2018高中物理专题检测:(二十五) 题型技法——3步稳解物理计算题 含解析
- 格式:doc
- 大小:464.50 KB
- 文档页数:12
高考物理稳恒电流解题技巧及练习题及解析一、稳恒电流专项训练1.如图所示,已知电源电动势E=20V,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L和内阻R D=1Ω的小型直流电动机D都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率【答案】(1)2A(2)7V(3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U和额定功率P的数值可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
2.如图所示,已知电源电动势E=20V,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L和内阻R D=1Ω的小型直流电动机D都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率【答案】(1)2A(2)7V(3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A(2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V电动机消耗的功率:=18W一部分是线圈内阻的发热功率:=4W另一部分转换为机械功率输出,则=14W【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
高考物理稳恒电流解题技巧及经典题型及练习题一、稳恒电流专项训练1.如图所示,已知电源电动势E=20V ,内阻r=lΩ,当接入固定电阻R=3Ω时,电路中标有“3V,6W”的灯泡L 和内阻R D =1Ω的小型直流电动机D 都恰能正常工作.试求:(1)流过灯泡的电流(2)固定电阻的发热功率(3)电动机输出的机械功率【答案】(1)2A (2)7V (3)12W【解析】(1)接通电路后,小灯泡正常工作,由灯泡上的额定电压U 和额定功率P 的数值 可得流过灯泡的电流为:=2A (2)根据热功率公式,可得固定电阻的发热功率:=12W(3)根据闭合电路欧姆定律,可知电动机两端的电压:=9V 电动机消耗的功率:=18W 一部分是线圈内阻的发热功率:=4W 另一部分转换为机械功率输出,则=14W 【点睛】(1)由灯泡正常发光,可以求出灯泡中的电流;(2)知道电阻中流过的电流,就可利用热功率方程,求出热功率;(3)电动机消耗的电功率有两个去向:一部分是线圈内阻的发热功率;另一部分转化为机械功率输出。
2.把一只“1.5V ,0.3A ”的小灯泡接到6V 的电源上,为使小灯泡正常发光,需要串联还是并联一个多大电阻?【答案】串联一个15Ω的电阻【解析】【分析】【详解】要使灯泡正常发光则回路中电流为0.3A ,故回路中的总电阻为6Ω=20Ω0.3U R I ==总 灯泡的电阻为 1.5Ω=5Ω0.3L L U R I ==由于电源电压大于灯泡额定电压,故需要串联一个电阻分压,阻值为20Ω5Ω15ΩL R R R ==-=总-3.如图所示,已知电源电动势E=16 V ,内阻r=1 Ω,定值电阻R=4 Ω,小灯泡上标有“3 V ,4.5 W”字样,小型直流电动机的线圈电阻r′=1 Ω,开关闭合时,小灯泡和电动机均恰好正常工作.求:(1)电路中的电流强度;(2)电动机两端的电压;(3)电动机的输出功率.【答案】(1)1.5A ;(2)5.5V ;(3)6W.【解析】试题分析:(1)电路中电流L LP I U ==1.5A (2)电动机两端的电压()M L U E U I R r =--+=5.5V(3)电动机的总功率电动机线圈热功率2/ 2.25W P I r==热电动机的输出功率考点:电功率4.如图所示,已知R 3=3Ω,理想电压表读数为3v ,理想电流表读数为2A ,某时刻由于电路中R 3发生断路,电流表的读数2.5A ,R 1上的电压为5v ,求:(1)R 1大小、R 3发生断路前R 2上的电压、及R 2阻值各是多少?(R 3发生断路时R 2上没有电流)(2)电源电动势E 和内电阻r 各是多少?【答案】(1)1V 1Ω(2)10 V ;2Ω【解析】试题分析:(1)R 3断开时 电表读数分别变为5v 和2.5A 可知R 1=2欧R3断开前R1上电压U1=R1I=4VU1= U2 + U3所以 U2=1VU2:U3 = R2:R3 =1:3R2=1Ω(2)R3断开前总电流I1=3AE = U1 + I1rR3断开后总电流I2=2.5AE = U2 + I2r联解方程E= 10 V r=2Ω考点:闭合电路的欧姆定律【名师点睛】5.如图所示,竖直放置的两根足够长的光滑金属导轨相距为L,导轨的两端分别与电源(串有一滑动变阻器 R)、定值电阻、电容器(原来不带电)和开关K相连.整个空间充满了垂直于导轨平面向外的匀强磁场,其磁感应强度的大小为B.一质量为m,电阻不计的金属棒 ab 横跨在导轨上.已知电源电动势为E,内阻为r,电容器的电容为C,定值电阻的阻值为R0,不计导轨的电阻.(1)当K接1时,金属棒 ab 在磁场中恰好保持静止,则滑动变阻器接入电路的阻值 R 为多大?(2)当 K 接 2 后,金属棒 ab 从静止开始下落,下落距离 s 时达到稳定速度,则此稳定速度的大小为多大?下落 s 的过程中所需的时间为多少?(3) ab 达到稳定速度后,将开关 K 突然接到3,试通过推导,说明 ab 作何种性质的运动?求 ab 再下落距离 s 时,电容器储存的电能是多少?(设电容器不漏电,此时电容器没有被击穿)【答案】(1)EBLrmg-(2)442222B L s m gRmgR B L+(3)匀加速直线运动2222mgsCB Lm cB L+【解析】【详解】(1)金属棒ab在磁场中恰好保持静止,由BIL=mgE I R r =+ 得 EBL R r mg =- (2)由 220B L v mg R = 得 022mgR v B L = 由动量定理,得mgt BILt mv -= 其中0BLs q It R ==得44220220B L s m gR t mgR B L += (3)K 接3后的充电电流q C U CBL v v I CBL CBLa t t t t ∆∆∆∆=====∆∆∆∆ mg-BIL=ma得22mg a m CB L =+=常数 所以ab 棒的运动性质是“匀加速直线运动”,电流是恒定的.v 22-v 2=2as根据能量转化与守恒得 22211()22E mgs mv mv ∆=-- 解得:2222mgsCB L E m cB L ∆=+ 【点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.6.在如图所示的电路中,两平行正对金属板A 、B 水平放置,两板间的距离d =4.0cm .电源电动势E =400V ,内电阻r =20Ω,电阻R 1=1980Ω.闭合开关S ,待电路稳定后,将一带正电的小球(可视为质点)从B 板上的小孔以初速度v 0=1.0m/s 竖直向上射入两板间,小球恰好能到达A 板.若小球所带电荷量q =1.0×10-7C ,质量m =2.0×10-4kg ,不考虑空气阻力,忽略射入小球对电路的影响,取g =10m/s 2.求:(1)A 、B 两金属板间的电压的大小U ;(2)滑动变阻器消耗的电功率P ;(3)电源的效率η.【答案】(1)U =200V (2)20W (3)0099.5【解析】【详解】(1)小球从B 板上的小孔射入恰好到达A 板的过程中,在电场力和重力作用下做匀减速直线运动,设A 、B 两极板间电压为U ,根据动能定理有:20102qU mgd mv --=-, 解得:U = 200 V .(2)设此时滑动变阻器接入电路中的电阻值为R ,根据闭合电路欧姆定律可知,电路中的电流1E I R R r=++,而 U = IR , 解得:R = 2×103 Ω 滑动变阻器消耗的电功率220U P W R==. (3)电源的效率2121()099.50()P I R R P I R R r η+===++出总. 【点睛】本题电场与电路的综合应用,小球在电场中做匀减速运动,由动能定理求电压.根据电路的结构,由欧姆定律求变阻器接入电路的电阻.7.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质。
高考物理高考物理稳恒电流解题技巧讲解及练习题一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.如图所示,一根有一定电阻的直导体棒质量为、长为L,其两端放在位于水平面内间距也为L的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B,方向垂直于导轨所在平面,时刻,给导体棒一个平行与导轨的初速度,此时可控电阻的阻值为,在棒运动过程中,通过可控电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。
高考物理稳恒电流技巧和方法完整版及练习题及解析一、稳恒电流专项训练1.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.(1)一段横截面积为S 、长为l 的直导线,单位体积内有n 个自由电子,电子电荷量为e .该导线通有电流时,假设自由电子定向移动的速率均为v . (a )求导线中的电流I ;(b )将该导线放在匀强磁场中,电流方向垂直于磁感应强度B ,导线所受安培力大小为F安,导线内自由电子所受洛伦兹力大小的总和为F ,推导F 安=F .(2)正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量.为简化问题,我们假定:粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力F 与m 、n 和v 的关系.(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明) 【答案】(1)I nvSe =证明见答案 (2)213F P nm S υ== 【解析】 (1)(a )电流QI t=,又因为[()]Q ne v St =,代入则I nvSe = (b )F 安=BIL ,I nvSe =,代入则:F 安=BnvSeL ;因为总的自由电子个数N=nSL ,每个自由电子受到洛伦兹力大小f=Bve ,所以F=Nf =BnvSeL=F 安,即F 安=F .(2)气体压强公式的推导:设分子质量为m ,平均速率为v ,单位体积的分子数为n ;建立图示柱体模型,设柱体底面积为S ,长为l ,则l t υ= 柱体体积V Sl = 柱体内分子总数N nV =总因分子向各个方向运动的几率相等,所以在t 时间内与柱体底面碰撞的分子总数为’16N N 总总=设碰前速度方向垂直柱体底面且碰撞是弹性的,则分子碰撞器壁前后,总动量的变化量为2p m N υ∆=,总依据动量定理有Ft p =∆ 又压力Ft p =∆由以上各式得单位面积上的压力2013F F nm S υ== 【点评】本题的第1题中两问都曾出现在课本中,例如分别出现在人教版选修3-1.P42,选修3-1P .42,这两个在上新课时如果老师注意到,并带着学生思考推导,那么这题得分是很容易的.第2问需要利用动量守恒知识,并结合热力学统计知识,通过建立模型,然后进行推导,这对学生能力要求较高,为了处理相应问题,通过建模来处理问题.在整个推导过程并不复杂,但对分析容易对结果造成影响的错误是误认为所有分析都朝同一方向运动,而不是热力学统计结果分子向各个运动方向运动概率大致相等,即要取总分子个数的16. 【考点定位】电流微观表达式、洛伦兹力推导以及压强的微观推导.2.(1)用螺旋测微器测量金属导线的直径,其示数如图所示,该金属导线的直径为 mm .(2)用下列器材装成描绘电阻0R 伏安特性曲线的电路,请将实物图连线成为实验电路. 微安表μA (量程200μA ,内阻约200Ω); 电压表V (量程3V ,内阻约10Ω); 电阻0R (阻值约20 kΩ);滑动变阻器R (最大阻值50Ω,额定电流1 A ); 电池组E (电动势3V ,内阻不计);开关S 及导线若干.【答案】(1)1.880(1.878~1.882均正确) (2)【解析】(1)首先读出固定刻度1.5 mm再读出可动刻度38. 0×0. 01 mm="0.380" mm 金属丝直径为(1.5+0.380) mm="1.880" mm .(注意半刻度线是否漏出;可动刻度需要估读)(2)描绘一个电阻的伏安特性曲线一般要求电压要从0开始调节,因此要采用分压电路.由于0VA 0100,0.5R R R R ==,因此μA 表要采用内接法,其电路原理图为 连线时按照上图中所标序号顺序连接即可.3.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量3310kg m =⨯.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电;(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2);(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考.已知太阳辐射的总功率260410W P =⨯,太阳到地球的距离,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.【答案】(1)31.510W P =⨯电(2)/0.045f mg = (3)2101m S = 【解析】试题分析:⑴31.510W P IU 电==⨯⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg =⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积204πS r =若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则00P S P S '=设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-'由于15%P P =电,所以电池板的最小面积()00130%P SP S =-220004π101?m 0.70.150.7r P PS S P P ===⨯电考点:考查非纯电阻电路、电功率的计算点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是UI 的乘积,求解第3问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放4.如图1所示,用电动势为E 、内阻为r 的电源,向滑动变阻器R 供电.改变变阻器R 的阻值,路端电压U 与电流I 均随之变化.(1)以U 为纵坐标,I 为横坐标,在图2中画出变阻器阻值R 变化过程中U -I 图像的示意图,并说明U-I 图像与两坐标轴交点的物理意义.(2)a .请在图2画好的U -I 关系图线上任取一点,画出带网格的图形,以其面积表示此时电源的输出功率;b .请推导该电源对外电路能够输出的最大电功率及条件.(3)请写出电源电动势定义式,并结合能量守恒定律证明:电源电动势在数值上等于内、外电路电势降落之和.【答案】(1)U –I 图象如图所示:图象与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a如图所示:b.2 4 E r(3)见解析【解析】(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示b.电源输出的电功率:2222 ()2E EP I R RrRrR rR===+++当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)电动势定义式:WEq=非静电力根据能量守恒定律,在图1所示电路中,非静电力做功W产生的电能等于在外电路和内电路产生的电热,即22W I rt I Rt Irq IRq=+=+E Ir IR U U=+=+外内本题答案是:(1)U–I图像如图所示,其中图像与纵轴交点的坐标值为电源电动势,与横轴交点的坐标值为短路电流(2)a.如图所示当外电路电阻R=r时,电源输出的电功率最大,为2max=4EPr(3)E U U =+外内点睛:运用数学知识结合电路求出回路中最大输出功率的表达式,并求出当R =r 时,输出功率最大.5.守恒定律是自然界中某种物理量的值恒定不变的规律,它为我们解决许多实际问题提供了依据.在物理学中这样的守恒定律有很多,例如:电荷守恒定律、质量守恒定律、能量守恒定律等等.(1)根据电荷守恒定律可知:一段导体中通有恒定电流时,在相等时间内通过导体不同截面的电荷量都是相同的.a .己知带电粒子电荷量均为g ,粒子定向移动所形成的电流强度为,求在时间t 内通过某一截面的粒子数N .b .直线加速器是一种通过高压电场使带电粒子加速的装置.带电粒子从粒子源处持续发出,假定带电粒子的初速度为零,加速过程中做的匀加速直线运动.如图l 所示,在距粒子源l 1、l 2两处分别取一小段长度相等的粒子流I ∆.已知l l :l 2=1:4,这两小段粒子流中所含的粒子数分别为n 1和n 2,求:n 1:n 2.(2)在实际生活中经常看到这种现象:适当调整开关,可以看到从水龙头中流出的水柱越来越细,如图2所示,垂 直于水柱的横截面可视为圆.在水柱上取两个横截面A 、B ,经过A 、B 的水流速度大小分别为v I 、v 2;A 、B 直径分别为d 1、d 2,且d 1:d 2=2:1.求:水流的速度大小之 比v 1:v 2.(3)如图3所示:一盛有水的大容器,其侧面有一个水平的短细管,水能够从细管中喷出;容器中水面的面积S l 远远大于细管内的横截面积S 2;重力加速度为g .假设 水不可压缩,而且没有粘滞性.a .推理说明:容器中液面下降的速度比细管中的水流速度小很多,可以忽略不计:b .在上述基础上,求:当液面距离细管的高度为h 时, 细管中的水流速度v .【答案】(1)a. Q It N q q== ;b. 21:2:1n n =;(2)221221::1:4v v d d ==;(3)a.设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv =,由12S S >>,可得12v v <<.所以:液体面下降的速度1v 比细管中的水流速度可以忽略不计. b. 2v gh 【解析】 【分析】 【详解】 (1)a.电流Q I t=, 电量Q Nq = 粒子数Q It N q q== b.根据2v ax =可知在距粒子源1l 、2l 两处粒子的速度之比:12:1:2v v =极短长度内可认为速度不变,根据x v t∆=∆, 得12:2:1t t =根据电荷守恒,这两段粒子流中所含粒子数之比:12:2:1n n = (2)根据能量守恒,相等时间通过任一截面的质量相等,即水的质量相等.也即:2··4v d π处处相等 故这两个截面处的水流的流速之比:221221::1:4v v d d ==(3)a .设:水面下降速度为1v ,细管内的水流速度为v .按照水不可压缩的条件,可知水的体积守恒或流量守恒,即:12Sv Sv = 由12S S >>,可得:12v v <<.所以液体面下降的速度1v 比细管中的水流速度可以忽略不计. b.根据能量守恒和机械能守恒定律分析可知:液面上质量为m 的薄层水的机械能等于细管中质量为m 的小水柱的机械能. 又根据上述推理:液面薄层水下降的速度1v 忽略不计,即10v =. 设细管处为零势面,所以有:21002mgh mv +=+ 解得:2v gh =6.如图所示,固定的水平金属导轨间距L =2 m .处在磁感应强度B =4×l0-2 T 的竖直向上的匀强磁场中,导体棒MN 垂直导轨放置,并始终处于静止状态.已知电源的电动势E =6 V ,内电阻r =0.5 Ω,电阻R =4.5 Ω,其他电阻忽略不计.闭合开关S ,待电流稳定后,试求: (1)导体棒中的电流;(2)导体棒受到的安培力的大小和方向.【答案】(1)1.2 A ; (2)0.096 N ,方向沿导轨水平向左 【解析】 【分析】 【详解】(1)由闭合电路欧姆定律可得:I =64.50.5E A R r =++=1.2A (2)安培力的大小为: F =BIL =0.04×1.2×2N =0.096N安培力方向为沿导轨水平向左7.在图所示的电路中,电源电压U 恒定不变,当S 闭合时R 1消耗的电功率为9W ,当S 断开时R 1消耗的电功率为4W ,求:(1)电阻R 1与R 2的比值是多大?(2)S断开时,电阻R2消耗的电功率是多少?(3)S闭合与断开时,流过电阻R1的电流之比是多少?【答案】2∶1,2W,3∶2【解析】【分析】【详解】(1)当S闭合时R1消耗的电功率为9W,则:2119WUPR==当S断开时R1消耗的电功率为4W,则:21112'()4WUP RR R=+=解得:12:2:1R R=(2)S断开时R1和R2串联,根据公式2P I R=,功率之比等于阻值之比,所以:1122':':2:1P P R R==又因为1'4WP=,所以,S断开时,电阻R2消耗的电功率:22'WP=(3)S闭合时:1UIR=S断开时:12'URIR+=所以:1212'3R RIRI+==8.如图所示的电路中,电炉电阻R=10Ω,电动机线圈的电阻r=1Ω,电路两端电压U=100V,电流表的示数为30A,问:(1)通过电动机的电流为多少?(2)通电一分钟,电动机做的有用功为多少?【答案】(1)I2=20A (2)W=9.6×104J【解析】【详解】根据欧姆定律,通过电炉的电流强度为:11001010UI A AR===根据并联电路中的干路电流和支路电流的关系,则通过电动机的电流强度为:I2=I-I1=20 A.电动机的总功率为P=UI2=100×20 W=2×103W.因发热而损耗的功率为P′=I22r=400 W.电动机的有用功率(机械功率)为P″=P-P′=1.6×103W,电动机通电1 min做的有用功为W=P″t=1.6×103×60 J=9.6×104J.【点睛】题图中的两个支路分别为纯电阻电路(电炉)和非纯电阻电路(电动机).在纯电阻电路中可运用欧姆定律I=U/R直接求出电流强度,而非纯电阻电路中的电流强度只能运用干路和支路中电流强度的关系求出.在非纯电阻电路中,电功大于电热,两者的差值才是有用功.9.如图a所示,处于匀强磁场中的两根足够长、电阻不计的光滑平行金属导轨相距L=1m,导轨平面与水平面成θ=370角,下端连接阻值为R=0.4Ω的电阻.匀强磁场方向垂直于导轨平面向上,磁感应强度为B=0.4T,质量m=0.2Kg、电阻R=0.4Ω的金属杆放在两导轨上,杆与导轨垂直且保持良好接触,金属导轨之间连接一理想电压表.现用一外力F沿水平方向拉杆,使之由静止沿导轨开始下滑,电压表示数U随时间t变化关系如图b所示.取g=10m/s2,sin370=0.6,cos370=0.8求:⑴金属杆在第5s末的运动速率;⑵第5s末外力F的功率;【答案】(1)1m/s (2)-0.8W【解析】【分析】金属杆沿金属导轨方向在三个力作用下运动,一是杆的重力在沿导轨向下方向的分力G1,二是拉力F在沿导轨向下方向的分力F1,三是沿导轨向上方向的安培力,金属杆在这几个力的作用下,向下做加速运动.【详解】(1)如下图所示,F 1是F 的分力,G 1是杆的重力的分力,沿导轨向上方向的安培力未画出,由题设条件知,电压表示数U 随时间t 均匀增加,说明金属杆做的是匀加速运动,由b 图可得金属杆在第5s 末的电压是0.2V ,设此时杆的运动速率为v ,电压为U ,电流I ,由电磁感应定律和欧姆定律有E BLv =因电路中只有两个相同电阻,有1122U E BLv == 解得1v =m/s故金属杆在第5s 末的运动速率是1m/s(2) 金属杆做的是匀加速运动,设加速度为a ,此时杆受的安培力为f ,有va t==0.2m/s 2220.22B L vf BTL R===N1G mg =sin θ=1.2N由牛顿第二定律得11G f F ma --= 110.8F G f ma =--=N由功率公式得10.8P F v ==W因1F 的方向与棒的运动方向相反,故在第5s 末外力F 的功率是--0.8W . 【点睛】由电阻的电压变化情况来分析金属棒的运动情况.10.如图所示,粗糙斜面的倾角θ=37°,半径r =0.5 m 的圆形区域内存在着垂直于斜面向下的匀强磁场.一个匝数n =10匝的刚性正方形线框abcd ,通过松弛的柔软导线与一个额定功率P =1.25 W 的小灯泡A 相连,圆形磁场的一条直径恰好过线框bc 边.已知线框质量m =2 kg ,总电阻R 0=1.25 Ω,边长L >2r ,与斜面间的动摩擦因数μ=0.5.从t =0时起,磁场的磁感应强度按B=2-2πt(T)的规律变化.开始时线框静止在斜面上,在线框运动前,灯泡始终正常发光.设最大静摩擦力等于滑动摩擦力,g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:(1)小灯泡正常发光时的电阻R;(2)线框保持不动的时间内,小灯泡产生的热量Q.【答案】(1)1.25 Ω(2)3.14 J【解析】【分析】(1)根据法拉第电磁感应定律,即可求解感应电动势;由功率表达式,结合闭合电路欧姆定律即可;(2)对线框受力分析,并结合平衡条件,及焦耳定律,从而求得.【详解】(1)由法拉第电磁感应定律有E=ntΦ∆∆得22121100.5 2.5?22BE n r V Vtπππ∆⨯⨯⨯⨯∆===小灯泡正常发光,有P=I2R由闭合电路欧姆定律有E=I(R0+R)则有P=(ER R+)2R,代入数据解得R=1.25 Ω.(2)对线框受力分析如图设线框恰好要运动时,磁场的磁感应强度大小为B′,由力的平衡条件有mg sin θ=F安+f=F安+μmg cos θF安=nB′I×2r联立解得线框刚要运动时,磁场的磁感应强度大小B′=0.4 T线框在斜面上可保持静止的时间1.642/5t s sππ==小灯泡产生的热量Q =Pt =1.25×45πJ =3.14 J.11.麦克斯韦的电磁场理论告诉我们:变化的磁场产生感生电场,该感生电场是涡旋电场;变化的电场也可以产生感生磁场,该感生磁场是涡旋磁场.(1)如图所示,在半径为r 的虚线边界内有一垂直于纸面向里的匀强磁场,磁感应强度大小随时间的变化关系为B =kt (k >0且为常量).将一半径也为r 的细金属圆环(图中未画出)与虚线边界同心放置.①求金属圆环内产生的感生电动势ε的大小.②变化的磁场产生的涡旋电场存在于磁场内外的广阔空间中,在与磁场垂直的平面内其电场线是一系列同心圆,如图中的实线所示,圆心与磁场区域的中心重合.在同一圆周上,涡旋电场的电场强度大小处处相等.使得金属圆环内产生感生电动势的非静电力是涡旋电场对自由电荷的作用力,这个力称为涡旋电场力,其与电场强度的关系和静电力与电场强度的关系相同.请推导金属圆环位置的涡旋电场的场强大小E 感.(2)如图所示,在半径为r 的虚线边界内有一垂直于纸面向里的匀强电场,电场强度大小随时间的变化关系为E =ρt (ρ>0且为常量).①我们把穿过某个面的磁感线条数称为穿过此面的磁通量,同样地,我们可以把穿过某个面的电场线条数称为穿过此面的电通量.电场强度发生变化时,对应面积内的电通量也会发生变化,该变化的电场必然会产生磁场.小明同学猜想求解该磁场的磁感应强度B 感的方法可以类比(1)中求解E 感的方法.若小明同学的猜想成立,请推导B 感在距离电场中心为a (a <r )处的表达式,并求出在距离电场中心2r和2r 处的磁感应强度的比值B 感1:B 感2.②小红同学对上问通过类比得到的B 感的表达式提出质疑,请你用学过的知识判断B 感的表达式是否正确,并给出合理的理由. 【答案】(1)①2k r π ②kr2;(2)①1:1②不正确. 【解析】 【分析】(1)①根据法拉第电磁感应定律求解金属圆环内产生的感生电动势ε的大小.②在金属圆环内,求解非静电力对带电量为-q 的自由电荷所做的功,求解电动势,从而求解感应电场强度;(2)①类比(1)中求解E 感的过程求解 两处的磁感应强度的比值;②通过量纲分析表达式的正误. 【详解】(1)①根据法拉第电磁感应定律得()2B S BS k r t t tεπ∆⋅∆Φ∆====∆∆∆ ②在金属圆环内,非静电力对带电量为-q 的自由电荷所做的功W 非=qE 感·2πr 根据电动势的定义W q非ε=解得感生电场的场强大小22krE r t π∆Φ==∆感 (2)①类比(1)中求解E 感的过程,在半径为R 处的磁感应强度为2eB R tπ∆Φ=∆感 在R=a 时,2e E a πΦ=,解得2aB ρ=感在R=2r 时, 212e r E π⎛⎫Φ= ⎪⎝⎭,解得14r B ρ=感 将R=2r 时, 22e E r πΦ=,解得24rB ρ=感所以1211B B =感感 ② 上问中通过类比得到的B 感的表达式不正确;因为通过量纲分析我们知道:用基本物理量的国际单位表示2eB R tπ∆Φ=∆感的导出单位为24kg m A s ⋅⋅ ;又因为F B IL =,用基本物理量的国际单位表示F B IL =的导出单位为2kgA s ⋅.可见,通过类比得到的B 感的单位是不正确的,所以2e B R t π∆Φ=∆感的表达式不正确. 【点睛】考查电磁学综合运用的内容,掌握法拉第电磁感应定律、电场强度和磁感应强度的应用,会用类比法解决问题以及用物理量的量纲判断表达式的正误.12.如图甲所示,发光竹蜻蜓是一种常见的儿童玩具,它在飞起时能够发光.某同学对竹蜻蜓的电路作如下简化:如图乙所示,半径为L 的金属圆环绕垂直于圆环平面、通过圆心O 的金属轴O 1O 2以角速度ω匀速转动,圆环上接有电阻均为r 的三根导电辐条OP 、OQ 、OR ,辐条互成120°角.在圆环内,圆心角为120°的扇形区域内存在垂直圆环平面向下磁感应强度为B 的匀强磁场,在转轴O 1O 2与圆环的边缘之间通过电刷M 、N 与一个LED 灯(可看成二极管,发光时电阻为r ).圆环及其它电阻不计,从辐条OP 进入磁场开始计时.(1)顺磁感线方向看,圆盘绕O 1O 2轴沿什么方向旋转,才能使LED 灯发光?在不改变玩具结构的情况下,如何使LED 灯发光时更亮?(2)在辐条OP 转过60°的过程中,求通过LED 灯的电流; (3)求圆环每旋转一周,LED 灯消耗的电能.【答案】(1)逆时针;增大角速度(2)28BL r ω(3)2432B L rωπ【解析】试题分析:(1)圆环转动过程,始终有一条导电辐条在切割磁感线,产生感应电动势,并通过M.N 和二极管构成闭合回路.由于二极管的单向导电性,只有转轴为正极,即产生指向圆心的感应电流时二极管才发光,根据右手定则判断,圆盘逆时针旋转. 要使得LED 灯发光时更亮,就要使感应电动势变大,即增大转速增大角速度ω. (2)导电辐条切割磁感线产生感应电动势212E BL ω=此时O 点相当于电源正极,P 点为电源负极,电源内阻为r 电源外部为二个导体辐条和二极管并联,即外阻为3r . 通过闭合回路的电流343E E I r r r ==+带入即得22133248BL BL I r rωω⨯==流过二极管电流为238I BL rω=(3)转动过程始终有一个导电辐条在切割磁感线,所以经过二极管的电流不变 转过一周所用时间2T πω=所以二极管消耗的电能2422'()332I B L Q I rT rT rωπ===考点:电磁感应 串并联电路13.如图所示,水平面内固定的三条光滑平行金属导轨a 、b 、c ,相距均为d=2m ,导轨ac 间横跨一质量为m=1kg 的金属棒MN ,棒与导轨始终良好接触.棒的总电阻r=2Ω,导轨的电阻忽略不计.在导轨bc 间接一电阻为R=2Ω的灯泡,导轨ac 间接一理想电压表.整个装置放在磁感应强度B=2T 匀强磁场中,磁场方向垂直导轨平面向下.现对棒MN 施加一水平向右的拉力F ,使棒从静止开始运动,已知施加的水平外力功率恒定,经过t=2s 时间棒的速度达到υ=3m/s 且以后稳定.试求:(1)金属棒速度稳定时施加的水平恒力F 为多大? (2)水平外力F 的功率为多少?(3)在此t=2s 时间内金属棒产生的热量是多少? 【答案】(1)16N (2)48W (3)30.5J 【解析】试题分析:(1)金属棒速度达到稳定,有:0=-安F F 而BId F =安,2/r R υBd I +=联立得:F=16N (2)υF P ==48W(3)设小灯泡和金属棒产生的热量分别为1Q 、2Q ,根据焦耳定律得知: 22/21==r R Q Q 由功能关系得:Pt=1Q +2Q +221υm代入数据得:2Q =30.5J考点:法拉第电磁感应定律;焦耳定律;功能关系14.如图甲所示,在一对平行光滑的金属导轨的上端连接一阻值为R=4Ω的定值电阻,两导轨在同一平面内,质量为m=0.2kg ,长为L=1.0m 的导体棒ab 垂直于导轨,使其从靠近电阻处由静止开始下滑,已知导体棒电阻为r=1Ω,整个装置处于垂直于导轨平面向上的匀强磁场中,导体棒下滑过程中加速度a 与速度v 的关系如图乙所示.求:(1)导轨平面与水平面间夹角θ (2)磁场的磁感应强度B ;(3)若靠近电阻处到底端距离为S=7.5m ,ab 棒在下滑至底端前速度已达5m/s ,求ab 棒下滑到底端的整个过程中,电阻R 上产生的焦耳热.【答案】(1)导轨平面与水平面间夹角θ为30°.(2)磁场的磁感应强度B为1T.(3)ab棒下滑到底端的整个过程中,电阻R上产生的焦耳热是4J.【点评】本题的解题关键是根据牛顿第二定律和安培力公式推导出安培力与速度的关系式,结合图象的信息求解相关量.【解析】试题分析:(1)设刚开始下滑时导体棒的加速度为a1,则a1=5得:(2)当导体棒的加速度为零时,开始做匀速运动,设匀速运动的速度为v0,导体棒上的感应电动势为E,电路中的电流为I,由乙图知,匀速运动的速度v0=5此时,,,联立得:(4)设ab棒下滑过程,产生的热量为Q,电阻R上产生的热量为Q R,则,考点:本题考查电磁感应、能量守恒15.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角θ=30°,导轨电阻不计.磁感应强度为B=2T的匀强磁场垂直导轨平面向上,长为L=0.5m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨电接触良好,金属棒ab的质量m=1kg、电阻r=1Ω.两金属导轨的上端连接右端电路,灯泡电阻R L=4Ω,定值电阻R1=2Ω,电阻箱电阻R2=12Ω,重力加速度为g=10m/s2,现闭合开关,将金属棒由静止释放,下滑距离为s0=50m时速度恰达到最大,试求:(1)金属棒下滑的最大速度v m;(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q.【答案】(1)30m/s(2)50J【解析】解:(1)由题意知,金属棒匀速下滑时速度最大,设最大速度为v m,则有:mgsinθ=F安又 F安=BIL,即得mgsinθ=BIL…①ab棒产生的感应电动势为 E=BLv m…②通过ab的感应电流为 I=…③回路的总电阻为 R=r+R1+…④联解代入数据得:v m=30m/s…⑤(2)由能量守恒定律有:mg•2s0sinθ=Q+…⑥联解代入数据得:Q=50J…⑦答:(1)金属棒下滑的最大速度v m是30m/s.(2)金属棒由静止开始下滑2s0的过程中整个电路产生的电热Q是50J.【点评】本题对综合应用电路知识、电磁感应知识和数学知识的能力要求较高,但是常规题,要得全分.。
高考物理稳恒电流技巧和方法完整版及练习题及解析一、稳恒电流专项训练1.如图所示,水平轨道与半径为r 的半圆弧形轨道平滑连接于S 点,两者均光滑且绝缘,并安装在固定的竖直绝缘平板上.在平板的上下各有一个块相互正对的水平金属板P 、Q ,两板间的距离为D .半圆轨道的最高点T 、最低点S 、及P 、Q 板右侧边缘点在同一竖直线上.装置左侧有一半径为L 的水平金属圆环,圆环平面区域内有竖直向下、磁感应强度大小为B 的匀强磁场,一个根长度略大于L 的金属棒一个端置于圆环上,另一个端与过圆心1O 的竖直转轴连接,转轴带动金属杆逆时针转动(从上往下看),在圆环边缘和转轴处引出导线分别与P 、Q 连接,图中电阻阻值为R ,不计其它电阻,右侧水平轨道上有一带电量为+q 、质量为12m 的小球1以速度052gr v =,向左运动,与前面静止的、质量也为12m 的不带电小球2发生碰撞,碰后粘合在一起共同向左运动,小球和粘合体均可看作质点,碰撞过程没有电荷损失,设P 、Q 板正对区域间才存在电场.重力加速度为g . (1)计算小球1与小球2碰后粘合体的速度大小v ;(2)若金属杆转动的角速度为ω,计算图中电阻R 消耗的电功率P ;(3)要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,计算金属杆转动的角速度的范围.【答案】(1) 52gr v = (2) 2424B L P Rω= (3) 2mgd qBL ≤ω≤27mgd qBL 【解析】 【分析】 【详解】(1)两球碰撞过程动量守恒,则0111()222mv m m v =+ 解得52grv =(2)杆转动的电动势21122BLv BL L BL εωω==⨯= 电阻R 的功率22424B L P R Rεω==(3)通过金属杆的转动方向可知:P 、Q 板间的电场方向向上,粘合体受到的电场力方向向上.在半圆轨道最低点的速度恒定,如果金属杆转动角速度过小,粘合体受到的电场力较小,不能达到最高点T ,临界状态是粘合体刚好达到T 点,此时金属杆的角速度ω1为最小,设此时对应的电场强度为E 1,粘合体达到T 点时的速度为v 1.在T 点,由牛顿第二定律得211v mg qE m r-=从S 到T ,由动能定理得2211112222qE r mg r mv mv ⋅-⋅=- 解得12mgE q=杆转动的电动势21112BL εω= 两板间电场强度11E dε=联立解得12mgdqBL ω=如果金属杆转动角速度过大,粘合体受到的电场力较大,粘合体在S 点就可能脱离圆轨道,临界状态是粘合体刚好在S 点不脱落轨道,此时金属杆的角速度ω2为最大,设此时对应的电场强度为E 2.在S 点,由牛顿第二定律得22v qE mg m r-=杆转动的电动势22212BL εω= 两板间电场强度22E dε=联立解得227mgdqBL ω=综上所述,要使两球碰后的粘合体能从半圆轨道的最低点S 做圆周运动到最高点T ,金属杆转动的角速度的范围为:227mgd mgdqBL qBL ω≤≤.2.微波炉的工作应用了一种电磁波——微波(微波的频率为2.45×106Hz ).食物中的水分子在微波的作用下加剧了热运动,内能增加,温度升高,食物增加的能量是微波给它的.右下表是某微波炉的部分技术参数,问:(1)该微波炉内磁控管产生的微波波长是多少? (2)该微波炉在使用微波挡工作时的额定电流是多少?(3)如果做一道菜,使用微波挡需要正常工作30min ,则做这道菜需消耗的电能为多少? 【答案】(1)0.12m (2)5A (3)61.9810J ⨯ 【解析】 【分析】由c =λf 求得λ;额定电流=额定功率除以额定电压;消耗的电能等于功率与时间的乘积. 【详解】(1)波长为863100.12245010c m m f λ⨯===⨯. (2)额定电流:11005220P I A A U ===. (3)消耗的电能 E =W =Pt =1100×1800=1.98×106J . 【点睛】本题主要考查了电功率和电能的计算,属于基础题.3.已知电流表的内阻R g =120 Ω,满偏电流I g =3 mA ,要把它改装成量程是6 V 的电压表,应串联多大的电阻?要把它改装成量程是3 A 的电流表,应并联多大的电阻? 【答案】改装成量程是6 V 的电压表,应串联1 880 Ω的电阻; 要把它改装成量程是3 A 的电流表,应并联0.12 Ω的电阻. 【解析】 【分析】 【详解】根据欧姆定律和串联电路特点可知,需串联的电阻1880g gUR R I =-=Ω; 同理,根据欧姆定律的并联电路的特点可知,改装成3A 电流表需并联的电阻0.12g g gI R R I I ==Ω-.4.一根粗细均匀的金属导线,两端加上恒定电压10 V 时,通过金属导线的电流为2 A ,求:①金属导线电阻;②金属导线在10 s 内产生的热量. 【答案】(1)5 Ω (2)200 J【解析】试题分析:根据欧姆定律和焦耳定律即可解题。
专题检测(二十五) 题型技法——3步稳解物理计算题1.(2018届高三·乐山六校联考)在短道速滑世锦赛女子500米决赛中,接连有选手意外摔倒,由于在短道速滑比赛中很难超越对手,因而在比赛开始阶段每个选手都要以最大的加速度加速,在过弯道前超越对手。
为提高速滑成绩,选手在如下场地进行训练:赛道的直道长度为L =30 m ,弯道半径为R =2.5 m 。
忽略冰面对选手的摩擦力,且冰面对人的弹力沿身体方向。
在过弯道时,身体与冰面的夹角θ的最小值为45°,直线加速过程视为匀加速过程,加速度a =1 m/s 2。
若训练过程中选手没有减速过程,为保证速滑中不出现意外情况,选手在直道上速滑的最短时间为多少?(g 取10 m/s 2)解析:若选手在直道上一直加速,选手能达到的最大速度为v 1 根据运动学公式有v 12=2aL 解得v 1= 60 m/s设选手过弯道时,允许的最大速度为v 2 此时选手过弯道时的向心力为F =mgtan 45°根据牛顿第二定律和圆周运动的知识有F =m v 22R解得v 2=5 m/s由于v 1>v 2,因而选手允许加速达到的最大速度为v 2设选手在直道上加速的最大距离为x ,根据运动学公式有v 22=2ax 设选手在直道上加速运动的时间为t 1,匀速运动的时间为t 2,则有v 2=at 1,L -x =v 2t 2选手在直道上运动的最短时间为t =t 1+t 2 联立解得t =8.5 s 。
答案:8.5 s2.为了研究过山车的原理,某物理小组提出了下列的设想:取一个与水平方向夹角为θ=60°,长为L 1=2 3 m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32m 的水平轨道BC 相连,然后在C 处设计一个竖直完整的光滑圆轨道,如图所示。
现将一个小球从距A 点高为h =0.9 m 的水平台面上以一定的初速度v 0水平弹出,到A 点时速度方向恰沿AB 方向,并沿倾斜轨道滑下。
高考物理稳恒电流技巧和方法完整版及练习题含解析一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.如图,ab 和cd 是两条竖直放置的长直光滑金属导轨,MN 和M′N′是两根用细线连接的金属杆,其质量分别为m 和2m.竖直向上的外力F 作用在杆MN 上,使两杆水平静止,并刚好与导轨接触;两杆的总电阻为R ,导轨间距为l.整个装置处在磁感应强度为B 的匀强磁场中,磁场方向与导轨所在平面垂直.导轨电阻可忽略,重力加速度为g.在t =0时刻将细线烧断,保持F 不变,金属杆和导轨始终接触良好.求:(1)细线烧断后,任意时刻两杆运动的速度之比; (2)两杆分别达到的最大速度. 【答案】(1)1221v v = (2)12243mgR v B l = ;22223mgR v B l= 【解析】 【分析】细线烧断前对MN 和M'N'受力分析,得出竖直向上的外力F=3mg ,细线烧断后对MN 和M'N'受力分析,根据动量守恒求出任意时刻两杆运动的速度之比.分析MN 和M'N'的运动过程,找出两杆分别达到最大速度的特点,并求出. 【详解】解:(1)细线烧断前对MN 和M'N'受力分析,由于两杆水平静止,得出竖直向上的外力F=3mg .设某时刻MN 和M'N'速度分别为v 1、v 2. 根据MN 和M'N'动量守恒得出:mv 1﹣2mv 2=0 解得:122v v =: ① (2)细线烧断后,MN 向上做加速运动,M'N'向下做加速运动,由于速度增加,感应电动势增加,MN 和M'N'所受安培力增加,所以加速度在减小.当MN 和M'N'的加速度减为零时,速度最大.对M'N'受力平衡:BIl=2mg②,EI R=③,E=Blv 1+Blv 2 ④ 由①﹣﹣④得:12243mgR v B l =、22223mgRv B l = 【点睛】能够分析物体的受力情况,运用动量守恒求出两个物体速度关系.在直线运动中,速度最大值一般出现在加速度为0的时刻.3.环保汽车将为2008年奥运会场馆服务.某辆以蓄电池为驱动能源的环保汽车,总质量3310kg m =⨯.当它在水平路面上以v =36km/h 的速度匀速行驶时,驱动电机的输入电流I =50A ,电压U =300V .在此行驶状态下 (1)求驱动电机的输入功率P 电;(2)若驱动电机能够将输入功率的90%转化为用于牵引汽车前进的机械功率P 机,求汽车所受阻力与车重的比值(g 取10m/s 2);(3)设想改用太阳能电池给该车供电,其他条件不变,求所需的太阳能电池板的最小面积.结合计算结果,简述你对该设想的思考.已知太阳辐射的总功率260410W P =⨯,太阳到地球的距离,太阳光传播到达地面的过程中大约有30%的能量损耗,该车所用太阳能电池的能量转化效率约为15%.【答案】(1)31.510W P =⨯电(2)/0.045f mg = (3)2101m S = 【解析】试题分析:⑴31.510W P IU 电==⨯⑵0.9P P Fv fv 电机===0.9/f P v =电/0.045f mg =⑶当太阳光垂直电磁板入射式,所需板面积最小,设其为S ,距太阳中心为r 的球面面积204πS r =若没有能量的损耗,太阳能电池板接受到的太阳能功率为P ',则00P S P S '= 设太阳能电池板实际接收到的太阳能功率为P , 所以()130%P P =-'由于15%P P =电,所以电池板的最小面积()00130%P SP S =-220004π101?m 0.70.150.7r P PS S P P ===⨯电考点:考查非纯电阻电路、电功率的计算点评:本题难度中等,对于非纯电阻电路欧姆定律不再适用,但消耗电功率依然是UI 的乘积,求解第3问时从能量守恒定律考虑问题是关键,注意太阳的发射功率以球面向外释放4.超导现象是20世纪人类重大发现之一,日前我国己研制出世界传输电流最大的高温超导电缆并成功示范运行.(l )超导体在温度特别低时电阻可以降到几乎为零,这种性质可以通过实验研究.将一个闭合超导金属圈环水平放置在匀强磁场中,磁感线垂直于圈环平面向上,逐渐降低温度使环发生由正常态到超导态的转变后突然撤去磁场,若此后环中的电流不随时间变化.则表明其电阻为零.请指出自上往下看环中电流方向,并说明理由.(2)为探究该圆环在超导状态的电阻率上限ρ,研究人员测得撤去磁场后环中电流为I,并经一年以上的时间t未检测出电流变化.实际上仪器只能检测出大于△I的电流变化,其中△I<<I,当电流的变化小于△I时,仪器检测不出电流的变化,研究人员便认为电流没有变化.设环的横截面积为S,环中定向移动电子的平均速率为v,电子质量为m、电荷量为e.试用上述给出的各物理量,推导出ρ的表达式.(3)若仍使用上述测量仪器,实验持续时间依旧为t.为使实验获得的该圆环在超导状态的电阻率上限ρ的准确程度更高,请提出你的建议,并简要说明实现方法.【答案】(1)见解析(2)(3)见解析【解析】(1)逆时针方向。
高考物理稳恒电流技巧和方法完整版及练习题含解析一、稳恒电流专项训练1. 4~1.0T 范围内,磁敏电阻的阻值随磁感应强度线性变化(或均匀变化) (4)磁场反向,磁敏电阻的阻值不变. 【解析】(1)当B =0.6T 时,磁敏电阻阻值约为6×150Ω=900Ω,当B =1.0T 时,磁敏电阻阻值约为11×150Ω=1650Ω.由于滑动变阻器全电阻20Ω比磁敏电阻的阻值小得多,故滑动变阻器选择分压式接法;由于xVA xR R R R >,所以电流表应内接.电路图如图所示.(2)方法一:根据表中数据可以求得磁敏电阻的阻值分别为:130.4515000.3010R -=Ω=Ω⨯,230.911516.70.6010R -=Ω=Ω⨯,331.5015001.0010R -=Ω=Ω⨯,431.791491.71.2010R -=Ω=Ω⨯,532.7115051.8010R -=Ω=Ω⨯, 故电阻的测量值为1234515035R R R R R R ++++=Ω=Ω(1500-1503Ω都算正确.) 由于0150010150R R ==,从图1中可以读出B =0.9T 方法二:作出表中的数据作出U -I 图象,图象的斜率即为电阻(略).(3)在0~0.2T 范围,图线为曲线,故磁敏电阻的阻值随磁感应强度非线性变化(或非均匀变化);在0.4~1.0T 范围内,图线为直线,故磁敏电阻的阻值随磁感应强度线性变化(或均匀变化);(4)从图3中可以看出,当加磁感应强度大小相等、方向相反的磁场时,磁敏电阻的阻值相等,故磁敏电阻的阻值与磁场方向无关.本题以最新的科技成果为背景,考查了电学实验的设计能力和实验数据的处理能力.从新材料、新情景中舍弃无关因素,会看到这是一个考查伏安法测电阻的电路设计问题,及如何根据测得的U 、I 值求电阻.第(3)、(4)问则考查考生思维的灵敏度和创新能力.总之本题是一道以能力立意为主,充分体现新课程标准的三维目标,考查学生的创新能力、获取新知识的能力、建模能力的一道好题.2.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m .(1)闭合开关S 稳定后,求电容器所带的电荷量为多少?(2)当开关S 闭合后,有一未知的、待研究的带电粒子沿虚线方向以v0=2.0m/s 的初速度射入MN 的电场中,已知该带电粒子刚好从极板的右侧下边缘穿出电场,求该带电粒子的比荷q/m (不计粒子的重力,M 、N 板之间的电场看作匀强电场,g=10m/s 2)【答案】(1)114.810C -⨯ (2)46.2510/C kg -⨯【解析】 【分析】 【详解】(1)闭合开关S 稳定后,电路的电流:12282482E I A A R R r ===++++;电容器两端电压:222816R U U IR V V ===⨯=;电容器带电量: 12112 3.01016 4.810R Q CU C C --==⨯⨯=⨯(2)粒子在电场中做类平抛运动,则:0L v t =21122Uq d t dm= 联立解得46.2510/qC kg m-=⨯3.如图所示,闭合电路处于方向竖直向上的磁场中,小灯泡的电阻为10Ω,其它电阻不计.当磁通量在0. 1s 内从0.2Wb 均匀增加到0.4Wb 过程中,求:①电路中的感应电动势;②如果电路中的电流恒为0.2A ,那么小灯泡在10s 内产生的热量是多少.【答案】(1)2V (2)4J 【解析】(1)当磁通量发生变化时,闭合电路中要产生感应电动势,根据法拉第电磁感应定律,感应电动势大小为:0.40.220.1E V V t ∆Φ-===∆ (2)当小灯泡上的电流为I=0.2A 时,根据焦耳定律,10s 钟内产生的热量为: Q=I 2Rt=0.22×10×10J=4J4.一小型发电机内的矩形线圈在匀强磁场中以恒定的角速度ω绕垂直于磁场方向的固定轴转动,线圈匝数100n =,穿过每匝线圈的磁通量ϕ随时间按正弦规律变化,如图所示,发电机内阻 5.0r =Ω,外电路电阻95R =Ω,已知感应电动势的最大值m m E n ω=Φ,其中m Φ为穿过每匝线圈磁通量的最大值,求串联在外电路的交流电流表(内阻不计)的读数。
高考物理稳恒电流技巧和方法完整版及练习题含解析一、稳恒电流专项训练1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大?【答案】(1)238mg B L (2)1238mgrB B dL【解析】试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =34I ① I dc =14I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③由①~③,解得I ab =2234mgB L ④ (2)由(1)可得I =22mgB L ⑤设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =34r ⑦ 根据闭合电路欧姆定律,有I =E R⑧ 由⑤~⑧,解得v =121234mgrB B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.2.如图所示,一根有一定电阻的直导体棒质量为、长为L,其两端放在位于水平面内间距也为L的光滑平行导轨上,并与之接触良好;棒左侧两导轨之间连接一可控电阻;导轨置于匀强磁场中,磁场的磁感应强度大小为B,方向垂直于导轨所在平面,时刻,给导体棒一个平行与导轨的初速度,此时可控电阻的阻值为,在棒运动过程中,通过可控电阻的变化使棒中的电流强度保持恒定,不计导轨电阻,导体棒一直在磁场中。
专题检测(二十五) 题型技法——3步稳解物理计算题
1.(2018届高三·乐山六校联考)在短道速滑世锦赛女子500米决赛中,接连有选手意外摔倒,由于在短道速滑比赛中很难超越对手,因而在比赛开始阶段每个选手都要以最大的加速度加速,在过弯道前超越对手。
为提高速滑成绩,选手在如下场地进行训练:赛道的直道长度为L =30 m ,弯道半径为R =2.5 m 。
忽略冰面对选手的摩擦力,且冰面对人的弹力沿身体方向。
在过弯道时,身体与冰面的夹角θ的最小值为45°,直线加速过程视为匀加速过程,加速度a =1 m/s 2。
若训练过程中选手没有减速过程,为保证速滑中不出现意外情况,选手在直道上速滑的最短时间为多少?(g 取10 m/s 2
)
解析:若选手在直道上一直加速,选手能达到的最大速度为v 1 根据运动学公式有v 12=2aL 解得v 1= 60 m/s
设选手过弯道时,允许的最大速度为v 2 此时选手过弯道时的向心力为F =
mg
tan 45°
根据牛顿第二定律和圆周运动的知识有F =m v 22
R
解得v 2=5 m/s
由于v 1>v 2,因而选手允许加速达到的最大速度为v 2
设选手在直道上加速的最大距离为x ,根据运动学公式有v 22=2ax 设选手在直道上加速运动的时间为t 1,匀速运动的时间为t 2,则有 v 2=at 1,L -x =v 2t 2
选手在直道上运动的最短时间为t =t 1+t 2 联立解得t =8.5 s 。
答案:8.5 s
2.为了研究过山车的原理,某物理小组提出了下列的设想:取一个与水平方向夹角为θ=60°,长为L 1=2 3 m 的倾斜轨道AB ,通过微小圆弧与长为L 2=32
m 的水平轨道BC 相
连,然后在C 处设计一个竖直完整的光滑圆轨道,如图所示。
现将一个小球从距
A点高为h=0.9 m的水平台面上以一定的初速度v
水平弹出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下。
已知小球与AB和BC间的动摩擦因数均为
μ=
3
3。
g取10 m/s2,求:
(1)小球初速度v
的大小;
(2)小球到达C点时速度v
C
的大小;
(3)要使小球不离开轨道,则竖直圆弧轨道的半径R应该满足什么条件。
解析:(1)由平抛运动:v
y
2=2gh
得v
y
=2gh=2×10×0.9 m/s=3 2 m/s
A点tan 60°=
v
y
v
得v
=
v
y
tan 60°
=
32
3
m/s= 6 m/s。
(2)从水平抛出到C点,由动能定理得:
mg(h+L
1
sin θ)-μmgL
1
cos θ-μmgL
2
=
1
2
mv
C
2-
1
2
mv
2
得v
C
=3 6 m/s。
(3)小球恰好能过最高点时,mg=
mv2
R
1
由机械能守恒得
1
2
mv
C
2=2mgR
1
+
1
2
mv2
解得R
1
=1.08 m
当小球刚能达到与圆心等高时
1
2
mv
C
2=mgR
2
解得R
2
=2.7 m
当圆轨道与AB相切时R
3
=BC·tan 60°=1.5 m
即圆轨道的半径不能超过1.5 m
综上所述,要使小球不离开轨道,R应该满足的条件是
0<R≤1.08 m。
答案:(1) 6 m/s (2)3 6 m/s (3)0<R≤1.08 m
3.如图所示,挡板P固定在足够高的倾角为θ=37°
的斜面上,小物块A、B的质量均为m,两物块由劲度系数为k的轻弹簧相连,两物块与斜面间的动摩擦因数均为μ=0.5。
一不可伸长的轻绳跨过滑轮,一端与物块B连接,另一端连接一轻质小钩。
初始小物块A、B静止,且物块B恰不下滑。
若在小钩上挂一质量为M的物块C并由静止释放,当物块C运动到最低点时,小物块A恰好离开挡板P。
重力加速度为g,sin 37°=0.6,cos 37°=0.8。
(1)求物块C下落的最大高度;
(2)求物块C由静止开始运动到最低点的过程中,弹簧弹性势能的变化量;
(3)若把物块C换成质量为(M+m)的物块D,小物块A恰离开挡板P时小物块B的速度为多大?
解析:(1)初始弹簧处于压缩状态,设弹簧的压缩量为x
1
,以小物块B为研究对象,则有
mgsin θ=kx
1
+μmgcos θ
小物块A恰离开挡板P时,弹簧处于伸长状态,设弹簧的伸长量为x
2
,以小物块A为研究对象,则有
mgsin θ+μmgcos θ=kx
2
设物块C下落的最大高度为h,则有h=x
1+x
2
联立解得h=6mg
5k。
(2)设弹簧的弹性势能变化量为ΔE
p
,对于小物块A、B、C和轻弹簧组成的系统,根据能量转化和守恒定律有
Mgh=mghsin θ+μmghcos θ+ΔE
p
解得ΔE
p =(M-m)gh=
6(M-m)mg2
5k。
(3)设物块C换为物块D后,小物块A恰离开挡板P时小物块B的速度为v 对于小物块A、B、D和轻弹簧组成的系统,根据能量转化和守恒定律有
(M+m)gh=mghsin θ+μmghcos θ+ΔE
p +
1
2
(M+2m)v2
解得物块B的速度为v=2mg
3
5k(M+m)。
答案:(1)6mg
5k
(2)
6(M-m)mg2
5k
(3)2mg
3
5k(M+m)。