由题意知两人得分之和不大于35分,即为两人得分均为17分,或两人中1人得分为17分,1人得分为18分.故两人得分之和不大于35分的概率为P=C 26+C16C112C2100=291650.(2)x-=160×0.06+170×0.12+180×0.34+190×0.30+200×0.1+210×0.08=185(个),又σ2≈s2≈169,∴σ≈13,∴正式测试时,μ=195,σ≈13,∴μ-σ≈182.=0.84135,①P(X>182)≈1-1-0.682720.84135×2000=1682.7≈1683(人).∴预估正式测试每分钟跳182个以上的人数为1683.②在全年级所有学生中任取1人,每分钟跳绳个数在195以上的概率约为0.5,即ξ~B(3,0.5),∴P(ξ=0)≈C03×(1-0.5)3=0.125,P(ξ=1)≈C13×0.5×(1-0.5)2=0.375,P(ξ=2)≈C23×0.52×(1-0.5)=0.375,P(ξ=3)≈C33×0.53=0.125,∴ξ的分布列为E(ξ)≈3×0.5=1.5.6.(2022·辽宁省渤海大学附属高级中学高三上学期第一次考试)随着我国国民消费水平的不断提升,进口水果也受到了人们的喜爱,世界各地鲜果纷纷从空中、海上汇聚中国:泰国的榴莲、山竹、椰青,厄瓜多尔的香蕉,智利的车厘子,新西兰的金果猕猴桃等水果走进了千家万户.某种水果按照果径大小可分为五个等级:特等、一等、二等、三等和等外,某水果进口商从采购的一批水果中随机抽取500个,利用水果的等级分类标准得到的数据如下:(1)求恰好有3个水果是二等级别的概率;(2)若水果进口商进口时,将特等级别与一等级别的水果标注为优级水果,则用分层随机抽样的方法从这500个水果中抽取10个,再从抽取的10个水果中随机抽取3个,Y 表示抽取的优级水果的数量,求Y 的分布列及数学期望E (Y ).解 (1)设从500个水果中随机抽取一个,抽到二等级别水果的事件为A , 则P (A )=250500=12,有放回地随机抽取6个,设抽到二等级别水果的个数为X ,则X ~B ⎝ ⎛⎭⎪⎫6,12,所以恰好抽到3个二等级别水果的概率为P (X =3)=C 36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫1-123=516. (2)用分层随机抽样的方法从500个水果中抽取10个,则其中优级水果有3个,非优级水果有7个.现从中抽取3个,则优级水果的数量Y 服从超几何分布,所有可能的取值为0,1,2,3. 则P (Y =0)=C 37C 310=724,P (Y =1)=C 27C 13C 310=2140,P (Y =2)=C 17C 23C 310=740,P (Y =3)=C 33C 310=1120.所以Y的分布列如下:所以E(Y)=0×724+1×2140+2×740+3×1120=910.。
第1页共13页2023年高考数学一轮总复习第51讲:二项分布、超几何分布、正态分布【教材回扣】1.二项分布:(1)概念:一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=________________,k =0,1,2,…,n .如果随机变量X 的分布列具有上式的形式,则称随机变量X 服从____________________,记作______________.(2)均值与方差:如果X ~B (n ,p ),那么E (X )=________,D (X )=________.2.超几何分布(1)概念:一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=____________,k =m ,m +1,m +2,…,r .其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.(2)均值:E (X )=np .3.正态分布:(1)有关概念:对任意的x ∈R ,f (x )=1σ2πe -(x -μ)22σ2>0(μ∈R ,σ>0为参数),我们称f (x )为正态密度函数,称它的图象为正态密度曲线,简称正态曲线,若随机变量X 的概率分布密度函数为f (x ),则称随机变量X 服从正态分布,记作__________________.特别地,当μ=__________,σ=________时称随机变量X 服从标准正态分布.(2)正态曲线的特点:①它的图象在□10________上方;②x 轴和曲线之间的区域的面积为□11________;③曲线是单峰的,它关于直线□12________对称;④曲线在x =μ处,达到峰值1σ2π;⑤当|x |无限增大时,曲线无限接近□13________.(3)均值与方差:若x ~N (μ,σ2),则E (X )=□14________,D (X )=□15________.【题组练透】题组一判断正误(正确的打“√”,错误的打“×”)1.二项分布是一个概率分布列,是一个用公式P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n 表示的概率分布列,它表示了n 次独立重复试验中事件A 发生的次数的概率分布.()2.二项分布和超几何分布都是放回抽样.()3.正态分布中的参数μ和σ完全确定了正态分布,参数μ是正态分布的期望,σ是正态分布的标准差.()4.一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.()题组二教材改编。
二项分布与超几何分布辨析
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均
为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫
⎪⎝⎭,.
3
03
1464(0)55125P X C ⎛⎫⎛⎫
==⨯= ⎪ ⎪⎝⎭⎝⎭
∴;
12
13
1448(1)55125
P X C ⎛⎫⎛⎫
==⨯= ⎪ ⎪⎝⎭⎝⎭;
21
231412(2)55125P X C ⎛⎫⎛⎫
==⨯= ⎪ ⎪⎝⎭⎝⎭;
3
33
141(3)55125
P X C ⎛⎫⎛⎫
==⨯= ⎪ ⎪⎝⎭⎝⎭.
因此,X 的分布列为
2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:
03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101
(2)15
C C P
Y C ===.
因此,Y 的分布列为
辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.
超几何分布和二项分布都是离散型分布
超几何分布和二项分布的区别:
超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布
二项分布、超几何分布、正态分布
一、选择题
1.设随机变量ξ~B ⎝⎛⎭⎫6,1
2,则P (ξ=3)的值为( ) A.516 B.316 C.58 D.7
16
2.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =5
9,则P (η≥1) =( )
A.13
B.59
C.827
D.1927
3.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )
A .C 1012⎝⎛⎭⎫3810·⎝⎛⎭⎫582
B .
C 911
⎝⎛⎭⎫389⎝⎛⎭⎫582·38
C .C 911⎝⎛⎭⎫589·⎝⎛⎭⎫382
D .C 911⎝⎛⎭⎫389·⎝⎛⎭
⎫582 4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )
A .[0.4,1)
B .(0,0.6]
C .(0,0.4]
D .[0.6,1)
5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 二、填空题
6.某篮运动员在三分线投球的命中率是1
2,他投球10次,恰好投进3个球的概率________.(用数值
作答) 答案:15
128
7.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为________.
8.某厂生产的圆柱形零件的外径ε1000件零件中随机抽查一件,
测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________. 答案:不合格
三、解答题
9.一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.
(1)求在一次抽检后,设备不需要调整的概率;
(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.
10.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.
(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.
参考答案
1、解析:P (ξ=3)=C 36⎝⎛⎭⎫123⎝⎛⎭⎫1-123=5
16. 答案:A
2、解析:∵P (ξ≥1) =2p (1-p )+p 2=59, ∴p =1
3 ,
∴P (η≥1) =C 13⎝⎛⎭⎫13⎝⎛⎭⎫232+C 23⎝⎛⎭⎫132⎝⎛⎭⎫23+C 33
⎝⎛⎭⎫133
=1927,故选D.
3、解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911
·⎝⎛⎭⎫389⎝⎛⎭⎫582×38. 答案:B
4、解析:C14p (1-p )3≤C24p 2(1-p )2,即2(1-p )≤3p ,∴p ≥0.4.又∵p <1,∴0.4≤p <1
5、解析:∵P (ξ≤4)=0.84,μ=2,∴P (ξ<0)=P (ξ>4)=1-0.84=0.16.故选A.
6、解析:由题意知所求概率P =C 310
⎝⎛⎭⎫123⎝⎛⎭⎫127=15128
. 7、解析:这是超几何分布,P (X =0)=C 03C 22C 25=0.1;P (X =1)=C 13C 12C 25=0.6; P (X =2)=C 23C 02
C 25
=0.3,
分布列如下表:
8、解析:根据3σ原则,在4-3×0.5=2.5~4+3×0.5=5.5之外为异常,所以这批零件不合格. 9、解析:(1)设A i 表示事件“在一次抽检中抽到的第i 件产品为A 类品”,i =1,2. B i 表示事件“在一次抽检中抽到的第i 件产品为B 类品”,i =1,2. C 表示事件“一次抽检后,设备不需要调整”. 则C =A 1·A 2+A 1·B 2+B 1·A 2.
由已知P (A i )=0.9,P (B i )=0.05 i =1,2. 所以,所求的概率为
P (C )=P (A 1·A 2)+P (A 1·B 2)+P (B 1·A 2) =0.92+2×0.9×0.05=0.9.
(2)由(1)知一次抽检后,设备需要调整的概率为
p =P (C )=1-0.9=0.1,依题意知ξ~B (3,0.1),ξ的分布列为
10、解析:(1)P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24
C 310=310,
P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36
C 310=16,
其分布列如下:
(2)法一:设甲、乙两人考试合格的事件分别为A 、B ,则
P (A )=C 26C 14+C 36C 3
10=60+20
120=23, P (B )=C 28C 12+C 38
C 310
=56+56120=1415.
因为事件A 、B 相互独立,
∴甲、乙两人考试均不合格的概率为 P
()A ·B =P ()A ·
P ()B =⎝⎛⎭⎫1-23⎝⎛⎭⎫1-1415=1
45
, ∴甲、乙两人至少有一人考试合格的概率为 P =1-P
(
)
A ·
B =1-145=44
45
.
答:甲、乙两人至少有一人考试合格的概率为44
45.
法二:甲、乙两人至少有一个考试合格的概率为 P =P ()A ·B
+P ()A ·
B +P ()A ·B =23×115+13×1415+23×1415=44
45
. 答:甲、乙两人至少有一人考试合格的概率为44
45。