完整版二项分布超几何分布正态分布总结归纳及练习
- 格式:docx
- 大小:30.34 KB
- 文档页数:6
二项分布、超几何分布和正态分布1.正态分布1.已知随机变量 6,X B p ,2,Y N :,且 122P Y, E X E Y ,则p ()A.12B.13C.14D.16【答案】B【解析】因为随机变量 6,X B p ,所以 6E X p ,因为2,Y N :, 122P Y,所以2 ,即 2E Y ,又 E X E Y ,所以62p ,即13p .2.(多选)已知三个正态分布密度函数22()2i i x i x(x ∈R,i =1,2,3)的图象如图所示,下列关于μ1,μ2,μ3,σ1,σ2,σ3的大小关系正确的是()A.123 B.123 C.123 D.123【答案】AB【解析】正态分布关于x 对称,且 越大图象的对称轴越靠近右边,故第一个曲线的均值比第二和第三的均值小,且二,三两个的均值相等,故123 .越小,曲线越瘦高,则第二个图象 要比第三个的 要小,故123 .故选AB.3.某篮球队在某赛季已结束的8场比赛中,队员甲得分分别为7,8,10,15,17,19,21,23.(1)根据这8场比赛,估计甲每场比赛中得分的均值 和标准差 ;(2)假设甲在每场比赛的得分服从正态分布2(,)N ,且各场比赛间相互没有影响,依此估计甲在82场比赛中得分在不低于26分的平均场数(结果保留整数).5.66 , 5.68 5.70 .正态总体2(,)N 在区间(2,2) 内取值的概率约为95.4%.【答案】(1)估计甲每场比赛中得分的均值 为15,标准差 为5.68;(2)估计甲在82场比赛中得分在不低于26分的平均场数为2.【解析】(1)由题意可得1(78101517192123)158,2222222221[(8)(7)(5)02468]32.258,所以 5.68 ,所以估计甲每场比赛中得分的均值 为15,标准差 为5.68.(2)设甲每场比赛中的得分为随机变量X ,由(1)得甲在每场比赛中得分不低于26分的概率1126[1(22)]10.9540.02322P X P X ,设在82场比赛中,甲得分不低于26分的次数为Y ,则(82,0.023)Y B :,Y 的均值()820.0232E Y ,由此估计甲在82场比赛中得分在不低于26分的平均场数为2.4.5G 网络是第五代移动通信网络的简称,是新一轮科技革命最具代表性的技术之一.2020年初以来,我国5G 网络正在大面积铺开.A 市某调查机构为了解市民对该市5G 网络服务质量的满意程度,从使用了5G 手机的市民中随机选取了200人进行问卷调查,并将这200人根据其满意度得分分成以下6组: 40,50、 50,60、 60,70、…, 90,100,统计结果如图所示:(1)由直方图可认为A 市市民对5G 网络满意度得分Z (单位:分)近似地服从正态分布 2,N ,其中 近似为样本平均数x , 近似为样本的标准差s ,并已求得14.31s .若A 市恰有2万名5G 手机用户,试估计这些5G 手机用户中满意度得分位于区间41.88,84.81的人数(每组数据以区间的中点值为代表);(2)该调查机构为参与本次调查的5G 手机用户举行了抽奖活动,每人最多有3轮抽奖活动,每一轮抽奖相互独立,中奖率均为13.每一轮抽奖,奖金为100元话费且继续参加下一轮抽奖;若未中奖,则抽奖活动结束.现小王参与了此次抽奖活动,求小王所获话费总额X 的数学期望.参考数据:若随机变量Z 服从正态分布2,N ,即2~,Z N ,则0.6827P Z , 220.9545P Z .【答案】(1)16372(人);(2)130027(元).【解析】(1)由题意知样本平均数为450.1550.15650.2750.3850.15950.170.5x ,∴70.5x ,∵14.31s ,所以, 2,41.88,84.81s s ,而 1122222P x Z s P Z Z0.8186 ,故2万名5G 手机用户中满意度得分位于区间 41.88,84.81的人数约为200000.818616372 (人).(2)由题意可知X 的可能取值有0、100、200、300,203p X, 122100339p X , 112220033327p X, 111130033327p X ,∴ 22211300010020030039272727E X(元).2.二项分布1.足球运动是一项在学校广泛开展、深受学生喜爱的体育项目,对提高学生的身心健康具有重要的作用.某中学为了推广足球运动,成立了足球社团,该社团中的成员分为A ,B ,C三个层次,其中A ,B ,C 三个层次的球员在1次射门测试中踢进球的概率如表所示,A ,B ,C 三个层次的球员所占比例如图所示.层次A B C概率231214(1)若从该社团中随机选1名球员进行1次射门测试,求该球员踢进球的概率;(2)若从该社团中随机选1名球员,连续进行5次射门测试,每次踢进球与否相互独立,记踢进球的次数为X ,求X 的分布列及数学期望.【答案】(1)12;(2)分布列见解析,数学期望为2.5.【解析】(1)从该社团随机选1人进行一次射门测试,选自层次A ,B ,C 的成员踢进球的事件分别记为事件A ,B ,C ,则321111111(),(),()10352245420P A P B P C.因为事件A ,B ,C 为互斥事件,所以1111()()()()54202P A B C P A P B P CU U .故从该社团中随机选1名球员进行1次射门测试,球员踢进球的概率为12.(2)由(1)可知从该社团中随机选择1人进行1次射门测试,球员踢进球的概率为12,每次踢进球与否相互独立,所以X 服从二项分布,即15,2X B:,5550125551115110(0),(1),(2)232232232P X C P X C P X C,5553455551101511(3),(4),(5)232232232P X C P X C P X C.X 的分布列为X 012345P13253210321032532132故X 的数学期望1()5 2.52E X.2.某厂生产,A B 两种产品,对两种产品的某项指标进行检测,现各抽取100件产品作为样本,其指标值的频率分布直方图如图所示:以该项指标作为衡量产品质量的标准,该项指标划分等级和收益率如下表,其中1154p .(注:收益率利润总投资额)等级一等品二等品三等品指标值m 140m 120140m 120m 产品收益率p24p 2p (1)求a 的值;(2)将频率分布直方图中的频率近似看作概率,用样本估计总体.①从产品B 中随机抽取3件,求其中一等品件数X 的分布列及数学期望;②在总投资额相同的情况下,若全部投资产品A 或产品B ,试分析投资哪种产品收益更大.【答案】(1)0.030a ;(2)①分布列见解析,95;②投资产品A 的收益更大.【解析】(1)由题可得 0.0050.0100.0150.040101a ,解得0.030a .(2)①由直方图知:产品B 为一等品的概率是35,二等品概率是310,三等品概率是110,由题知随机抽取3件是一等品的件数X 可能的取值是0,1,2,3,且5~33,X B,3003238055125P X C , 21132336155125P X C, 12235412523255P X C, 03332712523355P X C,则X 的分布列为:X 0123P8125361255412527125∴ 8365427901231251251251255E X.②由题可得,产品A 为一等品的概率为710,二等品的概率为14,三等品的概率为120,产品B 为一等品的概率为35,二等品的概率为310,三等品的概率为110,产品A 的收益:22217112174104202010E p p p p p ,产品B 的收益:2222331133451010105E p p p p p ,∴ 22151152201020E E p p p p ,因为1154p ,所以210E E ,即21E E ,故投资产品A 的收益更大.3.印刷行业的印刷任务是由印张数(单位:千张)来衡量的.某印刷企业有甲,乙两种印刷设备,每年的各单印刷任务在180~240千张;当一单任务的印张数不大于210千张时,由甲种印刷设备来完成,当一单任务的印张数大于210千张时,由乙种印刷设备来完成.资料显示1000单印制任务的印张数的频率分布直方图如图所示,现有4单印刷任务,印张数未知,只知道印张数在180~240千张,以相关印张数的频率视为相应事件发生的概率.(1)求a 的值,并求这1000单印刷任务的印张数(单位:千张)的中位数;(2)用X 、Y 分别表示这4单印刷任务中由甲、乙两个印刷设备来完成的个数,记||X Y ,求随机变量 的分布列与数学期望.【答案】(1)0.005a ,中位数为214;(2)分布列见解析,数学期望为1012625.【解析】(1)由频率分布直方图知:(0.01520.02020.025)101a ,解得0.005a .设这1000单印刷任务的印张数(单位:千张)的中位数为x ,由0.005100.015100.02100.4 ,得(210)0.0250.50.4x ,解得214x .(2)由频率分布直方图知,一个任务由甲种印刷机器来完成的概率为:20.005100.015100.02100.45,所以由乙种印刷机器来完成的概率为35,由题意||X Y ,则 的可能取值为0,2,4;0 表示甲乙分别完成两个任务,概率为222423216(0)55625P C;2 表示甲完成1个任务而乙完成3个任务或甲完成3个任务而乙完成1个任务,概率为1331134********(2)C C 5555625P;4 表示任务全部由甲完成或乙完成,其概率442397(4)55625P,则随机变量 的分布列为:024p21662531262597625所以随机变量 的数学期望为216312971012()024625625625625E.4.某学习网按学生数学成绩的水平由高到低分成甲、乙两档,进行研究分析,假设学生做对每道题相互独立,其中甲、乙档学生做对每道题的概率分别为p ,58p ,现从甲、乙两档各抽取一名学生成为一个学习互助组合.(1)现从甲档中选取一名学生,该生5道题做对4道题的概率为 f p ,求出 f p 的最大值点0p ;(2)若以0p 作为p 的值,①求每一个互助组合做对题的概率;②现选取n 个组合,记做对题的组数为随机变量X ,当90X 时, P X 取得最大值,求相应的n 和 E X .【答案】(1)045p;(2)①0.9;②答案见解析.【解析】(1)由题可知 4445151f p C p p p p , 3545f p p p ,令 0f p ,得45p .当40,5p 时, 0f p , f p 在40,5上单调递增;当4,15p时, 0f p , f p 在4,15上单调递减,所以 f p 的最大值点045p.(2)①记事件A 为一个互助组合做对题,事件B 为一个互助组合中甲档中的学生做对题,事件C 为一个互助组合中乙档中的学生做对题,则4()5P B, 451582P C , 11110.952P A P B P C .②由题意知随机变量 ,0.9X B n :, 0.90.10,1,2,,k k n kn P X k C k n ,因为 90P X 最大,所以9090909191919090908989890.90.10.90.10.90.10.90.1n n n n n n n n C C C C ,解得901999n ,因为n 是整数,所以99n 或100n ,当99n 时, 990.989.1E X np ;当100n 时, 1000.990E X np .3.超几何分布1.2021年8月8日,东京奥运会落下帷幕.400多名中国奥运健儿在比赛中积极弘扬奥林匹克精神,敢于挑战极限、超越自我,展现了精湛的竞技水平和顽强的拼搏精神.为了鼓励更多的市民参与体育锻炼,某城市随机抽取了100名市民对其每月(按30天)的运动天数进行了统计:平均每月运动的天数x5x 515x 1525x 25x 人数20403010我们把每月运动超过15天称为热衷运动,不超过15天称为一般运动,为了了解运动是否与性别有关,得到了以下22 列联表:一般运动热衷运动合计男性22女性1250合计100(1)完成22 列联表,并判断是否有99%的把握认为运动与性别有关?(2)依据统计表,用分层抽样的方法从这100个人中抽取10个,再从抽取的10个人中随机抽取3个,用X 表示抽取的是“热衷运动”的人数,求X 的分布列及数学期望 E X .附:20P K k 0.1000.0500.0100.0010k 2.7063.8416.63510.82822n ad bc K a b c d a c b d,n a b c d .【答案】(1)列联表见解析,有99%的把握认为运动与性别有关;(2)分布列见解析,数学期望 65E X.【解析】(1)完善22 列联表如下表所示:一般运动热衷运动合计男性222850女性381250合计604010022100221238283210.667 6.635604050503K,所以有99%的把握认为运动与性别有关.(2)根据分层抽样,10个人中抽取的热衷运动的人数为4人,一般运动的人数为6人,从抽取的10个人中随机抽取3个,X 表示抽取的是“热衷运动”的人数,X 的可能取值为0、1、2、3,则 36310C 10C 6P X , 2164310C C 11C 2P X , 1264310C C 32C 10P X , 34310C 13C 30P X,所以X 的分布列为:X 0123P1612310130所以X 的数学期望 1131601236210305E X.2.第24届冬季奥运会将于2022年2月在北京和张家口举办.为了普及冬奥知识,京西某校组织全体学生进行了冬奥知识答题比赛,从高一年级(共六个班)答题优秀的学生中随机抽查了20名,得到这20名优秀学生的统计如下:高一班级一(1)一(2)一(3)一(4)一(5)一(6)人数454331(1)从这20名学生中随机抽取两名学生参加区里冬奥知识比赛.(i)恰好这2名学生都来自同一班级的概率是多少?(ii)设这2名学生中来自高一(2)的人数为 ,求 的分布列及数学期望;(2)如果该校高中生的优秀率为0.1,从该校中随机抽取2人,这两人中优秀的人数为 ,求 的期望.【答案】(1)(i)1495;(ii)分布列见解析,12;(2)0.2.【解析】(1)(i )20名学生中随机抽取两名学生共有220190C ,设恰好2名学生都来自同一班级共有222224543328C C C C C ,2814()191095P A .(ii ) 可取0,1,2,215220105(0)190C P C ,1115522075(1)190C C P C ,2522010(2)190C P C , 的分布列为:012P 1051907519010190的期望 75110211901902E .(2) 可取0,1,2,(2,0.1)B :,所以 0.120.2E .3.为缓解城市垃圾带来的问题,许多城市实行了生活垃圾强制分类.为了加强学生对垃圾分类意义的认识以及养成良好的垃圾分类的习惯,某学校团委组织了垃圾分类知识竞赛活动.设置了四个箱子,分别标有“厨余垃圾”“有害垃圾”“可回收物”“其他垃圾”;另有写有垃圾名称的卡片若干张.每位参赛选手从所有写有垃圾名称的卡片中随机抽取20张,按照自己的判断,将每张卡片放入对应的箱子中.规定每正确投放一张卡片得5分,投放错误得0分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子得5分,放入其他箱子得0分.从所有参赛选手中随机抽取40人,将他们的得分分成以下5组:[0,20],(20,40],(40,60],(60,80],(80,100],绘成如下频率分布直方图:(1)求得分的平均数(每组数据以中点值代表);(2)学校规定得分在80分以上的为“垃圾分类知识达人”.为促进社区的垃圾分类,学校决定从抽取的40人中的“知识达人”(其中含A ,B 两位同学)中选出两人利用节假日到社区进行垃圾分类知识宣讲,求A ,B 两人至少有1人被选中的概率;(3)从所抽取的40人中得分落在组[0,40]的选手中随机选取3名选手,用X 表示这3名选手中得分不超过20分的人数,求X 的分布列和数学期望.【答案】(1)56;(2)1328;(3)分布列见解析,65.【解析】(1)由频率分布直方图可求得各组的频率自左到右依次为:0.1,0.15,0.3,0.25,0.2,所以得分的平均数100.1300.15500.3700.25900.256x .(2)所抽取的40人中,得分在80分以上的有400.28 人,故所求概率为2628C 151311C 2828.(3)由题可知X 的所有可能取值为0,1,2,3,得分在[0,20]的人数400.14 ,得分在(20,40]的人数为400.156 人.36310C 1(0)C 6P X ,1246310C C 1(1)C 2P X ,2146310C C3(2)C 10P X ,34310C 1(3)C 30P X ,所以X 的分布列为X 0123P 1612310130所以X 的数学期望11316()01236210305E X .。
二项分布?还是超几何分布二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析.例 1 袋中有 8 个白球、 2 个黑球,从中随机地连续抽取 3 次,每次取 1 个球.求:( 1)有放回抽样时,取到黑球的个数X的分布列;( 2)不放回抽样时,取到黑球的个数Y的分布列.解:( 1)有放回抽样时,取到的黑球数X可能的取值为0,1, 2, 3.又由于每次取到黑球的概率均为1, 3 次取球可以看成 3 次独立重复试验,则1,.550312∴ P(X 0) C301464 ;P(X 1)C311448 ;551255512521P(X 3) C33130P(X 2) C321412 ;4 1 .5512555125因此, X 的分布列为X0123P6448121 125125125125(2)不放回抽样时,取到的黑球数Y可能的取值为0, 1,2,且有:P(Y 0)C20C837;P(Y1)C21C827;P(Y2)C22C81 1 .C10315C10315C10315因此, Y 的分布列为Y012771P151515例 2 某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40 件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495] , (495,500] ,,, ,(510,515] ,由此得到样本的频率分布直方图,如图4( 1)根据频率分布直方图,求重量超过505 克的产品数量 ,( 2)在上述抽取的40 件产品中任取 2 件,设 Y 为重量超过505 克的产品数量,求Y 的分布列;( 3)从该流水线上任取 5 件产品,求恰有 2 件产品的重量超过505克的概率。
17.解 : (1)重量超过 505克的产品数量是 :40 (0.055+0.01 5)=40 0.3=12.(2)Y 的分布列为 :Y 0 1 2PC 282 C 281 C 121C 122C 402C 402C 402(3)设所取的 5件产品中 , 重量超过 505克的产品件数为随机变量 Y, 则Y B(5, 3),102 3 2 7 33087 从而 P(Y=2)=C 5( 10 )( 10 ) =10000 .即恰有 2件产品的重量超过 505克的概率为3087.10000超几何分布与二项分布特点(A) 判断一个随机变量是否服从超几何分布 , 关键是要看随机变量是否满足超几何分布的特征 :一个总体 ( 共有 N 个) 内含有两种不同的事物 A(M 个) 、 B(N M 个) , 任取 n 个 , 其中恰有 X 个A . 符合该条件的即可断定是超几何分布C M k C N nk M, 按照超几何分布的分布列 P( X k)C N n( k 0,1,2, , m )进行处理就可以了 . (B) 二项分布必须同时满足以下两个条件: ①在一次试验中试验结果只有A 与 A 这两个 , 且事件 A 发生的概率为 p , 事件 A 发生的概率为 1 p ;②试验可以独立重复地进行 , 即每次重复做一次试验 , 事件 A 发生的概率都是同一常数 p , 事件 A 发生的概率为 1 p .辨析:通过 2 个例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.例 1 与例 2 中的 EX=EY=0.6 注意▲ 超几何分布和二项分布都是离散型分布超几何分布和二项分布的判断方法( 1)超几何分布需要知道总体的容量,而二项分布不需要; ( 2)超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)( 3)当总体的容量非常大时,超几何分布近似于二项分布。
新高考数学一轮复习考点知识专题讲解与练习考点知识总结55 二项分布与超几何分布、正态分布高考 概览 高考在本考点的常考题型为选择题、填空题、解答题,分值为5分、12分,中等难度考纲研读1.理解n 次独立重复试验的模型及二项分布2.理解超几何分布及其导出过程,并能进行简单应用3.借助直方图认识正态分布曲线的特点及曲线所表示的意义4.能解决一些简单的实际问题一、基础小题1.设随机变量X ~N (1,52),且P (X ≤0)=P (X ≥a -2),则实数a 的值为() A .4 B .6 C.8 D .10答案 A解析 x =0与x =a -2关于x =1对称,则a -2=2,a =4.故选A.2.设随机变量X ~B ⎝ ⎛⎭⎪⎫6,12,则P (X =3)=( )A.516 B .316 C.58 D .38答案 A解析 X ~B ⎝ ⎛⎭⎪⎫6,12,由二项分布可得,P (X =3)=C 36×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-123=516. 3.15个村庄中有7个交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C 47C 68C 1015的是( ) A .P (X =2) B .P (X ≤2) C .P (X =4) D .P (X ≤4) 答案 C解析 X 服从超几何分布,故P (X =k )=C k 7C 10-k 8C 1015,k =4. 4.一试验田某种作物一株生长果实个数x 服从正态分布N (90,σ2),且P (x <70)=0.2,从试验田中随机抽取10株,果实个数在[90,110]的株数记作随机变量X ,且X 服从二项分布,则X 的方差为( )A .3B .2.1 C.0.3 D .0.21答案 B解析 ∵x ~N (90,σ2),且P (x <70)=0.2,∴P (x >110)=0.2,∴P (90≤x ≤110)=0.5-0.2=0.3,∴X ~B (10,0.3),则X 的方差为10×0.3×(1-0.3)=2.1.故选B.5.袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,则3次中恰有2次抽到黄球的概率是( )A.25 B .35 C.18125 D .54125答案 D解析 袋中装有2个红球,3个黄球,有放回地抽取3次,每次抽取1球,每次抽到黄球的概率为P 1=35,所以3次中恰有2次抽到黄球的概率是P =C 23×⎝ ⎛⎭⎪⎫352×⎝ ⎛⎭⎪⎫1-35=54125.6.(多选)抛掷一枚质地均匀的硬币三次,若记出现“三个正面”“三个反面”“二正一反”“一正二反”的概率分别为P 1,P 2,P 3,P 4,则下列结论中正确的是( )A .P 1=P 2=P 3=P 4B .P 3=2P 1C .P 1+P 2+P 3+P 4=1D .P 4=3P 2答案 CD解析 根据伯努利试验的概率计算公式,可得P 1=⎝ ⎛⎭⎪⎫123=18,P 2=⎝ ⎛⎭⎪⎫123=18,P 3=C 23×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-12=38,P 4=C 13×12×⎝ ⎛⎭⎪⎫1-122=38,P 1=P 2<P 3=P 4,故A 错误;P 3=3P 1,故B 错误;P 1+P 2+P 3+P 4=1,故C 正确;P 4=3P 2,故D 正确.故选CD.7.某市高三理科学生有15000名,在一次调研测试中,数学成绩ξ服从正态分布N (100,σ2),已知P (80≤ξ≤100)=0.40,若按成绩采用分层随机抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取的份数为________.答案 10解析 P (ξ>120)=12[1-2P (80≤ξ≤100)]=0.10,所以应从120分以上的试卷中抽取100×0.10=10份.8.甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45;乙第一次射击的命中率为78,若第一次未射中,则乙进行第二次射击,射击的命中率为34,如果又未中,则乙进行第三次射击,射击的命中率为12.乙若射中,则不再继续射击.则甲三次射击命中次数的期望为________,乙射中的概率为________.答案 1256364解析 甲、乙两名枪手进行射击比赛,每人各射击三次,甲三次射击命中率均为45,则甲击中的次数X ~B ⎝ ⎛⎭⎪⎫3,45,∴甲三次射击命中次数的期望为E (X )=3×45=125.由题意可得乙射中的概率为P =78+18×34+18×14×12=6364.二、高考小题9.(2022·新高考Ⅱ卷)某物理量的测量结果服从正态分布N (10,σ2),下列结论中不正确的是( )A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等答案 D解析 对于A ,σ2为数据的方差,所以σ越小,数据在μ=10附近越集中,所以测量结果落在(9.9,10.1)内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量在一次测量中大于10的概率为0.5,故B正确;对于C,由正态分布密度曲线的对称性可知该物理量在一次测量中小于9.99的概率与大于10.01的概率相等,故C正确;对于D,因为该物理量在一次测量中落在(9.9,10)的概率与落在(10.2,10.3)的概率不同,所以在一次测量中落在(9.9,10.2)的概率与落在(10,10.3)的概率不同,故D错误.故选D.10.(2022·全国Ⅲ卷)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立,设X为该群体的10位成员中使用移动支付的人数,D(X)=2.4,P(X =4)<P(X=6),则p=()A.0.7 B.0.6C.0.4 D.0.3答案B解析∵D(X)=np(1-p),∴p=0.4或p=0.6.∵P(X=4)=C410p4(1-p)6<P(X=6)=C610p6(1-p)4,∴(1-p)2<p2,可知p>0.5.∴p=0.6.故选B.三、模拟小题11.(2022·广东惠州第二次模拟)已知随机变量X服从正态分布N(μ,σ2),且P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-σ≤X≤μ+σ)≈0.6827,若μ=4,σ=1,则P(5<X≤6)≈()A.0.1359 B.0.1859 C.0.2718 D.0.6827答案A解析由P(3≤X≤5)≈0.6827,得P(4≤X≤5)≈0.68272=0.34135,由P(2≤X≤6)≈0.9545,得P(4≤X≤6)≈0.95452=0.47725,所以P(5<X≤6)=P(4≤X≤6)-P (4≤X ≤5)≈0.47725-0.34135=0.1359.故选A.12.(2022·宁夏吴忠市青铜峡市高级中学月考)有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X 表示取得次品的次数,则P (X ≤2)=( )A.38 B .1314 C.45 D .78答案 D解析 因为是有放回地取产品,所以每次取产品取到次品的概率为48=12.从中取3次,X 为取得次品的次数,则X ~B ⎝ ⎛⎭⎪⎫3,12,P (X ≤2)=P (X =2)+P (X =1)+P (X =0)=C 23×⎝ ⎛⎭⎪⎫122×12+C 13×12×⎝ ⎛⎭⎪⎫122+C 03×⎝ ⎛⎭⎪⎫123=78.故选D. 13.(2022·浙江省杭州市高级中学高考仿真模拟)已知在盒中有红色、黄色、白色的球各4个,现从中任意摸出4个球,则摸出白球个数的期望是( )A.13 B .23 C.43 D .53答案 C解析 设摸出的白球的个数为X ,则X =0,1,2,3,4,所以P (X =0)=C 48C 412=1499,P (X =1)=C 14C 38C 412=224495,P (X =2)=C 24C 28C 412=168495,P (X =3)=C 34C 18C 412=32495,P (X =4)=C 44C 08C 412=1495.所以摸出白球的期望是E (X )=0×1499+1×224495+2×168495+3×32495+4×1495=43.14.(多选)(2022·广东肇庆第二次统一检测)已知两种不同型号的电子元件(分别记为X ,Y )的使用寿命均服从正态分布,X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是()参考数据:若Z~N(μ,σ2),则P(μ-σ≤Z≤μ+σ)≈0.6827,P(μ-2σ≤Z≤μ+2σ)≈0.9545.A.P(μ1-σ1≤X≤μ1+2σ1)≈0.8186B.P(Y≥μ2)<P(Y≥μ1)C.P(X≤σ2)<P(X≤σ1)D.对于任意的正数t,有P(X≤t)>P(Y≤t)答案ABD解析对于A,P(μ1-σ1≤X≤μ1+2σ1)≈(0.6827+0.9545)×12=0.8186,故A正确;对于B,由正态分布密度曲线,可知μ1<μ2,所以P(Y≥μ2)<P(Y≥μ1),故B正确;对于C,由正态分布密度曲线,可知σ1<σ2,所以P(X≤σ2)>P(X≤σ1),故C错误;对于D,对于任意的正数t,有P(X≤t)>P(Y≤t),故D正确.故选ABD.15.(多选)(2022·辽宁名校联盟高三联考)在3n(n∈N*)次独立重复试验中,每次试验的结果只有A,B,C三种,且A,B,C三个事件之间两两互斥.已知在每一次试验中,事件A,B发生的概率均为25,事件C发生的概率为15.则()A.事件A发生次数的数学期望为6n 5B .A ,B ,C 三个事件发生次数的数学期望之和为3nC .事件B ,C 发生次数的方差之比为43D .A ,B ,C 三个事件各发生n 次的概率为C n 3n C n 2n ⎝ ⎛⎭⎪⎫252n ⎝ ⎛⎭⎪⎫15n 答案 ABD解析 由题意可知,事件B ∪C =∁U A ,A ∪C =∁U B ,A ∪B =∁U C ,所以事件A ,B ,C 均看作二项分布.对于A ,期望值E =3np A =6n 5,即A 正确;对于B ,期望值之和E总=3np A +3np B +3np C =6n 5+6n 5+3n 5=3n ,即B 正确;对于C ,事件B 发生次数的方差D 1=3np B (1-p B )=18n 25,事件C 发生次数的方差D 2=3np C (1-p C )=12n 25,则D 1D 2=1812=32,即C 不正确;对于D ,从3n 次中选择n 次为事件A ,则为C n 3n ,从余下的2n 次中选择n 次为事件B ,则为C n 2n ,所以各发生n 次的概率为C n 3n C n 2n ⎝ ⎛⎭⎪⎫252n ⎝ ⎛⎭⎪⎫15n ,即D 正确. 16.(2022·新高考八省联考)对一个物理量做n 次测量,并以测量结果的平均值作为该物理量的最后结果.已知最后结果的误差εn ~N ⎝ ⎛⎭⎪⎫0,2n ,为使误差εn 在(-0.5,0.5)内的概率不小于0.9545,至少要测量________次(若X ~N (μ,σ2),则P (|X -μ|<2σ)≈0.9545).答案 32解析 根据正态曲线的对称性知,要使误差εn 在(-0.5,0.5)内的概率不小于0.9545,则(μ-2σ,μ+2σ)⊆(-0.5,0.5),又μ=0,σ=2n ,所以0.5≥22n ,解得n ≥32.17.(2022·福建省宁化第一中学高三9月第二次月考)已知随机变量X ~B (4,p ),方差D (X )的最大值为________,当方差D (X )最大时,⎝⎛⎭⎪⎫4px -1x 6的展开式中1x 2的系数为________.答案 1 60解析 因为随机变量X ~B (4,p ),D (X )=4p (1-p )≤4⎣⎢⎡⎦⎥⎤p +(1-p )22=1,当且仅当p =12时取等号.由题意知⎝ ⎛⎭⎪⎫4px -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6,其展开式的通项公式为T r +1=C r 6(2x )6-r ·⎝ ⎛⎭⎪⎫-1x r =(-1)r 26-r C r 6x 6-2r ,令6-2r =-2,则r =4,所以展开式中1x 2的系数为(-1)4×22×C 46=60.一、高考大题1.(2022·天津高考)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率.解 (1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故X ~B ⎝ ⎛⎭⎪⎫3,23,从而P (X =k )=C k 3⎝ ⎛⎭⎪⎫23k ·⎝ ⎛⎭⎪⎫133-k ,k =0,1,2,3. 所以随机变量X 的分布列为随机变量X 的数学期望E (X )=3×23=2.(2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则Y ~B ⎝ ⎛⎭⎪⎫3,23,且M ={X =3,Y =1}∪{X =2,Y =0}.由题意知事件{X =3,Y =1}与{X =2,Y =0}互斥,且事件{X =3}与{Y =1},事件{X =2}与{Y =0}均相互独立,从而由(1)知P (M )=P ({X =3,Y =1}∪{X =2,Y =0})=P (X =3,Y =1)+P (X =2,Y =0)=P (X =3)P (Y =1)+P (X =2)P (Y =0)=827×29+49×127=20243.2.(2022·全国Ⅰ卷)某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为p (0<p <1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f (p ),求f (p )的最大值点p 0;(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p 0作为p 的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.①若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求E(X);②以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?解(1)20件产品中恰有2件不合格品的概率为f(p)=C220p2(1-p)18.因此f′(p)=C220[2p(1-p)18-18p2(1-p)17]=2C220p(1-p)17(1-10p).令f′(p)=0,得p=0.1.当p∈(0,0.1)时,f′(p)>0;当p∈(0.1,1)时,f′(p)<0.所以f(p)的最大值点为p0=0.1.(2)由(1)知,p=0.1.①令Y表示余下的180件产品中的不合格品件数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y.所以E(X)=E(40+25Y)=40+25E(Y)=490.②如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.由于E(X)>400,故应该对余下的产品作检验.3.(2022·全国Ⅰ卷)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①试说明上述监控生产过程方法的合理性;②下面是检验员在一天内抽取的16个零件的尺寸:0.212,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)用样本平均数x-作为μ的估计值μ^,用样本标准差s作为σ的估计值σ^,利用估计值判断是否需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592, 0.008≈0.09.解(1)抽取的一个零件的尺寸在(μ-3σ,μ+3σ)之内的概率为0.9974,从而零件的尺寸在(μ-3σ,μ+3σ)之外的概率为0.0026,故X~B(16,0.0026).因此P(X≥1)=1-P(X=0)=1-0.997416≈0.0408.X的数学期望E(X)=16×0.0026=0.0416.(2)①如果生产状态正常,一个零件尺寸在(μ-3σ,μ+3σ)之外的概率只有0.0026,一天内抽取的16个零件中,出现尺寸在(μ-3σ,μ+3σ)之外的零件的概率只有0.0408,发生的概率很小,因此一旦发生这种情况,就有理由认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查,可见上述监控生产过程的方法是合理的.②由x -=9.97,s ≈0.212,得μ的估计值为μ^=9.97,σ的估计值为σ^=0.212,由样本数据可以看出有一个零件的尺寸在(μ^-3σ^,μ^+3σ^)之外,因此需对当天的生产过程进行检查.剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的平均数为115×(16×9.97-9.22)=10.02.因此μ的估计值为10.02.i =116x 2i ≈16×0.2122+16×9.972≈1591.134, 剔除(μ^-3σ^,μ^+3σ^)之外的数据9.22,剩下数据的样本方差为115×(1591.134-9.222-15×10.022)≈0.008,因此σ的估计值为0.008≈0.09. 二、模拟大题4.(2022·江苏省百校联考高三第一次考试)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届,第24届冬奥会将于2022年在中国北京和张家口举行,为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市多所中小学校开展了模拟冬奥会各项比赛的活动.为了了解学生在越野滑轮和旱地冰壶两项中的参与情况,在全市中小学学校中随机抽取了10所学校,10所学校的参与人数如下:(1)现从这10所学校中随机选取2所学校进行调查,求选出的2所学校参与旱地冰壶人数在30以下的概率;(2)某校聘请了一名越野滑轮教练,对高山滑降、转弯、八字登坡滑行这3个动作进行技术指导.规定:这3个动作中至少有2个动作达到“优”,总考核记为“优”.在指导前,该校甲同学3个动作中每个动作达到“优”的概率为0.1,在指导后的考核中,甲同学总考核成绩为“优”,能否认为甲同学在指导后总考核达到“优”的概率发生了变化?请说明理由.解(1)记“选出的两所学校参与旱地冰壶人数在30以下”为事件A.参与旱地冰壶人数在30以下的学校共6所,随机选择2所学校共C26=15种,所以P(A)=C26C210=1 3.因此选出的2所学校参与旱地冰壶人数在30以下的概率为13.(2)答案不唯一.示例一:可以认为甲同学在指导后总考核达到“优”的概率发生了变化,理由如下:指导前,甲同学总考核为“优”的概率为C23×0.12×0.9+C33×0.13=0.028.指导前,甲同学总考核为“优”的概率非常小,一旦发生,就有理由认为甲同学在指导后总考核达到“优”的概率发生了变化.示例二:无法确定.理由如下:指导前,甲同学总考核为“优”的概率为C23×0.12×0.9+C33×0.13=0.028.虽然概率非常小,但是也可能发生,所以无法确定甲同学在指导后总考核达到“优”的概率发生了变化.5.(2022·山东省潍坊市五县市高三联考)2022年8月,体育总局和教育部联合提出了《关于深化体教融合,促进青少年健康发展的意见》.某地区为落实该意见,初中毕业生升学体育考试规定,考生必须参加立定跳远、掷实心球、1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图所示),且规定计分规则如下表:每分钟[155,165)[165,175)[175,185)[185,215]跳绳个数得分17181920(1)(2)若该校初三年级所有学生的跳绳个数X服从正态分布N(μ,σ2),用样本数据的平均值和方差估计总体的数学期望和方差,已知样本方差s2≈169(各组数据用中点值代替),根据往年经验,该校初三年级学生经过训练,正式测试时跳绳个数都有明显进步,假设中考正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10,现利用所得正态分布模型:①预估全年级恰好有2000名学生时,正式测试每分钟跳182个以上的人数;(结果四舍五入到整数)②若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为ξ,求随机变量ξ的分布列和数学期望.附:若随机变量X服从正态分布N(μ,σ2),则P(μ-σ≤X≤μ+σ)≈0.6827,P(μ-2σ≤X≤μ+2σ)≈0.9545,P(μ-3σ≤X≤μ+3σ)≈0.9973.解(1)由频率分布直方图得,得分为17,18的人数分别为100×0.006×10=6,100×0.012×10=12,由题意知两人得分之和不大于35分,即为两人得分均为17分,或两人中1人得分为17分,1人得分为18分.故两人得分之和不大于35分的概率为P=C 26+C16C112C2100=291650.(2)x-=160×0.06+170×0.12+180×0.34+190×0.30+200×0.1+210×0.08=185(个),又σ2≈s2≈169,∴σ≈13,∴正式测试时,μ=195,σ≈13,∴μ-σ≈182.=0.84135,①P(X>182)≈1-1-0.682720.84135×2000=1682.7≈1683(人).∴预估正式测试每分钟跳182个以上的人数为1683.②在全年级所有学生中任取1人,每分钟跳绳个数在195以上的概率约为0.5,即ξ~B(3,0.5),∴P(ξ=0)≈C03×(1-0.5)3=0.125,P(ξ=1)≈C13×0.5×(1-0.5)2=0.375,P(ξ=2)≈C23×0.52×(1-0.5)=0.375,P(ξ=3)≈C33×0.53=0.125,∴ξ的分布列为E(ξ)≈3×0.5=1.5.6.(2022·辽宁省渤海大学附属高级中学高三上学期第一次考试)随着我国国民消费水平的不断提升,进口水果也受到了人们的喜爱,世界各地鲜果纷纷从空中、海上汇聚中国:泰国的榴莲、山竹、椰青,厄瓜多尔的香蕉,智利的车厘子,新西兰的金果猕猴桃等水果走进了千家万户.某种水果按照果径大小可分为五个等级:特等、一等、二等、三等和等外,某水果进口商从采购的一批水果中随机抽取500个,利用水果的等级分类标准得到的数据如下:(1)求恰好有3个水果是二等级别的概率;(2)若水果进口商进口时,将特等级别与一等级别的水果标注为优级水果,则用分层随机抽样的方法从这500个水果中抽取10个,再从抽取的10个水果中随机抽取3个,Y 表示抽取的优级水果的数量,求Y 的分布列及数学期望E (Y ).解 (1)设从500个水果中随机抽取一个,抽到二等级别水果的事件为A , 则P (A )=250500=12,有放回地随机抽取6个,设抽到二等级别水果的个数为X ,则X ~B ⎝ ⎛⎭⎪⎫6,12,所以恰好抽到3个二等级别水果的概率为P (X =3)=C 36⎝ ⎛⎭⎪⎫123⎝ ⎛⎭⎪⎫1-123=516. (2)用分层随机抽样的方法从500个水果中抽取10个,则其中优级水果有3个,非优级水果有7个.现从中抽取3个,则优级水果的数量Y 服从超几何分布,所有可能的取值为0,1,2,3. 则P (Y =0)=C 37C 310=724,P (Y =1)=C 27C 13C 310=2140,P (Y =2)=C 17C 23C 310=740,P (Y =3)=C 33C 310=1120.所以Y的分布列如下:所以E(Y)=0×724+1×2140+2×740+3×1120=910.。
高考数学总复习基础知识第十章第十节二项分布、超几何分布、正态分布理1、理解超几何分布及其导出过程,并能进行简单的应用、2、理解n次独立重复试验的模型及二项分布,并能解决一些简单的实际问题、3、利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义、知识梳理一、独立重复试验在相同条件下重复做的n次试验称为n次独立重复试验、二、二项分布如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中这个事件恰好发生k次的概率是P(ξ=k)=Cpkqn-k,其中k=0,1,…,n,q=1-p、于是得到随机变量ξ的概率分布列为ξ01…k…nPCp0qnCp1qn-1…Cpkqn-k…Cpnq0我们称这样的随机变量ξ服从二项分布,记作ξ~B(n,p),其中n,p为参数,p叫成功概率、令k=0得,在n次独立重复试验中,事件A没有发生的概率为P(ξ=0)=Cp0(1-p)n=(1-p)n、令k=n得,在n次独立重复试验中,事件A全部发生的概率为P(ξ=n)=Cpn(1-p)0=pn、,三、超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品数,则事件“X=k”发生的概率为P(X=k)=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称分布列X012…mP…为超几何分布列,如果随机变量X的分布列为超几何分布列,则称离散型随机变量X服从超几何分布、四、正态分布密度函数φμ,σ(x)=e-,σ>0,x∈(-∞,+∞)其中π是圆周率,e是自然对数的底,x是随机变量的取值,μ为正态分布的均值,σ是正态分布的标准差、正态分布一般记为N(μ,σ2)、五、正态曲线函数φμ,σ(x)=e-,x∈(-∞,+∞),实数μ和σ(σ>0)为参数,其图象为正态分布密度曲线,简称正态曲线、标准正态曲线:当μ=0,σ=1时,正态总体称为标准正态总体,其相应的函数表示式是f(x)=e-,x∈(-∞,+∞)其相应的曲线称为标准正态曲线、六、正态分布如果对于任何实数a<b,随机变量X满足P(a<X≤b)=φμ,σ(x)dx,则称X的分布为正态分布,参数μ表示随机变量X的均值,参数σ表示随机变量X的标准差,记作X~N(μ,σ2),其中N(0,1)称为标准正态分布、正态分布N(μ,σ2)是由均值μ和标准差σ唯一决定的分布、标准正态总体N(0,1)在正态总体的研究中占有重要的地位、七、正态总体在三个特殊区间内取值的概率值(简称三个基本概率值)P(μ-σ<X≤μ+σ)=0、6826,P(μ-2σ<X≤μ+2σ)=0、9544,P(μ-3σ<X≤μ+3σ)=0、9974、八、3σ原则在实际应用中,通常认为服从于正态分布N(μ,σ2)的随机变量X只取(μ-3σ,μ+3σ)之间的值,并简称之为3σ原则、正态总体几乎总取值于区间(μ-3σ,μ+3σ)之内,而在此区间以外取值的概率只有0、0026,通常认为这种情况在一次试验中几乎不可能发生,这是统计中常用的假设检验方法的基本思想、九、几个重要分布的期望和方差1、若X服从两点分布,则E(X)=p,D(X)=p(1- p)、2、若X~B(n, p), 则E(X)=np,D(X)=np(1-p)、3、若X服从超几何分布P(X=k)=,则E(X)=n, D(X)=、基础自测1、(xx惠州一模)设随机变量ξ服从正态分布N(3,4),若P(ξ<2a-3)=P(ξ>a+2),则a的值为()A、B、C、5D、3解析:因为随机变量ξ服从正态分布N(3,4),且P(ξ<2a-3)=P(ξ>a+2),所以2a-3与a+2关于x=3对称,所以2a-3+a+2=6,所以3a=7,所以a=,故选A、答案:A2、正态总体N(0,1)在区间(-2,-1)和(1,2)上取值的概率为P1,P2,则()A、P1>P2B、P1<P2C、P1=P2D、不确定解析:根据正态曲线的特点知,关于x=0对称,即在区间(-2,-1)和(1,2)上取值的概率相等、故选C、答案:C3、在含有5件次品的100件产品中,任取3件,则取到的次品数X的分布列为________________、解析:X服从超几何分布、答案:P(X=k)=(k=0,1,2,3)4、从装有3个红球,2个白球的袋中随机取出2个球,设其中有ξ个红球,则随机变量ξ的概率分布为:ξ012P__________________解析:由题意可知:P(ξ=0)==,P(ξ=1)==,P(ξ=2)==、答案:1、(xx新课标全国卷)某一部件由三个电子元件按如图所示的方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作、设三个电子元件的使用寿命(单位:小时)均服从正态分布N(1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为__________、解析:(法一)设该部件的使用寿命超过1 000 小时的概率为P(A)、因为三个元件的使用寿命均服从正态分布N(1 000,502),所以元件1,2,3的使用寿命超过1 000小时的概率分别为P1=,P2=,P3=、因为P()=12P3+3=+=,所以P(A)=1-P()=、(法二)设该部件的使用寿命超过1 000小时的概率为P(A)、因为三个元件的使用寿命均服从正态分布N(1 000,502),所以元件1,2,3的使用寿命超过1 000小时的概率分别为P1=,P2=,P3=、故P(A)=P12P3+1P2P3+P1P2P3=++=、答案:2、(xx辽宁卷)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答、(1)求张同学至少取到1道乙类题的概率;(2)已知所取的3道题中有2道甲类题,1道乙类题、设张同学答对每道甲类题的概率都是,答对每道乙类题的概率都是,且各题答对与否相互独立、用X表示张同学答对题的个数,求X的分布列和数学期望、解析:(1)设事件A=“张同学所取的3道题至少有1道乙类题”,则有=“张同学所取的3道题都是甲类题”、因为P()==,所以P(A)=1-P()=、(2)X所有的可能取值为0,1,2,3、P(X=0)=C02=;P(X=1)=C11+C02=;P(X=2)=C20+C11=;P(X=3)=C20=、所以X的分布列为:X0123P所以E(X)=0+1+2+3=2、1、若ξ~B(n,p)且E(ξ)=6,D(ξ)=3,则P(ξ=1)的值为 ( )A、32-2B、32-10C、2-4D、2-8解析:因ξ服从二项分布,所以E(ξ)=np=6,D(ξ)=n p(1-p)=3,解得p=,n=12、∴P(ξ=1)=C12=32-10、故选B、答案:B2、(xx江门一模)春节期间,某商场决定从3种服装、2种家电、3种日用品中,选出3种商品进行促销活动、(1)试求选出的3种商品中至少有一种是家电的概率;(2)商场对选出的某商品采用抽奖方式进行促销,即在该商品现价的基础上将价格提高100元,规定购买该商品的顾客有3次抽奖的机会:若中一次奖,则获得数额为m元的奖金;若中两次奖,则共获得数额为3m元的奖金;若中3次奖,则共获得数额为6m元的奖金、假设顾客每次抽奖中获得的概率都是,请问:商场将奖金数额m最高定为多少元,才能使促销方案对商场有利?解析:(1)设选出的3种商品中至少有一种是家电为事件A,从3种服装、2种家电、3种日用品中,选出3种商品,一共有C种不同的选法,选出的3种商品中,没有家电的选法有C种、所以,选出的3种商品中至少有一种是家电的概率为P(A)=1-=、(2)设顾客三次抽奖所获得的奖金总额为随机变量ξ,其所有可能的取值为0,m,3m,6m、(单元:元)ξ=0表示顾客在三次抽奖都没有获奖,所以P(ξ=0)=3=,同理,P(ξ=m)=C2=,P(ξ=3m)=C12=,P(ξ=6m)=C3=,顾客在三次抽奖中所获得的奖金总额的期望值是E(ξ)=0+m+3m+6m=m、由m≤100,解得m≤75,所以故m最高定为75元,才能使促销方案对商场有利、。
超几何分布、二项分布、正态分布【学习目标】1、通过实例,理解超几何分布及其特点,掌握超几何分布列及其导出过程,并能进行简单的应用。
ﻫ2、理解n次独立重复试验(即n重伯努利试验)及其意义,理解二项分布并能解决一些简单的实际问题。
ﻫ3、借助直观图,了解是正态分布曲线与正态分布,认识正态分布曲线的特点及曲线表示的意义。
4、会查标准正态分布表,会求满足正态分布的随机变量x在某一范围内的概率。
ﻫ【重点与难点】重点:正确理解超几何分布、二项分布、正态分布的意义。
ﻫ难点:正确进行超几何分布、二项分布、正态分布有关概率的计算。
ﻫﻫ【知识要点】1、超几何分布:一般地,若一个随机变量x的分布列为:P(x=r)=①其中r=0,1,2,3,…… ,,=min(n,M),则称x服从超几何分布。
记作x~H(n,M,N),并将P(x=r)=,记为H(r,n,M,N)。
ﻫ如:在一批数量为N件的产品中共有M件不合格品,从中随机取出的n件产品中,不合格品数x的概率分布列如表一所示:(表一)其中=min(n,M),满足超几何分布。
ﻫﻫ2、伯努利试验(n次独立重复试验),在n次相互独立试验中,每次试验的结果仅有两种对立的结果A与出现,P(A)=p∈(0,1),这样的试验称为n 次独立重复试验,也称为伯努利试验。
P()=1-p=q,则在n次独立重复试验中,事件A恰好发生k次的概率(0≤k≤n)为P(k)=(k=0,1,2,3,……,n),它恰好是(q+p)n的二项展开式中的第k+1项。
ﻫ3、二项分布:若随机变量x的分布列为p(x=k)=,其中0<p<1,p+q=1,k=0,1,2,……,n,则称x服从参数为n、p的二项分布,记作x~B(n,p)。
ﻫ如:n次射击中,击中目标k次的试验或投掷骰子n次,出现k次数字5的试验等均满足二项分布。
3、正态分布曲线。
(1)概率密度曲线:当数据无限增多且组距无限缩小,那么频率直方图的顶边无限缩小乃至形成一条光滑的曲线,则称此曲线为概率密度曲线。
2011年高考数学正态分布几何分布超几何分布离散型随机变量专项突破精选真题汇编与讲解分析答案第一部分第五节离散型随机变量的分布列一、选择题1.抛掷两颗骰子,所得点数之和为ξ,那么ξ=4表示的随机试验结果是()A.两颗都是2点B 一颗是3点,一颗是1点C.两颗都是4点D.一颗是3点,一颗是1点或两颗都是2点解析:对A、B中表示的随机试验的结果,随机变量均取值4,而D是ξ=4代表的所有试验结果.掌握随机变量的取值与它刻画的随机试验的结果的对应关系是理解随机变量概念的关键.答案:D2.下列分布列中,是离散型随机变量分布列的是()A.B.C.D.解析:只有选项C中的概率之和等于1,选C.答案:C3.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次该项试验的成功次数,则P (ξ=0)等于( )A .0 B.13 C.12 D.23解析:1-P (ξ=0)=2P (ξ=0),即P (ξ=0)=13.答案:B4.在15个村庄中有7个村庄交通不方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率中等于C47C68C1015的是( )A .P (X =2)B .P (X ≤2)C .P (X =4)D .P (X ≤4)解析:由分子C47C68可知是从7个不方便的村庄中选4个,从8个方便的村庄中选6个,∴X =4,∴是P (X =4)的概率.答案:C5.若离散型随机变量X 的分布列为:则常数q 的值为( )A .1 B. 1±22 C. 1+22 D. 1-22解析:由12+(1-2q )+q 2=1,解得q =1-22或q =1+22,又∵q 2∈[0,1],∴q =1+22舍去.∴q =1-22. 答案:D 二、填空题6.随机变量X 等可能取值为1,2,3,……,n ,如果P (X <4)=0.3,那么n =________. 解析:∵P (X <4)= P (X =1)+P (X =2)+P (X =3)=3n =0.3,∴n =10. 答案:107.随机变量ξ的分布列为若a +c =2b ,则P (|ξ|=1)=________.解析:∵a +c =2b ,又∵a +b +c =1,∴b =13,a +c =23,于是P (|ξ|=1)=P (ξ=1)+P (ξ=-1)=a +c =23.答案:238.若离散型随机变量X 的分布列为P (X =k )=c2k ,k =1,2,3,4,5,6.其中c 为常数,则P (X ≤2)的值是________.解析:由c 2+c 4+c 8+c 16+c 32+c 64=1,可得c =6463.∴P (X ≤2)=P (X =1)+P (X =2)=3263+1663=4863=1621.答案:1621三、解答题9.(2009年广州调研)一厂家向用户提供的一箱产品共10件,其中有2件次品,用户先对产品进行抽检以决定是否接收.抽检规则是这样的:一次取一件产品检查(取出的产品不放回箱子),若前三次没有抽查到次品,则用户接收这箱产品;若前三次中一抽查到次品就立即停止抽检,并且用户拒绝接收这箱产品.(1)求这箱产品被用户接收的概率; (2)记抽检的产品件数为ξ,求ξ的分布列.解析:(1)设“这箱产品被用户接收”为事件A ,P (A )=8×7×610×9×8=715,即这箱产品被用户接收的概率为715. (2)ξ的可能取值为1,2,3.P (ξ=1)=210=15,P (ξ=2)=810×29=845,P (ξ=3)=810×79=2845,∴ξ的分布列为10.(2009年广州模拟)50名一线教师参加,使用不同版本教材的教师人数如下表所示:(1)从这50(2)若随机选出2名使用人教版的教师发言,设使用人教A 版的教师人数为ξ,求随机变量ξ的分布列. 解析:(1)从50名教师中随机选出2名的方法数为C250=1225. 选出2人使用版本相同的方法数为C 220+C 215+C 25+C 210=350, 故2人使用版本相同的概率为:P =3501225=27.(2)∵P (ξ=0)=C215C235=317,P (ξ=1)=C120C115C235=60119,P (ξ=2)=C220C235=38119,∴ξ的分布列为第二部分第六节 二项分布、超几何分布、正态分布一、选择题1.设随机变量ξ~B ⎝⎛⎭⎫6,12,则P (ξ=3)的值为( ) A.516 B.316 C.58 D.716 解析:P (ξ=3)=C36⎝⎛⎭⎫123⎝⎛⎭⎫1-123=516. 答案:A2.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1) =( )A.13B.59C.827D.1927解析:∵P (ξ≥1) =2p (1-p )+p 2=59, ∴p =13,∴P (η≥1) =C 13⎝⎛⎭⎫13⎝⎛⎭⎫232+C 23⎝⎛⎭⎫132⎝⎛⎭⎫23+C 33⎝⎛⎭⎫133=1927,故选D. 答案:D3.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝⎛⎭⎫3810·⎝⎛⎭⎫582B .C 911⎝⎛⎭⎫389⎝⎛⎭⎫582·38C .C 911⎝⎛⎭⎫589·⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫389·⎝⎛⎭⎫582 解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·⎝⎛⎭⎫389⎝⎛⎭⎫582×38. 答案:B4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)解析:C14p (1-p )3≤C24p 2(1-p )2,即2(1-p )≤3p , ∴p ≥0.4.又∵p <1,∴0.4≤p <1. 答案:A5.(2009年湖南四市联考)已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 解析:∵P (ξ≤4)=0.84,μ=2,∴P (ξ<0) =P (ξ>4)=1-0.84=0.16.故选A. 答案:A 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.(用数值作答)解析:由题意知所求概率P =C 310⎝⎛⎭⎫123⎝⎛⎭⎫127=15128. 答案:151287.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为________.解析:这是超几何分布,P (X =0)=C 03C 22C 25=0.1;P (X =1)=C 13C 12C 25=0.6; P (X =2)=C 23C 02C 25=0.3,分布列如下表:答案:8.某厂生产的圆柱形零件的外径ε1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________.解析:根据3σ原则,在4-3×0.5=2.5——4+3×0.5=5.5之外为异常,所以这批零件不合格. 答案:不合格 三、解答题9.(2008年四川延考)一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列. 解析:(1)设A i 表示事件“在一次抽检中抽到的第i 件产品为A 类品”, i =1,2.B i 表示事件“在一次抽检中抽到的第i 件产品为B 类品”, i =1,2.C 表示事件“一次抽检后,设备不需要调整”. 则C =A 1·A 2+A 1·B 2+B 1·A 2.由已知P (A i )=0.9,P (B i )=0.05 i =1,2. 所以,所求的概率为P (C )=P (A 1·A 2)+P (A 1·B 2)+P (B 1·A 2) =0.92+2×0.9×0.05=0.9.(2)由(1)知一次抽检后,设备需要调整的概率为p =P (C )=1-0.9=0.1,依题意知ξ~B (3,0.1),ξ的分布列为10.(2009年南海一中月考的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.解析:(1)依题意,甲答对试题数ξ的可能取值为0、1、2、3,则 P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24C 310=310,P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36C 310=16,其分布列如下:(2)法一:设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415.因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P()A ·B =P ()A ·P ()B =⎝⎛⎭⎫1-23⎝⎛⎭⎫1-1415=145, ∴甲、乙两人至少有一人考试合格的概率为 P =1-P()A ·B =1-145=4445. 答:甲、乙两人至少有一人考试合格的概率为4445.法二:甲、乙两人至少有一个考试合格的概率为 P =P ()A ·B+P ()A ·B +P ()A ·B =23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445第三部分第七节 离散型随机变量的期望与方差一、选择题1.下列是4个关于离散型随机变量ξ的期望和方差的描述①Eξ与Dξ是一个数值,它们是ξ本身所固有的特征数,它们不具有随机性 ②若离散型随机变量一切可能取值位于区间[]a ,b 内,则a ≤Eξ≤b③离散型随机变量的期望反映了随机变量取值的平均水平,而方差反映的是随机变量取值的稳定与波动,集中与离散的程度④离散型随机变量的期望值可以是任何实数,而方差的值一定是非负实数 以上4个描述正确的个数是( )A .1B .2C .3D .4 答案:D2.设Eξ=10,Eη=3,则E (3ξ+5η)=( ) A .45 B .40 C .35 D .15 解析:E (3ξ+5η)=3Eξ+5Eη=3×10+5×3=45. 答案:A3.已知随机变量X 的分布列是:且EX =7.5,则a 的值为( A .5 B .6 C .7 D .8 解析:b =1-0.3-0.1-0.2=0.4EX =4×0.3+a ×0.1+9×0.4+10×0.2=7.5. ∴a =7. 答案:C4.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目ξ的期望为( )A .2.44B .3.376C .2.376D .2.4 解析:ξ=0,1,2,3,此时P (ξ=0)=0.43,P (ξ=1)=0.6×0.42,P (ξ=2)=0.6×0.4,P (ξ=3)=0.6,Eξ=2.376. 答案:C5.口袋中有5只相同的球,编号为1、2、3、4、5,从中任取3球,用ξ表示取出的球的最大号码,则Eξ=( )A .4B .4.75C .4.5D .5 解析:P (ξ=3)=1C 35=110, P (ξ=4)=C 23C 35=310,P (ξ=5)=C 24C 35=35Eξ=3×0.1+4×0.3+5×0.6=4.5. 答案:C 二、填空题6.利用下列盈利表中的数据进行决策,应选择的方案是______.解析:EA 1=50×0.25+65×0.30+26×0.45=43.7, EA 2=70×0.25+26×0.30+16×0.45=32.5, EA 3=-20×0.25+52×0.30+78×0.45=45.7, EA 4=98×0.25+82×0.30+(-10)×0.45=44.6. 在四个均值中,EA 3最大,所以应选择的方案是A 3. 答案:A 37.(2009年上海卷)某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=________(结果用最简分数表示).解析:首先ξ∈{0,1,2}.∴P (ξ=0)=C25C27=1021,P (ξ=1)=C12C15C27=1021,P (ξ=2)=C22C27=121.∴Eξ=0·1021+1·1021+2·121=1221=47.答案:478.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的方差是________.解析:一个均匀小正方体的6个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2.将这个小正方体抛掷2次,向上的数之积可能为ξ=0,1,2,4,则P (ξ=0)=C 13C 13+C 13C 12+C 12C 13+C 13C 11+C 11C 13C 16C 16=34, P (ξ=1)=C 12C 12C 16C 16=19,P (ξ=2)=C 12C 11+C 11C 12C 16C 16=19,P (ξ=4)=C 11C 11C 16C 16=136, ∴ Eξ=19+29+436=49.∴Dξ=⎝⎛⎭⎫0-492×34+⎝⎛⎭⎫1-492×19+⎝⎛⎭⎫2-492×136=182729. 答案:182729三、解答题9.(2009年浙江卷)在1,2,3,…,9这9个自然数中,任取3个数. (1)求这3个数中恰有1个偶数的概率;(2)记ξ为这3个数中两数相邻的组数(例如:若取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时ξ的值是2).求随机变量ξ的分布列数学期望Eξ及方差Dξ. 解析:(1)记“这3个数中恰有一个是偶数”为事件A , 则P (A )=C14C25C39=1021.(2)随机变量ξ的取值为0,1,2.ξ的分布列是所以ξ的数学期望Eξ=0×512+1×12+2×112=23. Dξ=⎝⎛⎭⎫0-232×512+⎝⎛⎭⎫1-232×12+⎝⎛⎭⎫2-232×112=2154. 10.(2009年山东卷)在某学校组织的一次篮球定点投篮训练中,规定每人最多投3次;在A 处每投进一球得3分,在B 处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次.某同学在A 处的命中率q 1为0.25,在B 处的命率为q 2.该同学选择先在A 处投一球,以后都在B 处投,用ξ表示该同学投篮训练结束后所得的总分,其分布列为(1)求q 2的值;(2)求随机变量ξ的数学期望Eξ;(3)试比较该同学选择都在B 处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小. 解析:(1)由题设知,“ξ=0”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质可知P (ξ=0)=(1-q 1)(1-q 2)2=0.03,解得q 2=0.8.(2)根据题意P 1=P (ξ=2)=(1-q 1)C12(1-q 2)q 2=0.75×2×0.2×0.8=0.24.P 2=P (ξ=3).=q 1(1-q 2)2=0.25×(1-0.8)2=0.01.P 3=P (ξ=4)=(1-q 1)q 22=0.75×0.82=0.48.P 4=P (ξ=5)=q 1q 2+q 1(1-q 2)q 2=0.25×0.8+0.25×0.2×0.8=0.24.因此Eξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63.(3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”,用D表示事件“该同学选择都在B处投,得分超过3分”,则P(C)=P(ξ=4)+P(ξ=5)=P3+P4=0.48+0.24=0.72.P(D)=q22+C12q2(1-q2)q2=0.82+2×0.8×0.2×0.8=0.896.故P(D)>P(C).即该同学选择都在B处投篮得分超过3分的概率大于该同学选择第一次在A处投以后都在B处投得分超过3分的概率。
二项分布与超几何分布专题训练一、知识梳理知识点一 n 重伯努利试验及其特征1.n 重伯努利试验的概念将一个伯努利试验独立地重复进行n 次所组成的随机试验称为n 重伯努利试验.2.n 重伯努利试验的共同特征(1)同一个伯努利试验重复做n 次.(2)各次试验的结果相互独立.知识点二 二项分布一般地,在n 重伯努利试验中,设每次试验中事件A 发生的概率为p (0<p <1),用X 表示事件A 发生的次数,则X 的分布列为P (X =k )=C k n p k (1-p )n -k ,k =0,1,2,…,n . 称随机变量X 服从二项分布,记作X ~B (n ,p ).知识点三 二项分布的均值与方差若X ~B (n ,p ),则E (X )=np ,D (X )=np (1-p ).知识点四 超几何分布1.定义:一般地,假设一批产品共有N 件,其中有M 件次品,从N 件产品中随机抽取n 件(不放回),用X 表示抽取的n 件产品中的次品数,则X 的分布列为P (X =k )=C k M C n -k N -M C n N ,k =m ,m +1,m +2,…,r . 其中n ,N ,M ∈N *,M ≤N ,n ≤N ,m =max{0,n -N +M },r =min{n ,M }.如果随机变量X 的分布列具有上式的形式,那么称随机变量X 服从超几何分布.2.均值:E (X )=nM N. 二、题型归纳】考点一:超几何与二项分布概念的辨析【例1-1】下列随机变量中,服从超几何分布的有________.(填序号)①在10件产品中有3件次品,一件一件地不放回地任意取出4件,记取到的次品数为X ;②从3台甲型彩电和2台乙型彩电中任取2台,记X 表示所取的2台彩电中甲型彩电的台数; ③一名学生骑自行车上学,途中有6个交通岗,记此学生遇到红灯数为随机变量X .【例1-2】下列例子中随机变量ξ服从二项分布的有________.①随机变量ξ表示重复抛掷一枚骰子n 次中出现点数是3的倍数的次数;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③有一批产品共有N 件,其中M 件为次品,采用有放回抽取方法,ξ表示n 次抽取中出现次品的件数(M<N ); ④有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数.【考点精练】1.一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,还有4个同样大小的白球,编号为7,8,9,10.现从中任取4个球,有如下几种变量:①X 表示取出的最大号码;②X 表示取出的最小号码;③取出一个黑球记2分,取出一个白球记1分,X 表示取出的4个球的总得分;④X 表示取出的黑球个数.这四种变量中服从超几何分布的是( )A .①②B .③④C .①②④D .①②③④2.下列随机事件中的随机变量X 服从超几何分布的是( )A .将一枚硬币连抛3次,记正面向上的次数为XB .从7男3女共10名学生干部中随机选出5名学生干部,记选出女生的人数为XC .某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为XD .盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,记第一次摸出黑球时摸取的次数为X3.下列例子中随机变量服从二项分布的个数为( )①某同学投篮的命中率为0.6,他10次投篮中命中的次数ξ;②某射手击中目标的概率为0.9,从开始射击到击中目标所需的射击次数ξ;③从装有5个红球,5个白球的袋中,有放回地摸球,直到摸出白球为止,摸到白球时的摸球次数ξ; ④有一批产品共有N 件,其中M 件为次品,采用不放回抽取方法,ξ表示n 次抽取中出现次品的件数A .0B .1C .2D .34.下列选项中的随机变量不服从两点分布的是( )A .抛掷一枚骰子,所得点数XB .某射击手射击一次,击中目标的次数XC .从装有除颜色外其余均相同的5个红球,3个白球的袋中任取1个球,设1,0,X ⎧=⎨⎩取出白球取出红球D .某医生做一次手术,手术成功的次数X考点二:二项分布的均值与方差【例2】.已知随机变量,ζη满足29ζη+=,且()()8,,2B p E ζζ~=,则()(),E D ηη分别是( )A .5,3B .5,6C .8,3D .8,6【考点精练】1.设随机变量X ,Y 满足:Y =3X ﹣1,X ~B 123⎛⎫ ⎪⎝⎭,,则V (Y )=() A .4B .5C .6D .7 2.设随机变量(2,),(4,)B p B p ξη,若5(1)9P ξ≥=,则(2)P η≥的值为( ) A .3281 B .1127 C .6581 D .16813.已知随机变量(50.2)X B ,,随机变量510Y X =+,则( )A .()5E Y =B .()10E Y =C .()20D Y = D .()30D Y =考点三:二项分布【例3】很多新手拿到驾驶证后开车上路,如果不遵守交通规则,将会面临扣分的处罚,为让广大新手了解驾驶证扣分新规定,某市交警部门结合机动车驾驶人有违法行为一次记12分、6分、3分、2分的新规定设置了一份试卷(满分100分),发放给新手解答,从中随机抽取了12名新手的成绩,成绩以茎叶图表示如图所示,并规定成绩低于95分的为不合格,需要加强学习,成绩不低于95分的为合格.(1)求这12名新手的平均成绩与方差;(2)将频率视为概率,根据样本估计总体的思想,若从该市新手中任选4名参加座谈会,用X 表示成绩合格的人数,求X 的分布列与数学期望.【考点精练】1.影响青少年近视形成的因素有遗传因素和环境因素,主要原因是环境因素.学生长时期近距离的用眼状态,加上不注意用眼卫生、不合理的作息时间很容易引起近视除了学习,学生平时爱看电视、上网玩电子游戏、不喜欢参加户外体育活动,都是造成近视情况日益严重的原因.为了解情况,现从某地区随机抽取16名学生,调查人员用对数视力表检查得到这16名学生的视力状况的茎叶图(以小数点前的一位数字为茎,小数点后的一位数字为叶),如图.(1)写出这组数据的众数和中位数.(2)若视力测试结果不低于5.0,则称为“好视力”.①从这16名学生中随机选取3名,求至少有2名学生是“好视力”的概率;②以这16名学生中是“好视力”的频率代替该地区学生中是“好视力”的概率.若从该地区学生(人数较多)中任选3名,记X 表示抽到“好视力”学生的人数,求X 的分布列.2.甲、乙二人进行定点投篮比赛,已知甲、乙二人每次投进的概率均为12,两人各投1次称为一轮投篮.(1)求乙在前3次投篮中,恰好投进2个球的概率;(2)设前3轮投篮中,甲与乙进球个数差的绝对值为随机变量ξ,求ξ的分布列与期望.3.某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按[)5,10,[)10,15,[)15,20,…,[]35,40分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(1)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A ;从乙站的乘客中随机抽取1人,记为B .用频率估计概率,求乘客A ,B 乘车等待时间都小于20分钟的概率;(2)在上班高峰时段,从甲站乘车的乘客中随机抽取3人,X 表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X 的分布列与数学期望.考点四:超几何分布【例4】某班利用课外活动时间举行了一次“函数求导比赛”活动,为了解本次比赛中学生的总体情况,从中抽取了甲、乙两个小组的样本分数的茎叶图如图所示.(1)分别求出甲、乙两个小组成绩的平均数与方差,并判断哪个小组的成绩更稳定?(2)从甲组同学成绩不低于70分的人中任意抽取3人,设X 表示所抽取的3名同学的得分在[)70,80的人数,求X 的分布列及数学期望.【考点精练】1.2020年5月28日,十三届全国人大三次会议表决通过了《中华人民共和国民法典》,自2021年1月1日起施行.它被称为“社会生活的百科全书”,是新中国第一部以法典命名的法律,在法律体系中居于基础性地位,也是市场经济的基本法某中学培养学生知法懂法,组织全校学生学习《中华人民共和国民法典》并组织知识竞赛.为了解学习的效果,现从高一,高二两个年级中各随机抽取20名学生的成绩(单位:分),绘制成如图所示的茎叶图:根据学生的竞赛成绩,将其分为四个等级: 测试成绩(单位:分)[60,70) [70,80) [80,90) [90,100) 等级 合格 中等 良好 优秀(2)现从样本中成绩为良好的学生中随机抽取3人座谈,记X 为抽到高二年级的人数,求X 的分布列,数学期望与方差.2.为庆祝2021年中国共产党成立100周年,某校高二年级举行“党史知识你我答”活动,共有10个班,每班选5名选手参加了预赛,预赛满分为150分,现预赛成绩全部介于90分到140分之间.将成绩结果按如下方式分成五组:第一组[)90,100,第二组[)100,110,…,第五组[]130,140.按上述分组方法得到的频率分布直方图如图所示.(1)若成绩大于或等于100分且小于120分认为是良好的,求参赛学生在这次活动中成绩良好的人数;(2)若从第一、五组中共随机取出两个成绩,记X 为取得第一组成绩的个数,求X 的分布列与数学期望.3.已知袋中装有5个白球,2个黑球,3个红球,现从中任取3个球.(1)求恰有一个白球的方法种数;(2)求至少有一个红球的方法种数;(3)设随机变量X 为取出3球中黑球的个数,求X 的概率分布及数学期望.考点五:二项分布与超几何分布的综合【例5】袋中有6个白球、3个黑球,从中随机地连续抽取2次,每次取1个球.(1)若每次抽取后都放回,设取到黑球的次数为X ,求X 的分布列;(2)若每次抽取后都不放回,设取到黑球的个数为Y ,求Y 的分布列.【考点精练】1.某校从高三年级中选拔一个班级代表学校参加“学习强国知识大赛”,经过层层选拔,甲、乙两个班级进入最后决赛,规定回答1道相关问题做最后的评判选择由哪个班级代表学校参加大赛.每个班级4名选手,现从每个班级4名选手中随机抽取2人回答这个问题.已知这4人中,甲班级有3人可以正确回答这道题目,而乙班级4人中能正确回答这道题目的概率均为34,甲、乙两班级每个人对问题的回答都是相互独立、互不影响的.(1)求甲、乙两个班级抽取的4人都能正确回答的概率.(2)设甲、乙两个班级被抽取的选手中能正确回答题目的人数分别为X ,Y ,求随机变量X ,Y 的期望()E X ,()E Y 和方差()D X ,()D Y ,并由此分析由哪个班级代表学校参加大赛更好.2. 2.5PM 是指大气中直径小于或等于2.5μm 的颗粒物,也称为可入肺颗粒物,我国 2.5PM 标准采用世卫组织设定的最宽限值,即 2.5PM 日均值在335μg/m 以下空气质量为一级;在33575μg/m ~之间空气质量为二级;在375μg/m 以上空气质量为污染.某市生态环境局从该市2021年上半年每天的 2.5PM 监测数据中随机抽取15天的数据作为样本,监测值如茎叶图所示(十位为茎,个位为叶).(1)从这15天的数据中任取1天,求这天空气质量达到一级的概率;(2)从这15天的数据中任取3天的数据,记ξ表示其中空气质量达到一级的天数,求ξ的分布列和数学期望;(3)以这15天的 2.5PM 的日均值来估计一年的空气质量情况(一年按365天来计算),则一年中大约有多少天的空气质量达到一级?3.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的质量(单位:克),质量的分组区间为(490,495],(495,500],…,(510,515].由此得到样本的频率分布直方图如图.(1)根据频率分布直方图,求质量超过505克的产品数量;(2)在上述抽取的40件产品中任取2件,设X 为质量超过505克的产品数量,求X 的分布列;(3)从该流水线上任取2件产品,设Y 为质量超过505克的产品数量,求Y 的分布列.考点六:二项分布与超几何分布与其他知识综合【例6】某企业为检验某种设备生产的零件质量,现随机选取20个零件进行检验,分出合格品和次品.设每个零件是次品的概率为(01)p p <<,且相互独立.(Ⅰ)若20个零件中恰有2个次品的概率为()f p ,求()f p 的最大值点0p ;(Ⅱ)若合格品又分为一等品和二等品,每个零件是二等品的概率为是一等品概率的2倍. 已知生产一个一等品可获利100元,生产一个二等品可获利30元,生产一个次品会亏损40元,当每个零件平均获利低于20元时,需对设备进行技术升级. 当p 满足什么条件时,企业需对该设备进行技术升级?【考点精练】1.某商城玩具柜台五一期间促销,购买甲、乙系列的盲盒,并且集齐所有的产品就可以赠送节日送礼,现有甲、乙两个系列盲盒,每个甲系列盲盒可以开出玩偶1A ,2A ,3A 中的一个,每个乙系列盲盒可以开出玩偶1B ,2B 中的一个.(1)记事件n E :一次性购买n 个甲系列盲盒后集齐玩偶1A ,2A ,3A 玩偶;事件n F :一次性购买n 个乙系列盲盒后集齐1B ,2B 玩偶;求概率()5P E 及()4P F ;(2)某礼品店限量出售甲、乙两个系列的盲盒,每个消费者每天只有一次购买机会,且购买时,只能选择其中一个系列的一个盲盒.通过统计发现:第一次购买盲盒的消费者购买甲系列的概率为23,购买乙系列的概率为13;而前一次购买甲系列的消费者下一次购买甲系列的概率为14,购买乙系列的概率为34,前一次购买乙系列的消费者下一次购买甲系列的概率为12,购买乙系列的概率为12;如此往复,记某人第n 次购买甲系列的概率为n Q .①求{}n Q 的通项公式;②若每天购买盲盒的人数约为100,且这100人都已购买过很多次这两个系列的盲盒,试估计该礼品店每天应准备甲、乙两个系列的盲盒各多少个.2.由于“新冠肺炎”对抵抗力差的人的感染率相对更高,特别是老年人群体,因此某社区在疫情控制后,及时给老年人免费体检,通过体检发现“高血糖,高血脂,高血压”,即“三高”老人较多.为此社区根据医生的建议为每位老人提供了一份详细的健康安排表,还特地建设了一个老年人活动中心,老年人每天可以到该活动中心去活动,以增强体质,通过统计每周到活动中心去运动的老年人的活动时间,得到了以下频率分布直方图.(1)从到活动中心参加活动的老人中任意选取5人.①若将频率视为概率,求至少有3人每周活动时间在[8,9)(单位:h )的概率;②若抽取的5人中每周活动时间在[8,11](单位:h )的人数为2人,从5人中选出3人进行健康情况调查,记3人中每周活动时间在[8,11](单位:h )的人数为ξ,求ξ的分布列和期望;(2)将某人的每周活动时间量与所有老人的每周平均活动时间量比较,当超出所有老人的每周平均活动量不少于0.74h 时,则称该老人为“活动爱好者”,从参加活动的老人中随机抽取10人,且抽到k 人为“活动爱好者”的可能性最大,试求k 的值.(每组数据以区间的中点值为代表)3.现有一批疫苗试剂,拟进入动物试验阶段,将1000只动物平均分成100组,任选一组进行试验.第一轮注射,对该组的每只动物都注射一次,若检验出该组中有9只或10只动物产生抗体,说明疫苗有效,试验终止;否则对没有产生抗体的动物进行第二轮注射,再次检验.如果被二次注射的动物都产生抗体,说明疫苗有效,否则需要改进疫苗.设每只动物是否产生抗体相互独立,两次注射疫苗互不影响,且产生抗体的概率均为(01)p p <<.(1)求该组试验只需第一轮注射的概率(用含p 的多项式表示);(2)记该组动物需要注射次数X 的数学期望为()E X ,求证:10()10(2)E X p <<-。
二项分布与超几何分布辨析二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决.在实际应用中,理解并区分两个概率模型是至关重要的.下面举例进行对比辨析. 例 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求: (1)有放回抽样时,取到黑球的个数X的分布列; (2)不放回抽样时,取到黑球的个数Y的分布列. 解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,.3031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;333141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为2.不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C PY C ===.因此,Y 的分布列为辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.超几何分布和二项分布都是离散型分布超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布二项分布、超几何分布、正态分布一、选择题1.设随机变量ξ~B ⎝⎛⎭⎫6,12,则P (ξ=3)的值为( ) A.516 B.316 C.58 D.7162.设随机变量ξ ~ B (2,p ),随机变量η ~ B (3,p ),若P (ξ ≥1) =59,则P (η≥1) =( )A.13B.59C.827D.19273.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了ξ次球,则P (ξ=12)=( )A .C 1012⎝⎛⎭⎫3810·⎝⎛⎭⎫582B .C 911⎝⎛⎭⎫389⎝⎛⎭⎫582·38C .C 911⎝⎛⎭⎫589·⎝⎛⎭⎫382D .C 911⎝⎛⎭⎫389·⎝⎛⎭⎫582 4.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率p 的取值范围是( )A .[0.4,1)B .(0,0.6]C .(0,0.4]D .[0.6,1)5.已知随机变量ξ服从正态分布N (2,σ2),P (ξ≤4)=0.84,则P (ξ<0)=( ) A .0.16 B .0.32 C .0.68 D .0.84 二、填空题6.某篮运动员在三分线投球的命中率是12,他投球10次,恰好投进3个球的概率________.(用数值作答) 答案:151287.从装有3个红球,2个白球的袋中随机取出两个球,设其中有X 个红球,则X 的分布列为________.8.某厂生产的圆柱形零件的外径ε1000件零件中随机抽查一件,测得它的外径为5.7 cm.则该厂生产的这批零件是否合格________. 答案:不合格三、解答题9.一条生产线上生产的产品按质量情况分为三类:A 类、B 类、C 类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C 类产品或2件都是B 类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A 类品,B 类品和C 类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.(1)求在一次抽检后,设备不需要调整的概率;(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.10.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.参考答案1、解析:P (ξ=3)=C 36⎝⎛⎭⎫123⎝⎛⎭⎫1-123=516. 答案:A2、解析:∵P (ξ≥1) =2p (1-p )+p 2=59, ∴p =13 ,∴P (η≥1) =C 13⎝⎛⎭⎫13⎝⎛⎭⎫232+C 23⎝⎛⎭⎫132⎝⎛⎭⎫23+C 33⎝⎛⎭⎫133=1927,故选D.3、解析:P (ξ=12)表示第12次为红球,前11次中有9次为红球,从而P (ξ=12)=C 911·⎝⎛⎭⎫389⎝⎛⎭⎫582×38. 答案:B4、解析:C14p (1-p )3≤C24p 2(1-p )2,即2(1-p )≤3p ,∴p ≥0.4.又∵p <1,∴0.4≤p <15、解析:∵P (ξ≤4)=0.84,μ=2,∴P (ξ<0)=P (ξ>4)=1-0.84=0.16.故选A.6、解析:由题意知所求概率P =C 310⎝⎛⎭⎫123⎝⎛⎭⎫127=15128. 7、解析:这是超几何分布,P (X =0)=C 03C 22C 25=0.1;P (X =1)=C 13C 12C 25=0.6; P (X =2)=C 23C 02C 25=0.3,分布列如下表:8、解析:根据3σ原则,在4-3×0.5=2.5~4+3×0.5=5.5之外为异常,所以这批零件不合格. 9、解析:(1)设A i 表示事件“在一次抽检中抽到的第i 件产品为A 类品”,i =1,2. B i 表示事件“在一次抽检中抽到的第i 件产品为B 类品”,i =1,2. C 表示事件“一次抽检后,设备不需要调整”. 则C =A 1·A 2+A 1·B 2+B 1·A 2.由已知P (A i )=0.9,P (B i )=0.05 i =1,2. 所以,所求的概率为P (C )=P (A 1·A 2)+P (A 1·B 2)+P (B 1·A 2) =0.92+2×0.9×0.05=0.9.(2)由(1)知一次抽检后,设备需要调整的概率为p =P (C )=1-0.9=0.1,依题意知ξ~B (3,0.1),ξ的分布列为10、解析:(1)P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24C 310=310,P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36C 310=16,其分布列如下:(2)法一:设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23, P (B )=C 28C 12+C 38C 310=56+56120=1415.因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P()A ·B =P ()A ·P ()B =⎝⎛⎭⎫1-23⎝⎛⎭⎫1-1415=145, ∴甲、乙两人至少有一人考试合格的概率为 P =1-P()A ·B =1-145=4445.答:甲、乙两人至少有一人考试合格的概率为4445.法二:甲、乙两人至少有一个考试合格的概率为 P =P ()A ·B+P ()A ·B +P ()A ·B =23×115+13×1415+23×1415=4445. 答:甲、乙两人至少有一人考试合格的概率为4445。
专题05二项分布、超几何分布与正态分布一、单选题1.(2020·全国高二课时练习)抛掷一枚质地均匀的正方体骰子4次,设X 表示向上一面出现6点的次数,则X 的数学期望()E X 的值为( )A .13 B .49C .59D .23【答案】D 【详解】抛掷一枚质地均匀的正方体骰子1次,向上一面出现6点的概率为16()112(4,)4663XB E X ∴=⨯=故选:D2.(2020·全国高二课时练习)甲、乙两人分别独立参加某高校自主招生考试,若甲、乙能通过面试的概率都是23,则面试结束后通过的人数X 的数学期望是( ) A .43 B .119C .1D .89【答案】A 【详解】由题意可知:2~(2,)3X B ,因此面试结束后通过的人数X 的数学期望是242=33⨯. 故选:A3.(2021·河南驻马店市·高三期末(理))已知~(20,)X B p ,且()6E X =,则()D X =( ) A .1.8 B .6C .2.1D .4.2【答案】D 【详解】因为X 服从二项分布~(20,)X B p ,所以()206==E X p ,得0.3p =,故()(1)200.30.7 4.2=-=⨯⨯=D X np p .故选:D.4.(2021·山东德州市·高二期末)已知随机变量X 服从二项分布(),X B n p ,若()54E X =,()1516=D X ,则p =( ) A .14B .13C .34D .45【答案】A 【详解】由题意5415(1)16np np p ⎧=⎪⎪⎨⎪-=⎪⎩,解得145p n ⎧=⎪⎨⎪=⎩.故选:A .5.(2020·全国高二课时练习)已知圆2228130+--+=x y x y 的圆心到直线()10kx y k +-=∈Z 的距离为14,4XB ⎛⎫⎪⎝⎭,则使()P X k =的值为( ) A .23 B .35C .13D .2764【答案】D 【详解】由题意,知圆心坐标为()1,4,圆心到直线()10kxy k +-=∈Z 的距离为=17k =-或1k =.因为k Z ∈,所以1k =. 因为14,4XB ⎛⎫⎪⎝⎭, 所以()141141127114464P X C -⎛⎫⎛⎫==⋅⋅-=⎪ ⎪⎝⎭⎝⎭. 故选:D .6.(2021·辽宁大连市·高三期末)2020年12月4日,中国科学技术大学宣布该校潘建伟等科学家成功构建76光子的量子计算原型机“九章”,求解数学算法“高斯玻色取样”只需要200秒,而目前世界最快的超级计算机要用6亿年,这一突破使我国成为全球第二个实现“量子优越性”的国家.“九章”求得的问题名叫“高斯玻色取样”,通俗的可以理解为量子版本的高尔顿钉板,但其实际情况非常复杂.高尔顿钉板是英国生物学家高尔顿设计的,如图,每一个黑点表示钉在板上的一颗钉子,上一层的每个钉子水平位置恰好位于下一层的两颗钉子的正中间,从入口处放进一个直径略小于两颗钉子之间距离的白色圆玻璃球,白球向下降落的过程中,首先碰到最上面的钉子,碰到钉子后皆以二分之一的概率向左或向右滚下,于是又碰到下一层钉子.如此继续下去,直到滚到底板的一个格子内为止.现从入口放进一个白球,则其落在第③个格子的概率为( )A .1128B .7128C .21128D .35128【答案】C 【详解】小球从起点到第③个格子一共跳了7次,其中要向左边跳动5次,向右边跳动2次,而向左或向右的概率均为12,则向右的次数服从二项分布,所以所求的概率为2527112122128P C ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 故答案为:C.7.(2020·江苏省苏州中学园区校高二月考)设随机变量ξ服从正态分布(2,9)N ,若(21)(1)P m P m ξξ<+=>-,则实数m 的值是( )A .23B .43C .53D .2【答案】B 【详解】因为随机变量ξ服从正态分布(2,9)N ,(21)(1)P m P m ξξ<+=>-, 根据正态分布的特征,可得21122m m ++-=,解得43m =.故选:B .8.(多选)(2021·全国高二课时练习)如城镇小汽车的普及率为75%,即平均每100个家庭有75个家庭拥有小汽车,若从如城镇中任意选出5个家庭,则下列结论成立的是( ) A .这5个家庭均有小汽车的概率为2431024B .这5个家庭中,恰有三个家庭拥有小汽车的概率为2764C .这5个家庭平均有3.75个家庭拥有小汽车D .这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为81128【答案】ACD 【详解】由题得小汽车的普及率为34, A. 这5个家庭均有小汽车的概率为53()4=2431024,所以该命题是真命题; B. 这5个家庭中,恰有三个家庭拥有小汽车的概率为332531135()()44512C =,所以该命题是假命题;C. 这5个家庭平均有3.75个家庭拥有小汽车,是真命题;D. 这5个家庭中,四个家庭以上(含四个家庭)拥有小汽车的概率为4455313()()()444C +=81128,所以该命题是真命题. 故选:ACD.9.(多选)(2020·全国高三专题练习)某计算机程序每运行一次都随机出现一个五位二进制数12345A a a a a a =(例如10100)其中A 的各位数中()2,3,4,5k a k =出现0的概率为13,出现1的概率为23,记2345X a a a a =+++,则当程序运行一次时( )A .X 服从二项分布B .()8181P X ==C .X 的期望()83E X = D .X 的方差()83V X =【答案】ABC 【详解】解:由于二进制数A 的特点知每一个数位上的数字只能填0,1,且每个数位上的数字再填时互不影响,故以后的5位数中后4位的所有结果有4类: ①后4个数出现0,X 0=,记其概率为411(0)()381P X ===;②后4个数位只出现1个1,1X =,记其概率为134218(1)()()3381P X C ===; ③后4位数位出现2个1,2X =,记其概率为22242124(2)()()3381P X C ===, ④后4个数为上出现3个1,记其概率为3342132(3)()()3381P X C ===,⑤后4个数为都出现1,4X =,记其概率为4232(4)()381P X ===,故2~(4,)3X B ,故A 正确;又134218(1)()()3381P X C ===,故B 正确;2~(4,)3X B ,28()433E X ∴=⨯=,故C 正确;2~(4,)3X B ,X ∴的方差218()4339V X =⨯⨯=,故D 错误.故选:ABC .10.(2020·江苏南京市·南京田家炳高级中学高三期中)下列命题中,正确的命题是( ) A .已知随机变量服从二项分布(),B n p ,若()30E x =,()20D x =,则23p =B .已知34n n A C =,则27n =C .设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()1102P p ξ-<<=- D .某人在10次射击中,击中目标的次数为X ,()~10,0.8X B ,则当8X =时概率最大. 【答案】BCD 【详解】对于选项A :随机变量服从二项分布(),B n p ,()30E X =,()20D X =,可得30np =,()120np p -=,则13p =,故选项A 错误; 对于选项B :根据排列数和组合数的计算公式可得,()()()3!213!n n A n n n n ==---,()()()()4321!4!4!24n n n n n n C n ---=-=,因为34n n A C =,所以有()()()()()3212124n n n n n n n -----=,即3124n -= 解得27n =,故选项B 正确;对于选项C :随机变量ξ服从正态分布()0,1N ,则图象关于y 轴对称,若()1P p ξ>=,则()1012P p ξ<<=-,即()1102P p ξ-<<=-,故选项C 正确; 对于选项D :因为在10次射击中,击中目标的次数为X ,()~10,0,8X B , 当x k =时,对应的概率()10100.2kkkP x k C -==⨯0.8⨯,所以当1k时,()()()101011101104110.80.210.80.2kk kk k k P x k k C P x k C k----+=-⋅⋅===-⋅⋅, 由()()()41111P x k k P x k k =-=≥=-得444k k -≥,即4415k ≤≤,因为*k N ∈,所以18k ≤≤且*k N ∈, 即8k时,概率()8P x =最大,故选项D 正确.故选:BCD . 二、填空题11.(2021·江西高三其他模拟(理))已知随机变量ξ服从正态分布()23,N σ,()60.84P ξ≤=,则()0P ξ≤=______.【答案】0.16 【详解】因为随机变量ξ服从正态分布2(3,)N σ,所以(0)(6)P P ξξ≤=≥, 又(6)0.84P ξ≤=,所以(0)1(6)10.840.16P P ξξ≤=-≤=-=.故答案为:0.1612.(2020·福建三明市·高二期末)已知某批零件的长度误差X 服从正态分布()2,N μσ,其密度函数()()222,12x x e μσμσϕπσ--=的曲线如图所示,则σ=______;从中随机取一件,其长度误差落在()3,6内的概率为______.(附:若随机变量ξ服从正态分布()2,N μσ,则()0.6826P μσξμσ-<≤+=,()220.9544P μσξμσ-<≤+=,()330.9974P μσξμσ-<≤+=.)【答案】3 0.1359 【详解】解:由图中密度函数解析式,可得3σ=;又由图象可知0μ=,则长度误差落在(3,6)内的概率为: 1(36)[(22)()]2P X P P μσξμσμσξμσ<<=-<+--<+1(0.95440.6826)0.13592=-=. 故答案为:3;0.1359. 三、解答题13.(2021·全国高二课时练习)某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:[30,40),[40,50),[90,100],整理得到如下频率分布直方图:(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率; (3)若规定分数在[80,90)为“良好”,[]90,100为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X ,求X 的分布列和数学期望. 【答案】(1)180人(2)0.1(3)详见解析 【详解】解:(1)∵样本中男生有55人,则女生45人 ∴估计总体中女生人数45400180100⨯=人 (2)设“不及格”为事件A ,则“及格”为事件A ∴()1()1(0.20.40.20.1)0.1P A P A =-=-+++=(3)设“样本中“良好”或“优秀””为事件B ,则()0.20.10.3B P =+= 依题意可知:~(3,0.3)X B3(0)0.7P B ==,1123(1)0.30.7P X C == 22133(2)0.30.7,(3)0.3P X C X P ====所以,X 的分布列为 X 0 1 2 3 P0.3430.4410.1890.027()30.30.9E X np ==⨯=14.(2020·全国高三专题练习(理))袋子中有1个白球和2个红球. (1)每次取1个球,不放回,直到取到白球为止,求取球次数X 的分布列;(2)每次取1个球,有放回,直到取到白球为止,但抽取次数不超过5次,求取球次数X 的分布列; (3)每次取1个球,有放回,共取5次,求取到白球次数X 的分布列. 【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析. 【详解】(1)由题意,X 可能取值1,2,3. 则()113P X ==,()2112323P X ==⨯=,()211133213P X ==⨯⨯=,所以X 的分布列为(2)X 可能取值为1,2,3,4,5.则()113P X ==,()2122339P X ==⨯=,()221433327P X ⎛⎫==⨯= ⎪⎝⎭,()321843381P X ⎛⎫==⨯= ⎪⎝⎭,()42165381P X ⎛⎫=== ⎪⎝⎭,故X 的分布列为(3)由题意可得,15,3XB ⎛⎫ ⎪⎝⎭, 所以()551233kkk P X k C -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,0,1,2,3,4,5k =,则()320243P X ==,()801243P X ==,()802243P X ==,()403243P X ==,()104243P X ==,()15243P X ==, 所以X 的分布列为15.(2021·全国高三其他模拟)某商场举行有奖促销活动,凡10月13日当天消费每超过400元(含400元),均可抽奖一次,抽奖箱里有6个形状、大小、质地完全相同的小球(其中红球有3个,白球有3个),抽奖方案设置两种,顾客自行选择其中的一种方案.方案一:从抽奖箱中,一次性摸出2个球,若摸出2个红球,则打6折;若摸出1个红球,则打8折;若没摸出红球,则不打折.方案二:从抽奖箱中,有放回地每次摸取1个球,连摸2次,每摸到1次红球,立减100元.(1)若小方、小红均分别消费了400元,且均选择抽奖方案一,试求他们其中有一人享受6折优惠的概率. (2)若小勇消费恰好满600元,试比较说明小勇选择哪种方案更划算. 【答案】(1)825;(2)选择方案一更划算. 【详解】(1)由题意,设顾客享受到6折优惠为事件A ,则()232615C P A C ==.∴小方、小红两人其中有一人享受6折优惠的概率为()()22118[1]215525P C P A P A ⎛⎫=⋅⋅-=⨯⨯-=⎪⎝⎭. (2)若小勇选择方案一,设付款金额为X 元,则X 可能的取值为360,480,600.则()232613605C P X C ===,()11332634805C C P X C ===,()232616005C P X C ===. 故X 的分布列为∴()131360480600480555E X =⨯+⨯+⨯=(元).若小勇选择方案二,设摸到红球的个数为Y ,付款金额为Z 元,则600100Z Y =-. 由已知,可得12,2Y B ⎛⎫~ ⎪⎝⎭,故()1212E Y =⨯=, ∴()()()600100600100600100500E Z E Y E Y =-=-=-=(元).由上知:()()E X E Z <,故小勇选择方案一更划算.16.(2021·全国高二课时练习)第13届女排世界杯于2019年9月14日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球MIKSA -V 200W ,已知这种球的质量指标ξ (单位:g )服从正态分布N (270,25 ).比赛赛制采取单循环方式,即每支球队进行11场比赛(采取5局3胜制),最后靠积分选出最后冠军积分规则如下:比赛中以3:0或3:1取胜的球队积3分,负队积0分;而在比赛中以3:2取胜的球队积2分,负队积1分.已知第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为p (0<p <1).(1)如果比赛准备了1000个排球,估计质量指标在(260,265]内的排球个数(计算结果取整数). (2)第10轮比赛中,记中国队3:1取胜的概率为()f p .(i )求出f (p )的最大值点0p ;(ii )若以0p 作为p 的值记第10轮比赛中,中国队所得积分为X ,求X 的分布列.参考数据:ζ ~N (u ,2σ),则p (μ-σ<X <μ+σ)≈0.6826,p (μ-2σ<X <μ+2σ)≈0.9644.【答案】(1)140;(2)(i )034p =;(ii )分布列见解析. 【详解】(1)因为ξ服从正态分布N (270,25 ),所以()0.96440.68262602650.14092P ξ-<<==, 所以质量指标在(260,265]内的排球个数为10000.1409140.9140⨯=≈个;(2)(i )()()()2333131f p C p p p p =-=-,()()()()2'2331+13334p p f p p p p ⎡⎤=-⨯-=-⎣⎦令()0f p '=,得34p =, 当3(0,)4p ∈时,()0f p '>,()f p 在3(0,)4上单调递增; 当3(,1)4p ∈时,()0f p '<,()f p 在3(,1)4上单调递减;所以()f p 的最大值点034p =; (ii )X 的可能取值为0,1,2,3.212313(0)(1)(1)256P X p C p p ==-+-=;223427(1)(1)512P X C p p ==-=; 222481(2)(1)512P X C p p p ==-=;2223189(3)(1)256P X p C p p p ==+-=; 所以X 的分布列为。
二项分布与超几何分布辨析
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两 个概率模型来解决•在实际应用中,理解并区分两个概率模型是至关重要的•下面举例进行对比辨析.
例 袋中有8个白球、2个黑球,从中随机地连续抽取 3次,每次取1个球.求: (1) 有放回抽样时,取到黑球的个数X 的分布列; (2) 不放回抽样时,取到黑球的个数Y 的分布列. 解:(1)有放回抽样时,取到的黑球数X 可能的取值为0,
1, 2, 3.又由于每次取到黑球的概率均
1
为,3次取球可以看成3次独立重复试验,则 X~B 3,- •
5
A
••• P (X o )
C 3 -
5
2
2
1 P(X 2) C 3
5
3
3
1 P(X 3) C ;
5
因此,X 的分布列为
2.
不放回抽样时,取到的黑球数Y 可能的取值为 0, 1, 2,且
有:
因此,Y 的分布列为
辨析:通过此例可以看出:有放回抽样时,每次抽取时的总体没有改变,因而每次抽到某物的概率都 是相同的,可以看成是独立重复试验,此种抽样是二项分布模型.而不放回抽样时,取出一个则总体中就 少一个,因此每次取到某物的概率是不同的,此种抽样为超几何分布模型.因此,二项分布模型和超几何 分布模型最主要的区别在于是有放回抽样还是不放回抽样.
所以,在解有关二项分布和超几何分布问题时,
仔细阅读、辨析题目条件是非常重要的.
3
4 _64 5
V25
1
P(X 1)C 3 - 2
4 48 5
125
1
4 12 5
125
4 丄
5
125
P(Y 0)
ch
3 10
亦;
P(Y
1)
c ;c
3 10
后;
P(Y
2 1
2
、 GC 8 1
2)
3
C ;0 15
超几何分布和二项分布都是离散型分布
超几何分布和二项分布的区别: 超几何分布需要知道总体的容量,而二项分布不需要; 超几何分布是不放回抽取,而二项分布是放回抽取(独立重复) 当总体的容量非常大时,超几何分布近似于二项分布
二项分布、超几何分布、正态分布
、选择题
4 .在4次独立重复试验中, 随机事件A 恰好发生1次的概率不大于其恰好发生 2次的概率,则事件A
7 .从装有3个红球,2个白球的袋中随机取出两个球,
8•某厂生产的圆柱形零件的外径
厂N (4,0.25).质检人员从该厂生产的
1000件零件中随机抽查一件,
测得它的外径为5.7 cm.则该厂生产的这批零件是否合格
A . [0.4,1)
B . (0,0.6]
C . (0,0.4]
D . [0.6,1)
5 .已知随机变量 E 服从正态分布N (2, <7),
P(李 4) = 0.84,则 P( E< 0)=(
)
A . 0.16
B . 0.32
C . 0.68
D . 0.84
p 的取值范围是(
)
、填空题
1.设随机变量严B 1
6, 2,贝V P (E= 3)的值
5 A — A.16
C.5
2 .设随机变量E
B(2, p),随机变量 n 〜B(3,
5
p),若 P(步 1) = 9,则 P ( n> 1)=()
5
B.5
8 C.^
19 D.27
3 •一袋中有5个白球,
3个红球,现从袋中往外取球, 每次任取一个记下颜色后放回,直到红球出现
10次时停止,设停止时共取了
E 次球,则P (片12)=(
10 3 10 5
2 A -
C 12 8 ,8
3_・
8 2
5- 8
9
3_ 8
1
91
c
在一次试验中发生的概率
6 •某篮运动员在三分线投球的命中率是 1
2,他投球10次,恰好投进3个球的概率
________ .(用数值
作答)
答案:
15
128
设其中有X 个红球,则X 的分布列为
答案:不合格
三、解答题
9 .一条生产线上生产的产品按质量情况分为三类:A类、B类、C类.检验员定时从该生产线上任取
2件产品进行一次抽检,若发现其中含有C类产品或2件都是B类产品,就需要调整设备,否则不需要调
整.已知该生产线上生产的每件产品为A类品,B类品和C类品的概率分别为0.9,0.05和0.05,且各件产
品的质量情况互不影响.
(1) 求在一次抽检后,设备不需要调整的概率;
(2) 若检验员一天抽检3次,以E表示一天中需要调整设备的次数,求E的分布列.
10.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在
备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.
(1) 求甲答对试题数E的概率分布;
(2) 求甲、乙两人至少有一人入选的概率.
参考答案
1、解析:P(E= 3)= C36 2 3 1-2 3=答案:A
2 5 1
2、解析:•/ P(E》1) = 2p(1—p) + p2= 9,二P =3 ,
1 2 1 2 1 19
二P(n》1) = C3 3 3 2+ C3 3 2 3 + C3 3 3=刃,故选D.
3、解析:P(片12)表示第12次为红球,前11次中有9次为红球,从而P(E= 12)= C11 ^8 9 I 2x 3答案: B
4、解析:C14p(1 —p)3< C24p2(1 —p)2,即卩2(1 —p)W 3pp >04又T p<1 0.4W p<1
5、解析:•/ P(EW 4) = 0.84, 尸2,「. P( M 0)= P( E>4) = 1 —0.84= 0.16.故选A.
6、解析:3 1 3 1 7 15
由题意知所求概率P= C10 2 2= 128.
7、解析:
C3C2 C3C1 C3C0这是超几何分布,P(X= 0)= c5—0.1;P(X= 1) = C2 —0.6; P(X —2) —c5—0.3,
分布列如下表:
4 —3X 0.
5 = 2.5~4 + 3X 0.5 = 5.5之外为异常,所以这批零件不合格.
9、解析:(1)设A i表示事件“在一次抽检中抽到的第i件产品为A类品”,i = 1,2.
B i表示事件“在一次抽检中抽到的第i件产品为B类品”,i= 1,2.
C表示事件“一次抽检后,设备不需要调整”.
则C= A1 A2 + A1 B2+ B1 A2.
由已知P(A i)= 0.9, P(B i) = 0.05 i = 1,2.
所以,所求的概率为
P(C)= P(A1 A2) + P(A1 B2)+ P(B1 A2)
=0.92+ 2X 0.9X 0.05= 0.9.
(2)由(1)知一次抽检后,设备需要调整的概率为
p = P( C ) = 1 —0.9= 0.1,依题意知汁B(3,0.1), E的分布列为
10、解析:⑴依题意,甲答对试题数的可能取值为0、1、2、3,则
C4 1 ~ ” 八c1 c4 3
P(E0)=芮30,P(=1)=CCT=13,
c6 C 1 “ c6 1
P(E2)=CCC_=2, P(E3)=鬲=6,
其分布列如下:
根据3 b原则,在
(2)法一:设甲、乙两人考试合格的事件分别为 -
c 6c 1+ C 3 60+ 20 2
P(A)=
C lo =
=
3,
_ c 8c 2+ c 8_ 56+ 56_ 14 P (B )= —co — = 120 = 15.
因为事件A 、B 相互独立,
•••甲、乙两人考试均不合格的概率为
2 14
1
= ---
3
1
15
45,
•••甲、乙两人至少有一人考试合格的概率为
P = 1-p (A •百)=1 -右=篇
答:甲、乙两人至少有一人考试合格的概率为 法二:甲、乙两人至少有一个考试合格的概率为
2 X
丄+1
x 啓
+ 2 X
3 15 3 15 3
P
(
B
) = P
( A ) P
(B )
P = P (A -B )+ P (
A
)+ P (A B )
答:甲、乙两人至少有一人考试合格的概率为
44
45
A 、
B ,贝U
44 45.
44
45. 14 15。