辅导3-函数-y=Asin(ωx+φ)的图象和变换
- 格式:doc
- 大小:531.00 KB
- 文档页数:3
考点十八 函数y =A sin(ωx +φ)的图象和性质知识梳理1.五点法作y =A sin(ωx +φ)一个周期内的简图用“五点法”作图,就是令ωx +φ取下列5个特殊值:0, π2, π, 3π2, 2π,通过列表,计算五点的坐标,描点得到图象 2.三角函数图象变换3.函数y =A sin(ωx +φ)的几个概念若函数y =A sin(ωx +φ) (A >0,ω>0,x ∈(-∞,+∞))表示一个振动量时,则A 叫做振幅,T =2πω叫做周期,f =1T叫做频率,ωx +φ叫做相位,φ叫做初相.典例剖析题型一 三角函数的图象变换例1 (2015山东文)要得到函数y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象________.(填序号)① 向左平移π12个单位 ②向右平移π12个单位 ③向左平移π3个单位 ④向右平移π3个单位答案 ②解析 ∵y =sin ⎝⎛⎭⎫4x -π3=sin ⎣⎡⎦⎤4⎝⎛⎭⎫x -π12, ∴要得到y =sin ⎝⎛⎭⎫4x -π3的图象,只需将函数y =sin 4x 的图象向右平移π12个单位.变式训练 把函数y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),再将图象向右平移π3个单位长度,那么所得图象的一条对称轴方程为________.答案 x =-π2解析 将y =sin(x +π6)图象上各点的横坐标缩短到原来的12(纵坐标不变),得到函数y =sin(2x+π6);再将图象向右平移π3个单位长度,得到函数y =sin[2(x -π3)+π6]=sin(2x -π2),故x =-π2是其图象的一条对称轴方程.解题要点 图象平移时要注意平移量的求解,由y =sin x 的图象变换到y =A sin(ωx +φ)的图象,两种变换区别在于:先相位变换再周期变换(伸缩变换),平移量是|φ|个单位;而先周期变换(伸缩变换)再相位变换,平移量是|φ|ω(ω>0)个单位.原因在于相位变换和周期变换都是针对x 而言,即x 本身加减多少值,而不是依赖于ωx 加减多少值. 题型二 三角函数的五点法作图 例2 设函数y =2sin ⎝⎛⎭⎫2x +π3 (1)用五点法作出它在长度为一个周期的闭区间上的图象;(2)说明函数f (x )的图象可由y =sin x 的图象经过怎样的变换而得到的. 解析 (1) 列表,描点画出图象:(2) 方法一 把y =sin x 的图象上所有的点向左平移π3个单位长度,得到y =sin ⎝⎛⎭⎫x +π3的图象,再把y =sin ⎝⎛⎭⎫x +π3的图象上的点的横坐标缩短到原来的12倍(纵坐标不变),得到y =sin ⎝⎛⎭⎫2x +π3的图象,最后把y =sin ⎝⎛⎭⎫2x +π3上所有点的纵坐标伸长到原来的2倍(横坐标不变),即可得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 方法二 将y =sin x 的图象上每一点的横坐标x 缩短为原来的12倍,纵坐标不变,得到y =sin2x 的图象;再将y =sin 2x 的图象向左平移π6个单位长度,得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象;再将y =sin ⎝⎛⎭⎫2x +π3的图象上每一点的横坐标保持不变,纵坐标伸长为原来的2倍,得到y =2sin ⎝⎛⎭⎫2x +π3的图象. 解题要点 (1)五点法作简图:用“五点法”作y =A sin(ωx +φ)的简图,主要是通过变量代换,设z =ωx +φ,由z 取0,π2,π,32π,2π来求出相应的x ,通过列表,计算得出五点坐标,描点后得出图象.(2)图象变换:由函数y =sin x 的图象通过变换得到y =A sin(ωx +φ)的图象,有两种主要途径:“先平移后伸缩”与“先伸缩后平移”. 题型三 由图象求y =A sin(ωx +φ)的解析式例3 函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,-π2<φ<π2,x ∈R 的部分图象如图所示. (1)求函数y =f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-π,-π6时,求f (x )的取值范围.解析 (1)由题中图象得A =1,T 4=2π3-π6=π2,所以T =2π,则ω=1.将点⎝⎛⎭⎫π6,1代入得sin ⎝⎛⎭⎫π6+φ=1,又-π2<φ<π2,所以φ=π3,因此函数f (x )=sin ⎝⎛⎭⎫x +π3. (2)由于-π≤x ≤-π6,-2π3≤x +π3≤π6,所以-1≤sin ⎝⎛⎭⎫x +π3≤12, 所以f (x )的取值范围是⎣⎡⎦⎤-1,12. 解题要点 确定y =A sin(ωx +φ)+b (A >0,ω>0)的步骤和方法 (1)求A ,b :确定函数的最大值M 和最小值m ,则A =M -m 2,b =M +m2;(2)求ω:确定函数的周期T ,则可得ω=2πT ;(3)求φ:常用的方法有:①代入法:把图象上的一个已知点代入(此时A ,ω,b 已知)或代入图象与直线y =b 的交点求解(此时要注意交点在上升区间上还是在下降区间上).②五点法:确定φ值时,往往以寻找“五点法”中的某一个点为突破口.具体如下: “第一点”(即图象上升时与x 轴的交点)时ωx +φ=0;“第二点”(即图象的“峰点”)时ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)时ωx +φ=π;“第四点”(即图象的“谷点”)时ωx +φ=3π2;“第五点”时ωx +φ=2π.题型四 函数y =A sin(ωx +φ)的对称性、周期性、奇偶性 例4 函数f (x )=cos(2x -π6)的最小正周期是________.答案 π解析 最小正周期为T =2πω=2π2=π.变式训练 已知函数f (x )=sin ⎝⎛⎭⎫2x +3π2(x ∈R ),下面结论错误的是________.(填序号) ① 函数f (x )的最小正周期为π ② 函数f (x )是偶函数③ 函数f (x )的图象关于直线x =π4对称④ 函数f (x )在区间⎣⎡⎦⎤0,π2上是增函数 答案 ③解析 f (x )=sin ⎝⎛⎭⎫2x +3π2=-cos 2x ,故其最小正周期为π,故①正确;易知函数f (x )是偶函数,②正确;由函数f (x )=-cos 2x 的图象可知,函数f (x )的图象不关于直线x =π4对称,③错误;由函数f (x )的图象易知,函数f (x )在⎣⎡⎦⎤0,π2上是增函数,④正确,故选③. 解题要点 1.三角函数的奇偶性的判断技巧:首先要知道基本三角函数的奇偶性,再根据题目去判断所求三角函数的奇偶性;也可以根据图象做判断.2.求三角函数周期的方法: ①利用周期函数的定义.②利用公式:y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2π|ω|,y =tan(ωx +φ)的最小正周期为π|ω|.③利用图象. 3.三角函数的对称性:正、余弦函数的图象既是中心对称图形,又是轴对称图形,正切函数的图象只是中心对称图形,应熟记它们的对称轴和对称中心,并注意数形结合思想的应用.另外函数y =A sin(ωx +φ)、余弦函数y =A cos(ωx +φ)在对称轴处必取极值±A ,在对称轴处必取0,借助这一性质可快速解题.当堂练习1.函数f (x )=2sin(ωx +φ)(ω>0,-π2<φ<π2)的部分图象如图所示,则ω,φ的值分别是________.答案 2,-π3解析 由图象可得,3T 4=5π12-⎝⎛⎭⎫-π3=3π4, ∴T =π,则ω=2ππ=2,再将点⎝⎛⎭⎫5π12,2代入f (x )=2sin(2x +φ)中得,sin ⎝⎛⎭⎫5π6+φ=1, 令5π6+φ=2k π+π2,k ∈Z , 解得,φ=2k π-π3,k ∈Z ,又∵φ∈⎝⎛⎭⎫-π2,π2,则取k =0,∴φ=-π3. 2.(2014·辽宁卷) 将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度,所得图象对应的函数________.(填序号)①在区间⎣⎡⎦⎤π12,7π12上单调递减 ②在区间⎣⎡⎦⎤π12,7π12上单调递增③在区间⎣⎡⎦⎤-π6,π3上单调递减 ④在区间⎣⎡⎦⎤-π6,π3上单调递增 答案 ②解析 由题可知,将函数y =3sin ⎝⎛⎭⎫2x +π3的图象向右平移π2个单位长度得到函数y =3sin ⎝⎛⎭⎫2x -23π的图象,令-π2+2k π≤2x -23π≤π2+2k π,k ∈Z ,即π12+k π≤x ≤7π12+k π,k ∈Z 时,函数单调递增,即函数y =3sin ⎝⎛⎭⎫2x -23π的单调递增区间为⎣⎡⎦⎤π12+k π,7π12+k π,k ∈Z ,可知当k =0时,函数在区间⎣⎡⎦⎤π12,7π12上单调递增.3. (2014·四川卷)为了得到函数y =sin (2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点________.(填序号)①向左平行移动12个单位长度 ②向右平行移动12个单位长度③向左平行移动1个单位长度 ④向右平行移动1个单位长度 答案 ①解析 因为y =sin(2x +1)=sin2⎝⎛⎭⎫x +12,所以为得到函数y =sin(2x +1)的图象,只需要将y =sin 2x 的图象向左平行移动12个单位长度.4.(2014·安徽卷)若将函数f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位,所得图象关于y 轴对称,则φ的最小正值是________. 答案3π8解析 将f (x )=sin ⎝⎛⎭⎫2x +π4的图象向右平移φ个单位,得到y =sin ⎝⎛⎭⎫2x +π4-2φ的图象,由该函数的图象关于y 轴对称,可知sin ⎝⎛⎭⎫π4-2φ=±1,即sin ⎝⎛⎭⎫2φ-π4=±1,故2φ-π4=k π+π2,k ∈Z ,即φ=k π2+3π8,k ∈Z ,所以当φ>0时,φmin =3π8.5.(2015新课标Ⅰ文)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为________.答案 ⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由已知图象可求得ω与φ的值,然后利用余弦函数的单调区间求解. 由图象知,周期T =2⎝⎛⎭⎫54-14=2, ∴2πω=2,∴ω=π. 由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎫πx +π4. 由2k π<πx +π4<2k π+π,k ∈Z ,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z . 课后作业一、 填空题1.将函数f (x )=sin 2x 的图象向左平移π12个单位,得到函数g (x )=sin(2x +φ)0<φ<π2的图象,则φ等于________. 答案 π6解析 由题意g (x )=sin 2(x +π12)=sin(2x +π6),又g (x )=sin(2x +φ),0<φ<π2,∴φ=π6.2.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为________. 答案 π4解析 由函数横向平移规律“左加右减”则y =sin(2x +φ)向左平移π8个单位得y =sin(2x +π4+φ).由y =sin(2x +π4+φ)为偶函数得π4+φ=π2+k π,k ∈Z ,则φ=π4+k π,k ∈Z ,则φ的一个可能值为π4.3.下列函数中,周期为π,且在[π4,π2]上为减函数的是________.①y =sin(2x +π2) ②y =cos(2x +π2) ③y =sin(x +π2) ④y =cos(x +π2)答案 ①解析 对于选项①,注意到y =sin(2x +π2)=cos2x 的周期为π,且在[π4,π2]上是减函数,故选①.4.函数y =cos x (x ∈R )的图象向左平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式应为________. 答案 -sin x解析 由图象的平移得g (x )=cos ⎝⎛⎭⎫x +π2=-sin x . 5.已知函数y =cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则________.① ω=1,φ=2π3② ω=1,φ=-2π3③ ω=2,φ=2π3④ ω=2,φ=-2π3答案 ④解析 由题图可知14T =7π12-π3=π4,∴T =π,又T =2πω,∴ω=2,又f (x )的图象过点⎝⎛⎭⎫π3,1,∴cos ⎝⎛⎭⎫2×π3+φ=1,∴2π3+φ=2k π,令k =0,得φ=-23π. 6.要得到函数y =sin(x -π6)的图象可将函数y =sin(x +π6)的图象上的所有点________.答案 向右平移π3个长度单位解析 由y =sin[(x -π3)+π6]=sin(x -π6)知应向右平移π3个长度单位.7.(2015陕西理)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深(单位:m)的最大值为________.答案 8解析 由图易得y min =k -3=2,则k =5. ∴y max =k +3=8.8.将函数f (x )=sin ωx (其中ω>0)的图象向右平移π4个单位长度,所得图象经过点⎝⎛⎭⎫3π4,0,则ω的最小值是________. 答案 2解析 ∵y =sin ω(x -π4)过点(34π,0),∴sin π2ω=0,∴π2ω=k π,ω=2k ,当k =1时,ω最小值为2.9.函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,则f (x )=________.答案 2sin(π8x +π4)解析 依题意得,A =2,2πω=2×(6+2)=16,ω=π8, sin(π8×2+φ)=1,又|φ|<π2,因此φ=π4,f (x )=2sin(π8x +π4). 10.设y =sin(ωx +φ)(ω>0,φ<(-π2,π2))的最小正周期为π,且其图象关于直线x =π12对称,则在下面四个结论中:①图象关于点(π4,0)对称; ②图象关于点(π3,0)对称;③在[0,π6]上是增函数; ④在[-π6,0]上是增函数.正确结论的编号为________. 答案 ②④解析 ∵T =π,∴ω=2,∴y =sin(2x +φ),∵图象关于直线x =π12对称,∴π6+φ=π2+k π,(k ∈Z ),∴φ=π3+k π(k ∈Z ),又∵φ∈(-π2,π2),∴φ=π3. ∴y =sin(2x +π3).当x =π4时,y =sin(π2+π3)=12,故①不正确.当x =π3时,y =0,故②正确;当x ∈[0,π6]时,2x +π3∈[π3,2π3],y =sin(2x +π3)不是增函数,即③不正确;当x ∈[-π6,0]时,2x +π3∈[0,π3]⊆[0,π2],故④正确.11. (2015湖南文)已知ω>0,在函数y =2sin ωx 与y =2cos ωx 的图象的交点中,距离最短的两个交点的距离为23,则ω=________. 答案 π2解析 由⎩⎪⎨⎪⎧y =2sin ωx ,y =2cos ωx得sin ωx =cos ωx ,∴tan ωx =1,ωx =k π+π4 (k ∈Z ).∵ω>0,∴x =k πω+π4ω(k ∈Z ).设距离最短的两个交点分别为(x 1,y 1),(x 2,y 2),不妨取x 1=π4ω,x 2=5π4ω,则|x 2-x 1|=⎪⎪⎪⎪5π4ω-π4ω=πω.又结合图形知|y 2-y 1|=⎪⎪⎪⎪2×⎝⎛⎭⎫-22-2×22=22, 且(x 1,y 1)与(x 2,y 2)间的距离为23, ∴(x 2-x 1)2+(y 2-y 1)2=(23)2, ∴⎝⎛⎭⎫πω2+(22)2=12,∴ω=π2. 二、解答题12. 已知函数f (x )=2sin ⎝⎛⎭⎫2x -π4+1. (1)求它的振幅、最小正周期、初相; (2)画出函数y =f (x )在⎣⎡⎦⎤-π2,π2上的图象.解析 (1)振幅为2,最小正周期T =π,初相为-π4.(2)图象如图所示.13.(2015湖北文)某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) f (x )的解析式; (2) 将y =f (x )图象上所有点向左平行移动π6个单位长度,得到y =g (x )的图象,求y =g (x )的图象离原点O 最近的对称中心.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表:且函数表达式为f (x )=5sin ⎝⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 因此g (x )=5sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6-π6=5sin ⎝⎛⎭⎫2x +π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +π6=k π,解得x =k π2-π12,k ∈Z .即y =g (x )图象的对称中心为⎝⎛⎭⎫k π2-π12,0,k ∈Z ,其中离原点O 最近的对称中心为⎝⎛⎭⎫-π12,0.。
1. 为了得到函数R x x y ∈+=),6
3sin(2π
的图像,只需把函数R x x y ∈=,sin 2的图像上所有的
点 ( )
(A )向左平移
6π个单位长度,再把所得各点的横坐标缩短到原来的31
倍(纵坐标不变)
(B )向右平移
6π
个单位长度,再把所得各点的横坐标缩短到原来的3
1
倍(纵坐标不变)
(C )向左平移
6π
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移
6
π
个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
2.将函数5sin(3)y x =-的周期扩大到原来的2倍,再将函数图象左移3
π
,得到图象对应解析式是 ( )
()A 335sin(
)22x y π=- ()B 735sin()102x y π=- (C ) 35sin()22x
y π=- (D ) 5sin(26)y x π=--
3.已知函数sin()y A x ωϕ=+在同一周期内,当9
x π
=时,取得最大值
12,当49
x π=时,取得最小值1
2
-
,则该函数的解析式是 ( ) ()A 12sin()36y x π=- ()B 1sin(3)26y x π
=+
()C 1sin(3)26y x π=- ()D 1sin(3)26
y x π
=-+
4.函数y=sin(2x+π
6
)的图象可看成是把函数y=sin2x 的图象做以下平移得到
( )
A.向右平移π6
B. 向左平移 π12
C. 向右平移 π12
D. 向左平移π
6
5.(2009天津卷文)已知函数)0,)(4
sin()(>∈+
=ωπ
ωR x x x f 的最小正周期为π,将
)(x f y =的图像向左平移||ϕ个单位长度,所得图像关于y 轴对称,则ϕ的一个值是( )
A
2π B 83π C 4π D 8
π
6.若函数()()2sin 81f x x θ=++的图像关于π
6x =对称,则θ的值为
A.0
B.2
π
C. ()k k Z π∈ D 。
()6k k Z ππ+∈
7.若函数()()cos 3f x x θ=+的图像关于原点成中心对称,则θ的值为
A.2π-
B.()2k k Z ππ+∈
C. ()k k Z π∈ D 。
2()2
k k Z π
π-∈ 8.已知函数()2sin()f x x ωϕ=+对任意x 都有()(),66f x f x ππ+=--则()6
f π
等于
( )
A . 2或0
B . 2-或2
C . 0
D . 2-或0
9.把y =cos (x +3
π
4)图象向左平移(0)ϕϕ>个单位,所得函数为偶函数,则ϕ的最小值
是 .
10已知函数()()sin 21f x x θ=-+满足(
)()33
f x f x π
π
-=+,则θ= 11.已知函数()2cos()f x x ωϕ=+对任意实数x 都有(
)(),33
f x f x π
π
+=-若设函数
()2sin()1g x x ωϕ=+-,则()3g π
的值为
12.一正弦曲线的一个最高点为1
(,3)4
,从相邻的最低点到这最高点的图象交x 轴于
1
(,0)4
-,最低点的纵坐标为-3,则这一正弦曲线的解析式为 . 13.(广东省北江中学2009届高三上学期12月月考) 已知()s i n ()(0,0,
22
f x A x A ππ
ωϕωϕ=+>>-≤≤
的图象如右图
(Ⅰ)求()y f x =的解析式;
(Ⅱ)说明()y f x =的图象是由sin y x =的图象经过怎
样的变换得到?
14.某港口的水深y (米)是时间t (0≤t ≤24,单位:小时)的函数,下面是不同时间的水深数据:
根据上述数据描出的曲线如图所示,经拟合,该曲线可近似地看成正弦函数
sin()y A x b ωϕ=++的图像.
(1)试根据以上数据,求出sin()y A x b ωϕ=++的表达式;
15、将函数y=f(x)图象上每个点的纵坐标保持不变,横坐标伸长到原来的2倍,
然后再将整个图象沿x 轴向左平移2
π
个单位,得到曲线1s i n 2y x =的图象相同,
则y=f(x)的函数表达式为
16、已知函数y=f(x),将f(x)图象上每一点的纵坐标保持不变,横坐标扩大到原来
的2倍,然后把所得到的图象沿x 轴向左平移4
π
个单位,这样得到的曲线与
y=3sinx 的图象相同, 那么y=f(x)的解析式为 ( )
A .f(x)=3sin(42π-x )
B .f(x)=3sin(2x+4π
)
C .f(x)=3sin(42π+x )
D .f(x)=3sin(2x -4
π
)
图3-4-8。