【新课标】2018年最新华东师大版九年级数学下册《二次函数》同步练习题1及答案
- 格式:docx
- 大小:41.09 KB
- 文档页数:3
第26章二次函数达标测试卷一、选择题(每题3分,共24分)1.下列函数中,是二次函数的是()A.y=5x2B.y=22-2x C.y=2x2-3x3+1 D.y=1 x22.抛物线y=3(x-1)2+8的顶点坐标为()A.(1,8) B.(-1,8) C.(-1,-8) D.(1,-8) 3.某商场第1年销售计算机5 000台,设平均每年的销售量增长率为x,第3年的销售量为y台,则y关于x的函数表达式为()A y=5 000(1+2x)B y=5 000(1+x)2C y=5 000(1-2x)D y=5 000(1-x)2 4.在平面直角坐标系中,抛物线y=2x2保持不动,将x轴向上平移1个单位(y轴不动),则在新坐标系下抛物线的表达式是()A.y=2x2+1 B.y=2x2-1 C.y=2(x-1)2D.y=2(x+1)2 5.已知点A(2,y1)、B(3,y2)、C(-1,y3)均在抛物线y=ax2-4ax+c(a >0)上,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1<y3<y2 C.y2<y1<y3D.y2<y3<y1 6.二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象为()7.若二次函数y=-x2+mx在-2≤x≤1时的最大值为5,则m的值是()A.-2 5或6 B.2 5或6 C.-92或6 D.-92或-2 5 8.如图,在平面直角坐标系中,抛物线y=13x2经过平移得到抛物线y=ax2+bx,其对称轴与两段抛物线所围成的阴影部分的面积为83,则a,b的值分别为()A.13,43 B.13,-23 C.13,-43D.-13,43(第8题) (第13题) (第14题)二、填空题(每题3分,共18分)9.已知点P⎝ ⎛⎭⎪⎫a,12在抛物线y=2x2上,则a等于________.10.抛物线y=x2+6x+c与x轴有且只有1个公共点,则c=________.11.某小型无人机着陆后滑行的距离s(米)关于滑行的时间t(秒)的函数表达式是s=-0.25t2+10t,那么无人机着陆后滑行__ _秒才能停下来.12.已知二次函数y=ax2+bx+c,x与y的部分对应值如下表:则不等式ax2+bx+c>-3的解集为________.13.如图,过点A(0,4)作平行于x轴的直线AC,分别交抛物线y1=x2(x≥0)与y2=14x2(x≥0)于点B、C,则BC的长是________.14.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①ac<0;②a+b=0;③a+b+c>0;④b2-4ac<0.其中正确的是___(填序号)三、解答题(第15,16题每题5分,第17~19题每题6分,第20,21题每题8分,第22题10分,其余每题12分,共78分)15.一抛物线以(-1,9)为顶点,且经过x轴上一点(-4,0),求该抛物线的表达式及抛物线与y轴的交点坐标.16.如图,二次函数y=-x2+bx+c的图象经过坐标原点,且与x轴交于点A(-2,0).(1)求此二次函数的表达式;(2)结合图象,直接写出满足y>0的x的取值范围.(第16题)17.一名男生推铅球,铅球行进高度y(m)与水平距离x(m)之间满足关系式y=-112x2+23x+53.(1)求铅球离手时的高度;(2)求铅球推出的最大距离.18.在平面直角坐标系中,二次函数y=-2x2+bx+c的图象经过点A(-2,4)和点B(1,-2).(1)求这个二次函数的表达式及其图象的顶点坐标;(2)平移该二次函数的图象,使其顶点恰好落在原点的位置上,请直接写出平移方法.19.某网店正在热销一款电子产品,其成本为每件10元,销售过程中发现,该商品每天的销量y(件)与销售单价x(元)之间存在如图所示的函数关系.(1)求y与x之间的函数关系式;(2)该款电子产品的销售单价为多少时,每天的销售利润最大?最大利润是多少?(第19题)20.如图,已知抛物线y=ax2+(a-1)x+3(a≠0)与x轴交于A、B(1,0)两点,与y轴交于点C.(1)点C的坐标为________;(2)将抛物线y=ax2+(a-1)x+3平移,使平移后的抛物线仍经过点B,与x轴的另一个交点为B′,且点B′的坐标为(3,0),求平移后的抛物线的表达式.(第20题) 21.现有一面12米长的墙,某农户计划用28米长的篱笆靠墙围成一个如图所示的矩形养鸡场ABCD.(1)若矩形养鸡场的面积为90平方米,求所用的墙长AD;(2)求矩形养鸡场的最大面积.(第21题)22.如图,矩形OABC的顶点A、C的坐标为A(2 3,0)、C(0,2),抛物线y=-x2+bx+c经过点B、C.(1)求该抛物线的表达式;(2)将矩形OABC绕原点O顺时针旋转一个角度α(0°<α<90°),在旋转过程中,当矩形的顶点A的对应点A′落在抛物线的对称轴上时,求此时点A′的坐标.(第22题)23.某班数学兴趣小组对函数y =x 2-2|x |的图象和性质进行了探究,探究过程如下,请补充完整.(1)自变量x 的取值范围是全体实数,x 与y 的几组对应值如下表:其中m =__________;(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分;(3)(3)观察函数图象,写出两条函数的性质;(4)进一步探究函数图象发现:①函数图象与x 轴有__________个交点,对应的方程x 2-2|x |=0有__________个实数根;②方程x 2-2|x |=2有__________个实数根;③关于x 的方程x 2-2|x |=a 有4个实数根时,a 的取值范围是__________.(第23题)答案一、1.A 2.A 3.B 4.B5.A 【点拨】∵y =ax 2-4ax +c ,且a >0, ∴图象开口向上,对称轴是直线x =--4a2a =2, ∴x ≥2时,y 随x 的增大而增大,∵C (-1,y 3)关于直线x =2的对称点是(5,y 3),2<3<5,∴y 1<y 2<y 3. 6.C7.C 【点拨】∵y =-x 2+mx ,∴图象开口向下,对称轴为直线x =-m 2×(-1)=m2.①当m 2≤-2,即m ≤-4时,函数在x =-2时取得最大值5,∴-4-2m =5,解得m =-92;②当m2≥1,即m ≥2时,函数在x =1时取得最大值5, ∴-1+m =5,解得m =6.③当-2<m 2<1,即-4<m <2时,函数在x =m 2时取得最大值5,∴-m 24+m 22=5,解得m =2 5(舍去)或m =-2 5(舍去).综上所述,m 的值为-92或6.8.C 【点拨】如图,设平移后所得新抛物线的对称轴和两抛物线分别相交于点A 和点B ,连结OA 、OB ,(第8题)∴S 阴影=S △OAB .由题意得a =13,∴y =ax 2+bx =13x 2+bx =13⎝ ⎛⎭⎪⎫x +3b 22-3b 24,∴点A 的坐标为⎝ ⎛⎭⎪⎫-3b 2,-3b 24,∴点B 的坐标为 ⎝ ⎛⎭⎪⎫-3b 2,3b 24,∴AB =3b 22,点O 到AB 的距离为-3b2,∴S △AOB =12×3b 22×⎝ ⎛⎭⎪⎫-3b 2=83,解得b =-43.二、9.12或-12 10.9 11.2012.0<x <2 13.2 14.①②③三、15.解:设抛物线的表达式为y =a (x +1)2+9,将(-4,0)代入y =a (x +1)2+9, 得0=9a +9,解得a =-1, ∴抛物线的表达式为y =-(x +1)2+9.令x =0,则y =8,∴抛物线与y 轴的交点坐标为(0,8).16.解:(1)把(0,0)和(-2,0)分别代入y =-x 2+bx +c ,得⎩⎨⎧c =0,-4-2b +c =0,解得⎩⎨⎧b =-2,c =0,∴二次函数的表达式为y =-x 2-2x . (2)-2<x <0.17.解:(1)令x =0,则y =53.∴铅球离手时的高度为53 m.(2)当y =0时,-112x 2+23x +53=0, 解得x 1=10,x 2=-2(不合题意,舍去), ∴铅球推出的最大距离是10 m.18.解:(1)∵二次函数y =-2x 2+bx +c 的图象经过点A (-2,4)和点B (1,-2).∴⎩⎨⎧-2×4-2b +c =4,-2×1+b +c =-2,解得⎩⎨⎧b =-4,c =4, ∴这个二次函数的表达式为y =-2x 2-4x +4. ∵y =-2x 2-4x +4=-2(x +1)2+6, ∴顶点坐标为(-1,6).(2)(答案不唯一)将该二次函数图象先向右平移1个单位,再向下平移6个单位. 19.解:(1)设y 与x 之间的函数关系式为y =kx +b ,将(20,100),(25,50)代入,得 ⎩⎨⎧20k +b =100,25k +b =50,解得⎩⎨⎧k =-10,b =300, ∴y 与x 之间的函数关系式为y =-10x +300. (2)设该款电子产品的销售利润为w 元,根据题意得w =(x -10)(-10x +300)=-10x 2+400x -3 000=-10(x -20)2+1 000, ∵-10<0,∴x =20时,w 最大,为1 000.答:该款电子产品的销售单价为20元时,每天销售利润最大,最大利润是1 000元. 20.解:(1)(0,3)(2)∵抛物线y =ax 2+(a -1)x +3与x 轴交于点B (1,0),∴a +a -1+3=0,∴a =-1,∴y =-x 2-2x +3.设平移后的抛物线表达式为y =-(x +h )2+k , ∵平移后的抛物线经过点B (1,0)和点B ′(3,0), ∴⎩⎨⎧-(1+h )2+k =0,-(3+h )2+k =0,解得⎩⎨⎧h =-2,k =1, ∴平移后的抛物线表达式为y =-(x -2)2+1.21.解:(1)设所用的墙长AD 为x 米,则AB 的长为28-x2米,由题意可得x ·28-x2=90,解得x 1=18(舍去),x 2=10.答:所用的墙长AD 为10米. (2)设AB 为a 米,面积为S 平方米, 则S =a (28-2a )=-2(a -7)2+98, ∵0<28-2a ≤12,∴8≤a <14,∴当a =8时,S 取得最大值,此时S =96, 答:矩形养鸡场的最大面积是96平方米.22.解:(1)∵A (2 3,0),C (0,2),∴易得B (2 3,2). 把点C 和点B 的坐标代入y =-x 2+bx +c , 得⎩⎨⎧c =2,-12+2 3b +c =2,解得⎩⎨⎧b =2 3,c =2, ∴该抛物线的表达式为y =-x 2+2 3x +2. (2)设对称轴与x 轴交于点D ,∴易得OD =3, 又∵OA ′=OA =2 3,∴A ′D =(2 3)2-(3)2=3,∴A ′(3,-3). 23.解:(1)0 (2)如图.(3)①函数y =x 2-2|x |的图象关于y 轴对称;②当x >1时,y 随x 的增大而增大. (4)①3;3 ②2 ③-1<a <0(第23题)【点拨】(3)题答案不唯一.24. 解:(1)由题意得⎩⎨⎧a -b +c =0,16a +4b +c =0c =3,,解得⎩⎪⎨⎪⎧a =-34,b =94,c =3,∴抛物线对应的函数表达式为y =-34x 2+94x +3.(2)设直线BC 对应的函数表达式为y =kx +d ,则⎩⎨⎧4k +d =0,d =3,解得⎩⎪⎨⎪⎧k =-34,d =3,∴y =-34x +3.设D (m ,-34m 2+94m +3)(0<m <4).过点D 作DM ⊥x 轴交BC 于点M ,则M ⎝ ⎛⎭⎪⎫m ,-34m +3,DM ∥OC ,∴DM =⎝ ⎛⎭⎪⎫-34m 2+94m +3-⎝ ⎛⎭⎪⎫-34m +3=-34m 2+3m ,∠DME =∠OCB ,又∵∠DEM =∠BOC =90°,∴△DEM ∽△BOC , ∴DE OB =DMBC .∵OB =4,OC =3,∴BC =5,∴DE =45DM ,∴DE =-35m 2+125m =-35(m -2)2+125(0<m <4).当m =2时,DE 取得最大值,最大值是125. (3)存在.∵F 为AB 的中点, ∴OF =32,∴tan ∠CFO =OCOF =2.如图,过点B 作BG ⊥BC ,交CD 的延长线于点G ,过点G 作GH ⊥x 轴,垂足为H .(第24题)①若∠DCE =∠CFO ,则tan ∠DCE =GBBC =2, ∴BG =10.易得△GBH ∽△BCO ,∴GH BO =HB OC =GBBC ,∴GH =8,BH =6,∴G (10,8). 设直线CG 对应的函数表达式为y =px +n ,11∴⎩⎨⎧n =3,10p +n =8,解得⎩⎪⎨⎪⎧p =12,n =3,∴直线CG 对应的函数表达式为y =12x +3,令12x +3=-34x 2+94x +3,解得x =73或x =0(舍去). ②若∠CDE =∠CFO ,同理可得BG =52,GH =2,BH =32,∴G ⎝ ⎛⎭⎪⎫112,2.易得直线CG 对应的函数表达式为y =-211x +3,令-211x +3=-34x 2+94x +3,解得x =10733或x =0(舍去).综上所述,点D 的横坐标为73或10733.12。
26.1二次函数(A 卷)(100分 60分钟)一、选择题:(每题4分,共28分)1.若函数2221()m m y m m x --=+是二次函数,那么m 的值是A.2B.-1或3C.3D.1-2.满足函数y=x 2-4x-4的一个点是( )A.(4,4)B.(3,-1);C.(-2,-8)D. 1171,24⎛⎫- ⎪⎝⎭3.无论m 为何实数,二次函数y=x 2-(2-m)x+m 的图象总是过定点( )A.(1,3)B.(1,0);C.(-1,3)D.(-1,0)4.在函数中,自变量x 的取值范围是( ) A.x≠1 B.x>0; C.x>0且x≠1 D.x≥0且x≠15.在直角坐标系中,坐标轴上到点P(-3,-4)的距离等于5的点共有( ) A.1个 B.2个 C.3个 D.4个6.在函数,自变量x 的取值范围是( )A.x>-2且x≠-3;B.x>-2且x≠3;C.x≥-2且x≠±3;D.x≥-2且x≠3 7.下列函数中,是二次函数的是( )A.y=8x 2+1 B.y=8x+1; C.y=8x D.y=28x二、填空题:(每题5分,共45分)y=-x+2x>1y=x 2-1≤x ≤1y=x+2x<-1输入x 值(1) (2) (3)8.形如_______________的函数叫做二次函数.9.如图1所示,某校小农场要盖一排三间长方形的羊圈,打算一面利用一堵旧墙, 其余各面用木棍围成栅栏,该校计划用木棍围出总长为24m 的栅栏. 设每间羊圈的B ACDx B 长为xm.(1)请你用含x 的关系式来表示围成三间羊圈所利用的旧墙的总长度L=_______,三间羊圈的总面积S=____________;(2)S 可以看成x 的_________,这里自变量x 的取值范围是_________; (3)请计算,当羊圈的长分别为2m 、3m 、4m 和5m 时,羊圈的总面积分别为_____、_____、______、______,在这些数中,x 取_____m 时,面积S 最大.10.如图2所示,长方体的底面是边长为xcm 的正方形,高为6cm,请你用含x 的代数式表示这个长方体的侧面展开图的面积S=________,长方体的体积为V=__________,各边长的和L=__________,在上面的三个函数中,_______是关于x 的二次函数.11.根据如图3所示的程序计算函数值.(1)当输入的x 的值为23时,输出的结果为________; (2)当输入的数为________时,输出的值为-4.12.如图4所示,要用总长为20m 的铁栏杆,一面靠墙, 围成一个矩形的花圃, 若设AB 的长为xm,则矩形的面积y=_______________.13.某商店将每件进价为8元的某种商品每件10元出售,一天可销出约100件. 该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件,将这 种商品的售价降低x 元时, 则销售利润y=_________.14.函数中,自变量x 的取值范围是___________.15.y=(m 2-2m-3)x 2+(m-1)x+m 2是关于x 的二次函数要满足的条件是_______.16.如图5所示,有一根长60cm 的铁丝,用它围成一个矩形,写出矩形面积S(cm 2)与它的一边长x(cm)之间的函数关系式____________. 三、解答题:(27分)17.(12分)心理学家发现,在一定的时间范围内,学生对概念的接受能力y 与提出概念所用的时间x(单位:分钟)之间满足函数关系y=-0.1x 2+2.6x+43(0≤x≤30),y的值越大,表示接受能力越强.(1)若用10分钟提出概念,学生的接受能力y 的值是多少?(2)如果改用8分钟或15分钟来提出这一概念,那么与用10分钟相比,学生的接受能力是增强了还是减弱了?通过计算来回答.18.(15分)已知正方形的周长是Ccm,面积是Scm 2.(1)求S 与C 之间的函数关系式;(2)当S=1cm 2时,求正方形的边长;(3)当C 取什么值时,S≥4cm 2?BRACD PGl26.1 二次函数(B 卷)(100分 90分钟)一、学科内综合题:(每题6分,共18分)1.如图所示,在直角梯形ABCD 中,∠A=∠D=90°,截取AE=BF=DG=x.已知AB=6,CD=3,AD=4.求四边形CGEF 的面积S 关于x 的函数表达式和x 的取值范围.x x BF ACD E x G2.如图所示,在△ABC 中是AC 上与A 、C 不重合的一个动点,过P 、B 、C 的⊙O 交AB 于D.设PA=x,PC 2+PD 2=y,求y 与x 的函数关系式,并确定x 的取值范围.3.如图所示,有一边长为5cm 的正方形ABCD 和等腰三角形PQR,PQ= PR= 3cm, QR=8cm,点B 、C 、Q 、R 在同一条直线L 上,当C 、Q 两点重合时,等腰三角形PQR 以1cm/ 秒的速度沿直线L 按箭头所示的方向开始匀速运动,t 秒后正方形ABCD 与等腰△PQR重合部分的面积为Scm 2.解答下列问题:(1)当t=3时,求S 的值;(2)当t=5时,求S 的值;(3)当5≤t≤8时,求S 与t 之间的函数关系式.BRA CD PQ lB HRAC D PQ G l二、学科间综合题:(7分)4.一个人的血压与其年龄及性别有关,对女性来说,正常的收缩压p(毫米汞柱) 与年龄x(岁)大致满足关系式p=0.01x 2+0.05x+107;对男性来说,正常的收缩压p( 毫米汞柱)与年龄x(岁)大致满足关系式p=0.006x 2-0.02x+120.(1)利用公式计算你的收缩压;(2)如果一个女性的收缩压为120毫米汞柱,那么她的年龄大概是多少岁?(1毫米汞柱=133.3224帕)(3)如果一个男性的收缩压为130毫米汞柱,那么他的年龄大概是多少岁?三、应用题:(每题9分,共36分)5.如图所示,在矩形ABCD中,AB=6厘米,BC=12厘米,点P在线段AB上,P从点A 开始沿AB边以1厘米/秒的速度向点B移动.点E为线段BC的中点,点Q从E点开始,沿EC以1厘米/秒的速度向点C移动.如果P、Q同时分别从A、E出发,写出出发时间t与△BPQ的面积S的函数关系式,求出t的取值范围.QA6.某化工材料经销公司购进了一批化工原料共7000千克, 购进价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现,单价定为70元时,日均销售60千克;单价每降低1元,每天多售出2千克. 在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).设销售单价为x元,日均获利为y元.请你求出y关于x的二次函数关系式,并注明x的取值范围.7.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足一次函数关系m=162-3x. 请写出商场卖这种商品每天的销售利润y(元)与每件销售价x(元)之间的函数关系式.8.某公司试销一种成本单价为500元/件的新产品, 规定试销时的销售单价不低于成本单价,又不高于800元/件.试销时,发现销售量y(件)与销售价x(元/件)的关系可近似看作一次函数y=kx+b(k≠0),如图所示.(1)根据图象,求一次函数y=kx+b的表达式;(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元, 试用销售单价表示毛利润S./件)四、创新题:(每题10分,共20分) (一)教材中的变型题9.(教材P4第3题变题)已知二次函数y=ax 2+(km+c),当x=3时,y=15;当x=-2时,y=5,试求y 与x 之间的函数关系式.(二)多变题10.如图所示,在边长为4的正方形EFCD 上截去一角,成为五边形ABCDE, 其中AF=2,BF=1,在AB 上取一点P,设P 到DE 的距离PM=x,P 到CD 的距离PN=y,试写出矩形PMDN 的面积S 与x 之间的函数关系式.FEB ACD PN五、中考题:(19分)11.(2002,昆明,8分)某广告公司设计一幅周长为12米的矩形广告牌, 广告设计费为每平方米1000元,设矩形一边长为x 米,面积为S 平方米.(1)求出S 与x 之间的函数关系式,并确定自变量x 的取值范围.(2)为使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元)12.(2004,黄冈,11分)心理学家研究发现,一般情况下, 学生的注意力随着老师讲课时间的变化而变化,讲课开始时,学生的注意力逐步增强, 中间有一段时间学生的注意力保持较为理想的状态,随后学生的注意力开始分散.经过实验分析可知, 学生的注意力y 随时间t 的变化规律有如下关系式:224100(0100)240(1020)7380(2040)t y t y t t t ⎧-++<≤⎪=<≤⎨⎪-+<≤⎩(1)讲课开始后第5分钟时与讲课开始后第25分钟时比较, 何时学生的注意力更集中?(2)讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?(3)一道数学难题,需要讲解24分钟,为了效果较好,要求学生的注意力最低达到180,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?26.1 二次函数(C 卷)(30分 45分钟)一、实践题:(10分)1.某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元进行批量生产.已知生产每件产品的成本为40元, 在销售过程中发现,当销售单价定为100元时,年销售时为20万件;销售单价每增加10元, 年销售量将减少1万件.设第一年销售单价为x 元,销售量为y 万件,获利(年获利=年销售额-生产成本-投资)为z 万元.(1)试写出y 与x 之间的函数关系式;(不必写出x 的取值范围) (2)试写出z 与x 之间的函数关系式;(不必写出x 的取值范围)(3)计算销售单价为160元时的获利,并说明同样的获利,销售单价还可以定为多少元?相应的销售量分别为多少万件?二、竞赛题:(每题10分,共20分)2.已知:如图所示,BD 为⊙O 的直径,且BD=8,¼DM是圆周的14,A 为¼DM 上任意一点, 取AC=AB,交BD 的延长线于C,连结OA,并作AE⊥BD 于E,设AB=x,CD=y. (1)写出y 关于x 的函数关系式; (2)当x 为何值时,CA 是⊙O 的切线?(3)当CA 与⊙O 相切时,求tan∠OAE 的值.EBM ACD O3.如图所示,△ABC 中,BC=4,∠B=45°,AB=,M 、N 分别是AB 、AC 上的点,MN∥BC.设MN=x,△MNC 的面积为S.(1)求出S 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)是否存在平行于BC 的线段MN,使△MNC 的面积等于2?若存在,请求出MN 的长; 若不存在,请说明理由.二次函数A 卷答案:一、1.C 2.D 3.C 4.D 5.C 6.D 7.A二、8.y=ax 2+bx+c(a 、b 、c 为常数,a≠0)9.(1)-4x+24;-4x 2+24x (2)二次函数;0<x<6(3)32m 2;36m 2;32m 2;20m 2;310.24x;6x 2;8x+24;V=6x 211.(1)49 (2)6或-6 12.y=-2x 2+20x(0<x<10)13.y=-100x 2+100x+200(0≤x≤2) 14.x>3且x≠5 15.m≠-1且m≠316.S=-x 2+30x(0<x<30)三、17.解:(1)当x=10时,y=-0.1x 2+2.6x+43=-0.1×102+2.6×10+43=59.(2)当x=8时,y=0.1x 2+2.6x+43=-0.1×82+2.6×8+43=57.4, ∴用8分钟与用10分钟相比,学生的接受能力减弱了;当x=15时,y=-0.1x 2+2.6x+43=-0.1×152+2.6×15+43=59.5. ∴用15分钟与用10分钟相比,学生的接受能力增强了.18.解:(1)S=221416C C ⎛⎫= ⎪⎝⎭(2)当S=1时,由 2116S C =,得1=2116C , ∴C=4或C=-4(舍去).∴C=4,∴正方形边长为1cm.(3)∵S=2116C ,∴欲使S≥4,需2116C ≥4,∴C 2≥64.∴C≥8或C≤-8(舍去), ∴C≥8.B 卷答案: 一、1.解:S=S 梯形ABCD -S △EGD -S △EFA -S △BCF=12×(3+6)×4-12x(4-x)- 12x(6-x)-12×4x=x 2-7x+18∵0 30 40 60 xxxx>⎧⎪->⎪⎨->⎪⎪->⎩∴0<x<3,故S=x2-7x+18(0<x<3).2.解:∵AB=∴AB22 =48,AC2=62=36,BC2)2=12.∴AB2=AC2+BC2.∴△ABC为直角三角形,且∠A=30°.连结PB,则PB为⊙O的直径.∴PD⊥AB.∵在Rt△APD中,∠A=30°,PA=x,∴PD=12x,∴y=PC2+PD2=(6-x)2+22x⎛⎫⎪⎝⎭=254x-12x+36(0<x<6).3.解:(1)作PE⊥QR于E,∵PQ=PR,∴QE=RE=12QR=12当t=3时,QC=3,设PQ 与DC相交于点G.∵PE∥DC,∴△QCG∽△QEP,∴234QEPSS∆⎛⎫= ⎪⎝⎭,∵S△QEP=12×4×3=6,∴S=2327648⎛⎫⨯=⎪⎝⎭(cm2)(2)当t=5时,CR=3.设PR与DC交于G,由△RCG∽△REP可求出S△RCG=278,∴S=S△PBR-S△RCG=12-278=698(cm2)(3)当5≤t≤8时,如答图所示,QB=t-5,RC=8-t. 设PQ 交AB 于点H,由△QBH ∽△QEP,得S △QBH =23(5)8t -.设PR 交CD 于G,由△PCG∽△REP,得S △RCG =38(8-t)2.∴S=12-23(5)8t --23(8)8t -=2339171448t t -+-即关系式为S=2339171448t t -+-.二、4.解:(1)根据解答者的性别、年龄实事求是地代入即可.(2)把p=120代入p=0.01x 2+0.05x+107,得120=0.01x 2+0.05x+107.解得x 1≈-39(舍去),x 2=34. 故该女性的年龄大约为34岁.(3)把p=130代入p=0.006x 2-0.02x+120,得130=0.006x 2-0.02x+120. 解得x 1≈-39(舍去),x 2=43. 故该男性的年龄大约为43岁. 三、5.解:∵PB=6-t,BE+EQ=6+t,∴S=12PB ·BQ=12PB ·(BE+EQ)= 12(6-t)(6+t)=-12t 2+18.∴S=-12t 2+18(0≤t≤6).6.解:若销售单价为x 元,则每千克降低(70-x)元,日均多销售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意,得 y=(x-30)[60+2(70-x)]-500 =-2x2+260x-6500(30≤x≤70). 即y=-2x2+260x-6500(30≤x≤70).7.解:由题意,得每件商品的销售利润为(x-30)元,那么m 件的销售利润为y=m(x-30).又∵m=162-3x,∴y=(x -30)(162-3x),即y=-3x 2+252x-4860.∵x -30≥0,∴x≥30.又∴m≥0,∴162-3x≥0,即x≤54. ∴30≤x≤54.∴所求关系式为y=-3x 2+252x-4860(30≤x≤54).8.解:(1)由图象可知,当x=600时,y=400;当x=700时,y=300,代入y=kx+b中,得400600 300700k bk b=+⎧⎨=+⎩解得k=-1,b=1000∴y=-x+1000(500≤x≤800)(2)销售总价=销售单价×销售量=xy,成本总价=成本单价×销售量=500y,代入毛利润公式,得S=xy-500y=x(-x+1000)-500(-x+1000)=-x2+1500x-500000.∴S=-x2+1500x-500000(500≤x≤800)四、(一)9.解:把x=3,y=15;x=-2,y=5分别代入y=ax2+(xm+c),得9()15 4()5 a km ca km c++=⎧⎨++=⎩解得a=2,km+c=-3, ∴y=2x2-3.(二)10.解:如答图,S矩形PNDM=xy,且2≤x≤4.延长NP交EF于G,显然PG∥BF.故PG AGBF AF=,即4212y x--=,∴y=-12x+5,∴S=xy=-12x2+5x,即S=-12x2+5x(2≤x≤4).五、11.解:(1)由矩形的一边长为x米,得另一边长为1222x-⎛⎫⎪⎝⎭米,即(6-x)米,∴S=x(6-x)=-x2+6x,即S=-x2+6x,其中0<x<6.(2)设此黄金矩形的长为x米,宽为y米,则由题意,得2()6x y x yx y⎧=+⎨+=⎩,解得39xy⎧=⎪⎨=-⎪⎩即当把矩形的长设计为3米时,矩形将成为黄金矩形,此时S=xy=(3)(9-2);可获得的设计费为2)×1000≈8498(元).12.解:(1)当t=5时,y=195,当t=25时,y=205.∴讲课开始后第25分钟时学生的注意力比讲课开始后第5分钟时更集中.(2)当0<t≤10时,y=-t 2+24t+100=-(t-12)2+244,该图的对称轴为t=12, 在对称轴左侧,y 随x 的增大而增大,所以,当t=10时,y 有最大值240.当10<t≤20时,y=240.当20<t≤40时,y=-7t+380,y 随x 的增大而减小,故此时y<240.所以,当t=20时,y 有最大值240.所以,讲课开始后10分钟时,学生的注意力最集中,能持续10分钟.(3)当0<t≤10,令y=-t 2+24t+100=180,∴t=4.当20<t≤40时,令=-7t+380=180,∴t=28.57.所以,老师可以经过适当安排,能在学生注意力达到所需的状态下讲解完这道题目.二次函数C 卷答案: 一、1.解:(1)y=20-10010x -×1=-0.1x+30. (2)z=y ·x-40y-500-1500=(30-0.1x)x-40(30-0.1x)-2000=30x-0.1x 2-1200+4x-2000=-0.1x 2+34x-3200.(3)当x=160时,z=-0.1x 2+34x-3200=-0.1×1602+34×160-3200=-320.把z=- 320代入z=-0.1x 2+34x-3200,得-320=-0.1x 2+34x-3200,x 2-340x+28800=0,∴(x -160) (x-180)=0.∴x=160或x=180.当x=160时,y=-0.1x+30=-0.1×160+30=14(万件);当x=180时,y=-0.1x+30=-0.1×180+30=12(万件).二、2.解:(1)∵OA=OB,AB=AC,∴△AOB 和△ABC 是等腰三角形.∴∠B=∠BAO=∠C.∴△AOB∽△BAC. ∴AB OB BC AB=, 即 48x y x =+, ∴y=2184x - ∵A 为¼MD上任意一点,BM≤AB≤BD,而==∴∴y=2184x - ( (2)若OA⊥CA,则AC 为⊙O 的切线,即当OC 2=OA 2+AC 2时,OA⊥CA,∴(4+y)2=42+ x 2,即y 2+8y=x 2.由y=14x 2-8和y 2+8y=x 2两式可得y=4,∴x=即当时,CA 是⊙O 的切线.(3)由(2)得是⊙O 的切线,此时y=4,而OE=BE-OB=12∴tan∠OAE=OE AE ==. 3.解:(1)过点A 作AD⊥BC 于D,则有×sin450=32=. 设△MNC 的MN 边上的高为h,∵MN∥BC,∴343x h -=. ∴h=1234x -, ∴S=12MN ·h=21123332482x x x x -=-+g , 即S=23382x x -+ (0<x<4). (2)若存在这样的线段MN,使S △MNC =2,则方程 23382x x -+=2必有实根, 即3x 2-12x+16=0 必有实根.但△=(-12)2-4×3×16=-48<0,说明此方程无实根,所以不存在这样的线段MN.。
2017-2018学年苏科版(新课标)九年级下册5.1 二次函数【学习目标】1. 了解二次函数的有关概念.2. 会确定二次函数关系式中各项的系数。
3. 确定实际问题中二次函数的关系式。
【学法指导】类比一次函数,反比例函数来学习二次函数,注意知识结构的建立。
【学习过程】一、课前导学:1.若在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。
2. 形如___________y =0)k ≠(的函数是一次函数,当______0=时,它是 函数;二、模仿学习:1.用16m 长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为 。
分析:在这个问题中,可设长方形生物园的长为x 米,则宽为 米,如果将面积记为y 平方米,那么y 与x 之间的函数关系式为y = ,整理为y = .2.n 支球队参加比赛,每两队之间进行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.3.用一根长为40cm 的铁丝围成一个半径为r 的扇形,求扇形的面积S 与它的半径r 之间的函数关系式是4.归纳:一般地,形如 ,(,,a b c a 是常数,且 )的函数为二次函数。
其中x 是自变量,a 是__________,b 是___________,c 是_____________.三、合作交流:(1)二次项系数a 为什么不等于0?答: 。
(2)一次项系数b 和常数项c 可以为0吗?答: .四、当堂练习:1.观察:①26y x =;②235y x =-+;③y =200x 2+400x +200;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有 。
(只填序号)2.2(1)31m m y m x x -=+-+ 是二次函数,则m 的值为______________.3.若物体运动的路段s (米)与时间t (秒)之间的关系为252s t t =+,则当t =4秒时,该物体所经过的路程为 。
[新课标]2021年最新华东师大版九年级数学下册《二次函数》同步练习题1及答案2021-2021学年(新课标)华东师大版九年级下册第26章二次函数26.1二次函数同步练习1.下列函数中,属于二次函数的是()a、 y=2x+1b.y=(x-1)-xc.y=2x-7d.y=222二1X2。
函数y=(m-5)x2+X是二次函数的条件是()a.m为常数,且m≠0b.m为常数,且m≠5c.m为常数,且m=0d.m可以为任何数3.假设圆柱体高度为14cm,圆柱体体积V(cm3)与底面半径R(CM)之间的函数表达式为()a.v=14rb.r=14πvc.v=14πrd.r=4.今年1月份某厂新产品研发资金为1元,未来每月新产品研发资金与上月相比增长率为x,那么今年3月份该厂新产品研发资金y(元)相对于x的函数表达式为()a.y=(1+x2)b.y=a(1+x)c.y=a(1+x2)d.y=a(1+x)25.用一块10米长的木头做一个矩形窗框。
如果长度为XM,则窗口的面积y(M2)和X (m)之间的函数表达式为6.某商店从厂家以每件21元的价格购进一批商品,经过调查发现,若每件商品售价为x元,可卖出(350-10x)件商品.则所获得的利润7.下列各式中,其中是二次函数的有()①y=x+1②y=2二214πvy(元)与售价x(元)之间的函数表达式对于1x2+1;③y=(2x-3)(3x-2)-6x2④y=x2+x-1+1⑤y=x2+1;⑥y=(x-1)(x+4)。
a.1个b.2个c.3个d.4个8.下列函数关系中,不是二次函数的是()a.正方形面积s与边长x之间的关系b.半圆的面积s与半径r之间的关系c.正三角形的面积y与边长x之间的关系d.长方形的面积是常数s,它的长y与宽x的关系9.如图所示△ 美国广播公司,∠ BAC=90°,ab=AC=1,点D是BC上的最后一个移动点(与B和C不重合),在AC上取点E进行移动∠ ade=45°,设BD=x,AE=y,则y相对于x的函数表达式为。
26.3。
3二次函数的应用一.选择题(共8小题)1.一个小球被抛出后,如果距离地面的高度h(米)和运行时间t(秒)的函数解析式为h=﹣5t2+10t+1,那么小球到达最高点时距离地面的高度是()A.1米B.3米C.5米D.6米2.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:y1=﹣x2+10x,y2=2x,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为()A.30万元B.40万元C.45万元D.46万元3.向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx.若此炮弹在第7秒与第14秒时的高度相等,则在下列哪一个时间的高度是最高的( )A.第9。
5秒B.第10秒C.第10.5秒D.第11秒4.如图是一副眼镜镜片下半部分轮廓对应的两条抛物线关于y轴对称.AB∥x轴,AB=4cm,最低点C在x轴上,高CH=1cm,BD=2cm.则右轮廓线DFE所在抛物线的函数解析式为()A.y=(x+3)2B.y=(x+3)2C.y=(x﹣3)2D.y=(x﹣3)25.烟花厂为国庆观礼特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t(s)的关系式是,若这种礼炮在点火升空到最高点处引爆,则从点火升空到引爆需要的时间为()A.2s B.4s C.6s D.8s6一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5t2+20t﹣14,则小球距离地面的最大高度是()A.2米B.5米C.6米D.14米7.烟花厂为成都春节特别设计制作一种新型礼炮,这种礼炮的升空高度h(m)与飞行时间t (s)的关系式是,若这种礼炮在点火升空到最高点引爆,则从点火升空到引爆需要的时间为()A.3s B.4s C.5s D.6s8.某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数y=(x>0),若该车某次的刹车距离为5m,则开始刹车时的速度为()A.40 m/s B.20 m/s C.10 m/s D.5 m/s二.填空题(共6小题)9.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为_________ 米.10.如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是_________ .11.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为_________ 元.12.在平面直角坐标系中,点A、B、C的坐标分别为(0,1)、(4,2)、(2,6).如果P (x,y)是△ABC围成的区域(含边界)上的点,那么当w=xy取得最大值时,点P的坐标是_________ .13.如图,小李推铅球,如果铅球运行时离地面的高度y(米)关于水平距离x(米)的函数解析式,那么铅球运动过程中最高点离地面的距离为_________ 米.14.某种工艺品利润为60元/件,现降价销售,该种工艺品销售总利润w(元)与降价x(元)的函数关系如图.这种工艺品的销售量为_________ 件(用含x的代数式表示).三.解答题(共8小题)15.某机械公司经销一种零件,已知这种零件的成本为每件20元,调查发现当销售价为24元时,平均每天能售出32件,而当销售价每上涨2元,平均每天就少售出4件.(1)若公司每天的现售价为x元时则每天销售量为多少?(2)如果物价部门规定这种零件的销售价不得高于每件28元,该公司想要每天获得150元的销售利润,销售价应当为多少元?16.在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].17.某经销商销售一种产品,这种产品的成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y (千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)求每天的销售利润W(元)与销售价x(元/千克)之间的函数关系式.当销售价为多少时,每天的销售利润最大?最大利润是多少?(3)该经销商想要每天获得150元的销售利润,销售价应定为多少?18.某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为y A℃、y B℃,y A、y B与x的函数关系式分别为y A=kx+b,y B=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.(1)分别求y A、y B关于x的函数关系式;(2)当A组材料的温度降至120℃时,B组材料的温度是多少?(3)在0<x<40的什么时刻,两组材料温差最大?19.“丹棱冻粑"是眉山著名特色小吃,产品畅销省内外,现有一个产品销售点在经销时发现:如果每箱产品盈利10元,每天可售出50箱;若每箱产品涨价1元,日销售量将减少2箱.(1)现该销售点每天盈利600元,同时又要顾客得到实惠,那么每箱产品应涨价多少元?(2)若该销售点单纯从经济角度考虑,每箱产品应涨价多少元才能获利最高?20.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)21.某体育用品商店试销一款成本为50元的排球,规定试销期间单价不低于成本价,且获利不得高于40%.经试销发现,销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)试确定y与x之间的函数关系式;(2)若该体育用品商店试销的这款排球所获得的利润Q元,试写出利润Q(元)与销售单价x (元)之间的函数关系式;当试销单价定为多少元时,该商店可获最大利润?最大利润是多少元?(3)若该商店试销这款排球所获得的利润不低于600元,请确定销售单价x的取值范围.22.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx﹣75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?26。
华东师大版数学九年级下册第26章二次函数单元测试题一、选择题1.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2C.y=(x-1)2+4 D.y=(x-1)2+22.把抛物线y=-x2向左平移1个单位,然后向上平移3个单位,则平移后的抛物线所对应的函数表达式为( )A.y=-(x+1)2+3 B.y=-(x+1)2-3C.y=-(x-1)2+3 D.y=-(x-1)2-33. 二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …-5 -4 -3 -2 -1 0 …y … 4 0 -2 -2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>-3时,y随x的增大而增大C.二次函数的最小值是-2D.抛物线的对称轴是x=-5 24.若抛物线y=2x2+3上有三点A(1,y1),B(5,y2),C(-2,y3),则y1,y2,y3的大小关系为( )A.y2<y1<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y2<y15.如图是二次函数y=ax2+bx+c的部分图象,由图象可知不等式ax2+bx+c<0的解集是( )A.-1<x<5 B.x<-1且x>5 C.x<-1或x>5 D.x>56.将进货单价为70元的某种商品按零售价100元/个售出时每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,为了获得最大利润,则应降价( )A.5元 B.10元 C.15元 D.20元7.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为( )A.-3 B.3 C.-9 D.08.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=-1,下列结论:①abc<0;②2a+b=0;③a-b+c>0;④4a-2b+c<0.其中正确的是( )A.①② B.只有① C.③④ D.①④9. 如图,坐标平面上,二次函数y=-x2+4x-k的图形与x轴交于A,B两点,与y轴交于C点,其顶点为D,且k>0.若△ABC与△ABD的面积比为1∶4,则k值为何?()A.1 B. 12 C.43 D.4510.如图,正方形ABCD的边长为3 cm,动点P从B点出发以3 cm/s的速度沿着边BC-CD-DA运动,到达A点停止运动;另一动点Q同时从B点出发以1 cm/s的速度沿着边BA向A点运动,到达A点停止运动,设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )二、填空题11.已知函数y=(m-1)xm2+1+4x-3是二次函数,则该二次函数图象的顶点是______________.12.用一根长为12 cm的细铁丝围成一个矩形,则围成的矩形中,面积最大为_________.13.已知函数y=(k-3)x2+2x+1的图象与x轴有交点,则k的取值范围是___________.14.某学习小组为了探究函数y=x2-|x|的图象和性质,根据以往学习函数的经验,列x…-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 …y… 2 0.75 0 -0.25 0 -0.25 0 m 2 …15.如图,二次函数y=23x2-13x的图象经过△AOB的三个顶点,其中A(-1,m),B(n,n),直线AB与y轴交于点C,则△AOB的面积是____.16.如图,隧道的截面是抛物线,且抛物线的表达式为y=-18x2+3.5,一辆车高 2.5m,宽4 m,该车____通过该隧道.(填“能”或“不能”)17.某校的围墙上端由一段相同的凹曲拱形栅栏组成,如图.其拱形图形为抛物线的一部分,栅栏AB之间,按相同的间距0.2 m用5根立柱加固,拱高OC为0.6 m,则一段栅栏所需立柱的总长度是______.(精确到0.1 m)18. 抛物线y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(-1,0)和(m,0),且1<m<2,当x<-1时,y随着x的增大而减小.下列结论:①abc>0;②a+b>0;③若点A(-3,y1),点B(3,y2)都在抛物线上,则y1<y2;④a(m-1)+b=0;⑤若c≤-1,则b2-4ac≤4a.其中结论错误的是________.(只填写序号)三、解答题19.已知抛物线y=x2+bx+6经过x轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C.(1)求抛物线的表达式;(2)求△ABC的面积.20.抛物线y=x2-2x+c经过点(2,1).(1)求抛物线的顶点坐标;(2)将抛物线y=x2-2x+c沿y轴向下平移后,所得新抛物线与x轴交于A,B两点,如果AB=2,求新抛物线的表达式.21.如图,A(-1,0),B(2,-3)两点在一次函数y1=-x+m与二次函数y2=ax2+bx-3的图象上.(1)求m的值和二次函数的表达式;(2)求二次函数图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(3)请直接写出当y1>y2时,自变量x的取值范围.22. 某商店原来平均每天可销售某种水果200千克,每千克可盈利6元,为减少库存,经市场调查,如果这种水果每千克降价1元,则每天可多售出20千克.(1)设每千克水果降价x元,平均每天盈利y元,试写出y关于x的函数表达式;(2)若要平均每天盈利960元,则每千克应降价多少元?23.已知锐角△ABC中,边BC长为12,高AD长为8.如图,矩形EFGH的边GH在BC 边上,其余两个顶点E,F分别在AB,AC边上,EF交AD于点K.(1)求EFAK的值;(2)设EH=x,矩形EFGH的面积为S.求S与x的函数表达式,并求S的最大值.24.有一座抛物线形拱桥,正常水位时桥下面的宽度为20 m,拱顶距离水面4 m.(1)在如图的直角坐标系中,求出该抛物线所对应的二次函数表达式;(2)在正常水位的基础上,当水位上升h(m)时桥下水面的宽度为d(m),试求d与h之间的函数关系式;(3)设正常水位时桥下的水深为 2 m,为保证过往船只顺利航行,桥下水面宽度不得小于18 m.问:水深超过多少时,就会影响过往船只在桥下顺利航行?25. 已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的表达式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,试求出点C,D的坐标,并判断△BCD的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为2个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.答案:一、1---10 DADCC ABDDC二、11. (1,-1)12. 9cm213. k≤414. 0.7515. 216. 能17. 2.3m18. ③⑤点拨:易得①的结论正确;∵抛物线过点(-1,0)和(m,0),且1<m<2,∴0<-b2a<1 2,∴12+b2a=a+b2a>0,∴a+b>0,所以②的结论正确;∵点A(-3,y1)到对称轴的距离比点B(3,y2)到对称轴的距离远,∴y1>y2,所以③的结论错误;∵抛物线过点(-1,0),(m,0),∴a-b+c=0,am2+bm+c=0,∴am2-a+bm+b=0,a(m+1)(m-1)+b(m+1)=0,∴a(m-1)+b=0,所以④的结论正确;∵4ac-b24a<c,而c≤-1,∴4ac-b24a<-1,∴b2-4ac>4a,所以⑤的结论错误三、19. 解:(1)y=x2-5x+6 (2)∵抛物线的表达式y=x2-5x+6,∴A(2,0),B(3,0),C(0,6),∴S△ABC =12×1×6=320. 解:(1)把(2,1)代入y=x2-2x+c得4-4+c=1,解得c=1,所以抛物线表达式为y=x2-2x+1,顶点坐标为(1,0) (2)y=x2-2x+1=(x-1)2,抛物线的对称轴为直线x=1,而新抛物线与x轴交于A,B两点,AB=2,所以A(0,0),B(2,0),所以新抛物线的表达式为y=x(x-2),即y=x2-2x21. 解:(1)m=-1,y2=x2-2x-3 (2)C(1,-4),当x≤1时,y随x 的增大而减小;当x>1时,y随x的增大而增大(3)-1<x<222. 解:(1)根据题意得y=(200+20x)(6-x)=-20x2-80x+1200 (2)令y=-20x2-80x+1200中y=960,则有960=-20x2-80x+1200,即x2+4x-12=0,解得x=-6(舍去)或x=2.答:若要平均每天盈利960元,则每千克应降价2元23. 解:(1)EFAK=BCAD=32(2)由(1)知EF8-x=32,∴EF=12-32x,∴S=EH·EF=12x-32x2=-32(x-4)2+24,当x=4时,Smax=2424. 解:(1)设抛物线所对应的表达式为y=ax2,把(-10,-4)代入得y=-125x2(2)由(1)得y=-125x2,将(d2,-4+h)代入得-4+h=-125(d2)2,求得d=104-h (3)当x=9时,y=-125×92=-8125,∴4+2-8125=6925,即当水深超过6925m时,就会影响船只在桥下顺利航行25. 解:(1)∵m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,∴m=-1,n =-3,∵抛物线y =x 2+bx +c 的图象经过点A(m ,0),B(0,n).∴⎩⎨⎧1-b +c =0,c =-3,∴⎩⎨⎧b =-2,c =-3,∴抛物线表达式为y =x 2-2x -3 (2)令y =0,则x 2-2x -3=0,∴x 1=-1,x 2=3,∴C(3,0),∵y =x 2-2x -3=(x -1)2-4,∴顶点坐标D(1,-4),过点D 作DE ⊥y 轴,∵OB =OC =3,∴BE =DE =1,∴△BOC 和△BED 都是等腰直角三角形,∴∠OBC =∠DBE =45°,∴∠CBD =90°,∴△BCD 是直角三角形(3)如图,∵B(0,-3),C(3,0),∴直线BC 表达式为y =x -3,∵点P 的横坐标为t ,PM ⊥x 轴,∴点M 的横坐标为t ,∵点P 在直线BC 上,点M 在抛物线上,∴P(t ,t -3),M(t ,t 2-2t -3),过点Q 作QF ⊥PM ,∴△PQF 是等腰直角三角形,∵PQ =2,QF =1,当点P 在点M 上方时,即0<t <3时,PM =t -3-(t 2-2t -3)=-t 2+3t ,∴S =12PM ·QF =12(-t 2+3t)=-12t 2+32t ;当点P 在点M 下方时,即t <0或t >3时,PM =t 2-2t -3-(t -3),∴S =12PM ·QF =12(t 2-3t)=12t 2-32t。
初三数学二次函数练习题及答案一、基础练习1.把抛物线y=2x向上平移1个单位,得到抛物线_______,把抛物线y=-2x?向下平移个单位,得到抛物线________..抛物线y=3x-1的对称轴是_____,顶点坐标为________,它是由抛物线y=3x?向_______平移______个单位得到的..把抛物线向左平移1个单位,得到抛物线_________,把抛物线 ?向右平移3个单位,得到抛物线________.24.抛物线y=x-1)的开口向________,对称轴是______,顶点坐标是_________,222222?它是由抛物线x2向______平移______个单位得到的..把抛物线y=-13132向_____平移______个单位,就得到抛物线y=-13x2.6.把抛物线y=42向______平移_______个单位,就得到函数y=42的图象..函数y=-的最大值为________,函数y=-x-22213的最大值为________.8.若抛物线y=a的对称轴为x=-3,且它与抛物线y=-2x2的形状相同,?开口方向相同,则点关于原点的对称点为________..已知抛物线y=a2过点,则该函数y=a2当x=________?的时候,?有最____值______.10.若二次函数y=ax2+b,当x取x1,x2时,函数值相等,则x取x1+x2时,函数的值为________.11.一台机器原价50万元.如果每年的折旧率是x,两年后这台机器的价格为y?万元,则y与x的函数关系式为A.y=50B.y=50C.y=50-x2D.y=5012.下列命题中,错误的是 A.抛物线221212x2-1不与x轴相交;B.抛物线x2-1与121222形状相同,位置不同;12C.抛物线y= D.抛物线y=2的顶点坐标为;12)的对称轴是直线x=13.顶点为且开口方向、形状与函数y=- A.y=-13 1313x的图象相同的抛物线是 D.y=1222B.y=-13x2-5C.y=-13214.已知a x-2的图象上,则A.y1 2在同一坐标系中的图象大致为二、整合练习 1.已知反比例函数y=kx的图象经过点A,若二次函数y=12x2-x?的图象平移后经过该反比例函数图象上的点B,C,求平移后的二次函数图象的顶点坐标.2.如图,在正方形ABCD中,AB=2,E是AD边上一点.BE?的垂直平分线交AB于M,交DC于N.设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;当AE为何值时,四边形ADNM的面积最大?最大值是多少?3.将二次函数y=-2x2+8x-5的图象开口反向,并向上、下平移得一新抛物线,新抛物线与直线y=kx+1有一个交点为.求:这条新抛物线的函数解析式;这条新抛物线和直线y=kx+1的另一个交点.答案: 一、1.y=2x2+1 y=-2x2-2.y轴下 1.x+1)2x-3)2.上直线x=1 右 1.右,6.左.0138..大 0 10.11.A 12.D 13.C 14.C15.B+k过原点,所以0=1+k,k=-1,双曲线y=-1x )二、1.由反比例函数y=kx的图象过点A,所以1k2=4,k=2,?所以反比例函数的解析式为y=2x.又因为点B,C在y=2x的图象上,所以m=2,n=1222=1,设二次函数y=12x-x的图象平移后的解析式为y=2+k,它过点B,C,所以平移后的二次函数图象的顶点为.2.连接ME,设MN交BE交于P,根据题意得MB=ME,MN⊥BE.过N作NG⊥AB于F,在Rt△MBP和Rt△MNE中,∠MBP+∠BMN=90°,∠FNM+∠BMN=90°,∠MBP=∠MNF,又AB=FN,Rt△EBA≌Rt△MNE,MF=AE=x.在Rt△AME中,由勾股定理得 ME2=AE2+AM2,所以MB2=x2+AM2,即2=x2+AM2,解得AM=1- 所以四边形ADNM的面积S=AM?DN2?AD?12AM?AF214x2.×2=AM+AM+MF=2AM+AE=2+x=-12x2+x+2.即所求关系式为S=-S=-12x2+x+2.52x2+x+2=-12+=-122+52.52当AE=x=1时,四边形ADNM的面积S的值最大,此时最大值是.3.y=-2x2+8x-5=-22+3,将抛物线开口反向,且向上、?下平移后得新抛物线方程为y=22+m.因为它过点,所以4=22+m,m=2,这条新抛物线方程为y=22+2,即y=2x2-8x+10.直线y=kx+1过点,4=3k+1,k=1,求得直线方程为y=x+1.另一个交点坐标为。
专训1 二次函数与几何的应用名师点金:二次函数与几何的应用非常广泛,解决这类问题的关键是要学会数形结合,一方面,抓住几何图形的特征,灵活运用点的坐标与线段长度之间的相互转化,从而解决与二次函数有关的问题;另一方面,已知二次函数表达式可求出特殊点的坐标,进而求出线段长度,从而解决有关几何问题.二次函数与三角形的综合1.如图,在直角坐标系xOy 中,△ABC 是等腰直角三角形,∠BAC =90°,A(1,0),B(0,2),抛物线y =12x 2+bx -2过点C.求抛物线对应的函数表达式.(第1题)二次函数与平行四边形的综合2.如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2 cm ,点A ,C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A ,B ,且12a +5c =0.(1)求抛物线对应的函数表达式.(2)如果点P 由点A 开始沿AB 边以2 cm /s 的速度向点B 移动,同时点Q 由点B 开始沿BC 边以1 cm /s 的速度向点C 移动.一点到达终点后另一点停止移动.①移动开始后第t s 时,设S =PQ 2(cm 2),试写出S 与t 之间的函数表达式,并写出t 的取值范围.②当S 取得最小值时,在抛物线上是否存在点R ,使得以P ,B ,Q ,R 为顶点的四边形是平行四边形?如果存在,求出R 点的坐标;如果不存在,请说明理由.(第2题)二次函数与矩形、菱形、正方形的综合3.二次函数y =23x 2的图象如图所示,点A 0位于坐标原点,点A 1,A 2,A 3,…,A n 在y 轴的正半轴上,点B 1,B 2,B 3,…,B n 在二次函数位于第一象限的图象上,点C 1,C 2,C 3,…,C n 在二次函数位于第二象限的图象上.四边形A 0B 1A 1C 1,四边形A 1B 2A 2C 2,(第3题)四边形A2B3A3C3,…,四边形A n-1B n A n C n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3=…=∠A n-1B n A n=60°,则菱形A n-1B n A n C n的周长为________.4.(中考·孝感)如图所示,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图①中,若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明).(2)如图②,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明.②在如图②所示的平面直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=-x2+x+1上,求此时点F的坐标.(第4题)专训2 探究二次函数中存在性问题名师点金:存在性问题是近年来中考的热点,这类问题的知识覆盖面广,综合性强,题型构思精巧,解题方法灵活,求解时常常要猜想或者假设问题的某种关系或结论存在,再经过分析、归纳、演算、推理找出最后的答案.常见的类型有:探索与特殊几何图形有关的存在性问题,探索与周长有关的存在性问题,探索与面积有关的存在性问题.探索与相似有关的存在性问题1.如图,抛物线y=ax2+bx-2经过A(4,0),B(1,0)两点.(1)求出抛物线对应的函数表达式;(2)若P是抛物线上x轴上方的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.(第1题)探索与周长有关的存在性问题2.如图,在直角坐标系中,点A 的坐标为(-2,0),OB =OA ,且∠AOB =120°.(1)求点B 的坐标.(2)求经过A 、O 、B 三点的抛物线对应的函数表达式.(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(第2题)探索与面积有关的存在性问题3.阅读材料:如图①,过△ABC 的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC 的“水平宽”(a),中间的这条直线在△ABC 内部的线段的长度叫△ABC 的“铅垂高”(h).我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形的面积等于水平宽与铅垂高乘积的一半.解答下列问题:如图②,抛物线顶点为点C(1,4),交x 轴于点A(3,0),交y 轴于点B.(1)求抛物线和直线AB 对应的函数表达式.(2)求△CAB 的铅垂高CD 及S △CAB .(3)抛物线上是否存在一点P ,使S △PAB =98S △CAB ?若存在,求出P 点的坐标;若不存在,请说明理由.(第3题)4.如图,已知抛物线y =x 2+bx +c 经过A(1,0),B(0,2)两点,顶点为D.(1)求抛物线对应的函数表达式.(2)将抛物线沿y 轴平移后经过点C(3,1),求平移后所得抛物线对应的函数表达式.(3)设(2)中平移后的抛物线与y 轴的交点为B 1,顶点为D 1,在此抛物线上是否存在点N ,使△NBB 1的面积是△NDD 1面积的2倍?若存在,求出点N 的坐标;若不存在,请说明理由.(第4题)探索与平行四边形有关的存在性问题5.在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线对应的函数表达式.(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.(第5题)6.如图,抛物线y=-x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y 轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴.(2)连结BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF ∥DE交抛物线于点F,设点P的横坐标为m.①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.(第6题)7.如图,已知抛物线y=-x2+bx+c与一直线相交于A(-1,0),C(2,3)两点,与y 轴交于点N.其顶点为D.(1)求抛物线及直线AC对应的函数表达式.(2)设点M(3,m),求使MN+MD的值最小时m的值.(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF ∥BD交抛物线于点F,以B、D、E、F为顶点的四边形能否为平行四边形?若能,求点E 的坐标;若不能,请说明理由.(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.(第7题) 专训3 几种常见的热门考点名师点金:二次函数是中考的必考内容,难度高,综合性强,既可以与代数知识相结合,也可以与几何知识相结合.有关二次函数的问题,中考一般以三种形式出现:一是以选择题或填空题出现,重在考查二次函数的基本概念和基本性质;二是以实际应用题的形式出现,重在考查函数建模思想;三是以综合题的形式出现,往往是压轴题,考查学生分析问题和解决问题的能力.二次函数的图象与性质1.对于二次函数y=(x-1)2+2的图象,下列说法正确的是( )A.开口向下B.对称轴是直线x=-1C.顶点坐标是(1,2)D.与x轴有两个交点2.在同一平面直角坐标系内,将函数y=2x2+4x-3的图象向右平移2个单位长度,再向下平移1个单位长度,得到图象的顶点坐标是( )A.(-3,-6) B.(1,-4)C.(1,-6) D.(-3,-4)3.(2015·安顺)如图,为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确的个数为( ) A.1 B.2 C.3 D.4(第3题) (第5题)4.抛物线y=2x2-x+1的顶点坐标是________,当________时,y随x的增大而增大.5.如图,已知抛物线y=x2+bx+c经过点(0,-3),请你确定一个b的值,使抛物线与x轴的一个交点在(1,0)和(3,0)之间,你所确定的b的值是________.用待定系数法求二次函数的表达式6.已知抛物线y=ax2+bx+c经过(1,0),(2,0)和(0,2)三点,则该抛物线的函数表达式为( )A.y=2x2+x+2 B.y=x2+3x+2C.y=x2-2x+3 D.y=x2-3x+27.已知一个二次函数的图象的顶点为(8,9),且经过点(0,1),则二次函数表达式为________________.8.(中考·咸宁)科学家为了推测最适合某种珍奇植物生长的温度,将这种植物分别放在不同温度的环境中,经过一定时间后,测试出这种植物高度的增长情况,部分数据如下表:温度t/℃-4-2014植物高度增长量l/mm4149494625科学家经过猜想、推测出l与t之间是二次函数关系.由此可以推测,最适合这种植物生长的温度为______℃.9.将抛物线y=-x2+x-3向上平移,使平移后的抛物线经过点C(0,2),求平移后的抛物线的表达式.10.如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,点A,C分别在x轴、y轴上,且BC∥x轴,AC=BC,求抛物线的表达式.(第10题)二次函数与一元二次方程或不等式的关系11.抛物线y=-9x2+3x+12与坐标轴的交点个数是( )A.3 B.2 C.1 D.012.二次函数y=ax2+bx+c的x与y的部分对应值如下表.利用二次函数图象可知,当函数值y<0时,x的取值范围是( )x-3-2-1012345y1250-3-4-30512A.x<0或x>2 B.0<x<2C.x<-1或x>3 D.-1<x<313.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论错误的是( )(第13题)A.a-b+c=0B.3是方程ax2+bx+c=0的一个根C.a+b+c>0D.当x<1时,y随x的增大而减小14.已知关于x的二次函数y=x2-(2m-1)x+m2+3m+4. (1)探究m取不同值时,该二次函数的图象与x轴的交点的个数;(2)设该二次函数的图象与x轴的交点分别为A(x1,0),B(x2,0),且x12+x22=5,与y 轴的交点为C,它的顶点为M,求直线CM的函数表达式.二次函数的实际应用15.(2015·滨州)一种进价为每件40元的T恤,若销售单价为60元,则每周可卖出300件.为提高利润,欲对该T恤进行涨价销售.经过调查发现:每涨价1元,每周要少卖出10件.请确定该T恤涨价后每周的销售利润y(元)与销售单价x(元)之间的函数关系式,并求销售单价定为多少元时,每周的销售利润最大.二次函数的综合应用16.在平面直角坐标系中,将一块等腰直角三角板ABC放在第二象限,一直角边靠在两坐标轴上,且有点A(0,2),点C(-1,0),如图所示,抛物线y=ax2+ax-2经过点B.(1)求点B的坐标.(2)求抛物线的表达式.(3)在抛物线上是否还存在点P(点B除外),使△ACP仍然是以AC为直角边的等腰直角三角形?若存在,求所有点P的坐标;若不存在,请说明理由.(第17题)答案专训1(第1题)1.解:如图,过点C 作CD ⊥x 轴于点D ,则∠CAD +∠ACD =90°.又∠BAC =90°,∴∠OAB +∠CAD =90°,∴∠OAB =∠ACD.又∵AB =AC ,∠AOB =∠CDA =90°,∴△AOB ≌△CDA(AAS ),∴AO =CD =1,BO =AD =2,∴OD =OA +AD =3,∴C(3,1).∵点C(3,1)在抛物线y =12x 2+bx -2上,∴1=12×32+3b -2,解得b =-12.∴抛物线对应的函数表达式为y =12x 2-12x -2.2.解:(1)根据题意知:A(0,-2),B(2,-2).∵A 点在抛物线上,∴c =-2.∵12a +5c =0,∴a =56.由AB =2知抛物线的对称轴为直线x =1,∴-b 2a=1.∴b =-53.∴抛物线对应的函数表达式为y =56x 2-53x -2.(2)①由题意知:PB =(2-2t) cm ,BQ =t cm ,∴S =PQ 2=PB 2+BQ 2=(2-2t)2+t 2,即S =5t 2-8t +4(0≤t≤1).②假设存在点R ,可构成以P ,B ,R ,Q 为顶点的平行四边形.∵S =5t 2-8t +4=5(t -45)2 +45(0≤t≤1),∴当t =45时,S 取得最小值45,这时PB =0.4 cm ,BQ =0.8 cm ,易知P(1.6,-2),Q(2,-1.2).分情况讨论:(ⅰ)若R 在BQ 的右边,这时QR 綊PB ,则点R 的横坐标为2.4,纵坐标为-1.2,即R(2.4,-1.2).将x =2.4代入y =56x 2-53x -2,得y =-1.2,∴点R 在抛物线上,即这时存在R(2.4,-1.2)满足题意.(ⅱ)若R 在BQ 的左边,PB 的上方,这时PR 綊QB ,则点R 的横坐标为1.6,纵坐标为-1.2,即R(1.6,-1.2).易验证点R 不在抛物线y =56x 2-53x -2上.(ⅲ)若R 在BQ 的左边,PB 的下方,这时PR 綊QB ,则R(1.6,-2.8).易验证点R 不在抛物线y =56x 2-53x -2上.综上所述,存在点R(2.4,-1.2)满足题意.3.4n4.解:(1)如图①,取AB 的中点G ,连接EG.△AGE 与△ECF 全等.(第4题)(2)①若点E 在线段BC 上滑动,AE =EF 总成立.证明:如图②,在AB 上截取AM =EC.∵AB =BC ,∴BM =BE ,∴△MBE 是等腰直角三角形,∴∠AME =180°-45°=135°.又∵CF 平分正方形的外角,∴∠ECF =135°,∴∠AME =∠ECF.而∠BAE +∠AEB =∠CEF +∠AEB =90°,∴∠BAE =∠CEF ,∴△AME ≌△ECF ,∴AE =EF.②如图②,过点F 作FH ⊥x 轴于点H.易知FH =BE =CH.设BH =a ,则FH =a -1,∴点F 的坐标为(a ,a -1).∵点F 恰好落在抛物线y =-x 2+x +1上,∴a -1=-a 2+a +1,∴a 2=2,∴a =2或-2(负值不合题意,舍去),∴a -1=2-1.∴点F 的坐标为(2,2-1).专训21.解:(1)将A(4,0),B(1,0)的坐标分别代入y =ax 2+bx -2得{16a +4b -2=0,a +b -2=0.解得{a =-12,b =52.∴此抛物线对应的函数表达式为y =-12x 2+52x -2.(2)存在.设点P 的横坐标为m ,则P 点的纵坐标为-12m 2+52m -2,AM =4-m ,PM =-12m 2+52m -2.又∵∠COA =∠PMA =90°,∴①当AM PM =AO OC =21时,△APM ∽△ACO. 即4-m =2(-12m 2+52m -2),解得m 1=2,m 2=4(舍去),∴P(2,1).②当AM PM =OC OA =12时,△APM ∽△CAO. 即2(4-m)=-12m 2+52m -2.解得m 1=4,m 2=5(均不合题意,舍去).∴符合条件的点P 的坐标为P(2,1).(第2题)2.解:(1)过点B 作BD ⊥y 轴于点D ,则∠BOD =120°-90°=30°.由A(-2,0)可得OA =2,∴OB =2.于是在Rt △BOD 中,易得BD =1,OD =3.∴点B 的坐标为(1,3).(2)由抛物线经过点A(-2,0),O(0,0)可设抛物线对应的函数表达式为y =ax(x +2),将点B(1,3)的坐标代入,得a =33,因此所求抛物线对应的函数表达式为y =33x 2+233x.(3)存在.如图,易知抛物线的对称轴是直线x =-1,当点C 是抛物线的对称轴与线段AB 的交点时,△BOC 的周长最小.设直线AB 对应的函数表达式为y =kx +b ,则{k +b =3,-2k +b =0,解得{k =33,b =233,∴y =33x +233.当x =-1时,y =33,因此点C 的坐标为(-1,33).3.解:(1)设抛物线对应的函数表达式为:y 1=a(x -1)2+4,把A(3,0)的坐标代入求得a =-1.所以y 1=-(x -1)2+4=-x 2+2x +3.设直线AB 对应的函数表达式为:y 2=kx +b ,由y 1=-x 2+2x +3求得B 点的坐标为(0,3).把A(3,0),B(0,3)的坐标分别代入y 2=kx +b 中解得:k =-1,b =3,所以y 2=-x +3.(2)因为C 点坐标为(1,4),所以当x =1时,y 1=4,y 2=2.所以CD =4-2=2,S △CAB =12×3×2=3.(3)存在.设P 点的横坐标为x ,△PAB 的铅垂高为h ,若P 在直线AB 上方,则h =y 1-y 2=(-x 2+2x +3)-(-x +3)=-x 2+3x.由S △PAB =98S △CAB 得:12×3×(-x 2+3x)=98×3.化简得:4x 2-12x +9=0,解得x =32.将x =32代入y 1=-x 2+2x +3中,解得y 1=154.所以P 点坐标为(32,154).若P 在直线AB 下方,则h =y 2-y 1=x 2-3x.由S △PAB =98S △CAB 得:12×3×(x 2-3x)=98×3.化简得:4x 2-12x -9=0,解得x =3±322.易求得P 点坐标为(3+322,-3-624),(3-322,-3+624).综上,符合条件的点P 的坐标为(32,154)或(3+322,-3-624)或(3-322,-3+624).4.解:(1)∵抛物线y =x 2+bx +c 经过点A(1,0),B(0,2),∴{0=1+b +c ,2=c.解得{b =-3,c =2.∴抛物线对应的函数表达式为y =x 2-3x +2.(2)当x =3时,由y =x 2-3x +2得y =2,可知抛物线y =x 2-3x +2过点(3,2),∴将原抛物线沿y 轴向下平移1个单位后过点C.∴平移后抛物线对应的函数表达式为y =x 2-3x +1.(3)存在.假设存在点N ,则点N 在抛物线y =x 2-3x +1上,可设N 点坐标为(x 0,x 02-3x 0+1).由(2)知,BB 1=DD 1=1.将y =x 2-3x +1配方得y =(x -32)2 -54,∴抛物线的对称轴为直线x =32.当x 0<0时,易知点N 不存在.当0<x 0<32时,如图①,∵S △NBB 1=2S △NDD 1,∴12×1×x 0=2×12×1×(32-x 0), ∴x 0=1,此时x 02-3x 0+1=-1,∴点N 的坐标为(1,-1);当x 0>32时,如图②,同理可得12×1×x 0=2×12×1×(x 0-32),∴x 0=3,此时x 02-3x 0+1=1,∴点N 的坐标为(3,1).综上,符合条件的点N 的坐标为(1,-1)或(3,1).(第4题)(第5(2)题)5.解:(1)设抛物线对应的函数表达式为y =a(x +4)(x -2),把B(0,-4)的坐标代入,得-4=a×(0+4)(0-2),解得a =12,∴抛物线对应的函数表达式为:y =12(x +4)(x -2),即y =12x 2+x -4.(2)如图,过点M 作MD ⊥x 轴于点D ,设M 点的坐标为(m ,n),则AD =m +4,MD =-n ,n =12m 2+m -4,∴S =S △AMD +S 梯形DMBO -S △ABO =12(m +4)(-n)+12(-n +4)(-m)-12×4×4=-2n -2m -8=-2×(12m 2+m -4)-2m -8=-m 2-4m=-(m +2)2+4(-4<m<0),∴S 最大值=4.(第5(3)题)(3)设P (x ,12x 2+x -4).①如图①,当OB 为边时,根据平行四边形的性质知PQ ∥OB ,∴Q 的横坐标等于P 的横坐标,又∵点Q 在直线y =-x 上,∴Q(x ,-x).由PQ =OB ,得|-x -(12x 2+x -4)|=4,解得x =0或x =-4或x =-2±25.x =0不合题意,舍去.由此可得Q 点的坐标为(-4,4)或(-2+25,2-25)或(-2-25,2+25);②如图②,当BO 为对角线时,知A 与P 应该重合,OP =4,四边形PBQO 为平行四边形,则BQ =OP =4,∴Q 点的横坐标为4,代入y =-x 得出Q 的坐标为(4,-4).故满足题意的Q 点的坐标有四个,分别是(-4,4),(4,-4),(-2+25,2-25),(-2-25,2+25).6.解:(1)A(-1,0),B(3,0),C(0,3),抛物线的对称轴是直线x =1;(2)①设直线BC 对应的函数表达式为:y =kx +b ,把B(3,0),C(0,3)的坐标分别代入得:{3k +b =0,b =3,解得:{k =-1,b =3,所以直线BC 对应的函数表达式为:y =-x +3,当x =1时,y =-1+3=2,∴E(1,2).当x =m 时,y =-m +3,∴P(m ,-m +3).在y =-x 2+2x +3中,当x =1时,y =4,∴D(1,4),当x =m 时,y =-m 2+2m +3,∴F(m ,-m 2+2m +3),∴线段DE =4-2=2,线段PF =-m 2+2m +3-(-m +3)=-m 2+3m.∵PF ∥DE ,∴当PF =DE 时,四边形PEDF 为平行四边形.由-m 2+3m =2,解得:m 1=2,m 2=1(不合题意,舍去),因此,当m =2时,四边形PEDF 为平行四边形.②设直线PF 与x 轴交于点M ,由B(3,0),O(0,0),可得:OB =OM +MB =3,∵S =S △BPF +S △CPF ,即S =12PF·BM +12PF·OM =12PF·(BM +OM)=12PF·OB ,∴S =12×3(-m 2+3m)=-32m 2+92m(0<m<3).7.解:(1)由抛物线y =-x 2+bx +c 过点A(-1,0)及C(2,3)得,{-1-b +c =0,-4+2b +c =3,解得{b =2,c =3,故抛物线对应的函数表达式为y =-x 2+2x +3.设直线AC 对应的函数表达式为y =kx +n ,由直线过点A(-1,0)及C(2,3)得{-k +n =0,2k +n =3,解得{k =1,n =1.故直线AC 对应的函数表达式为y =x +1. (2)作N 点关于直线x =3的对称点N′,易知N(0,3),则N′(6,3),由(1)得D(1,4),故直线DN′对应的函数表达式为y =-15x +215,当M(3,m)在直线DN′上时,MN +MD 的值最小,则m =-15×3+215=185.(3)能.由(1)、(2)得D(1,4),B(1,2).∵点E 在直线AC 上,设E(x ,x +1),①当点E 在线段AC 上时,点F 在点E 上方,则F(x ,x +3).∵F 在抛物线上,∴x +3=-x 2+2x +3,解得x =0或x =1(舍去)∴E(0,1);②当点E 在线段AC(或CA)延长线上时,点F 在点E 下方,则F(x ,x -1).∵F 在抛物线上,∴x -1=-x 2+2x +3,解得x =1-172或x =1+172.∴E (1-172,3-172)或(1+172,3+172) 综上,满足条件的点E 为E(0,1)或(1-172,3-172)或(1+172,3+172). (4)方法一:过点P 作PQ ⊥x 轴交AC 于点Q ;过点C 作CG ⊥x 轴于点G ,如图①.设Q(a ,a +1),则P(a ,-a 2+2a +3).∴PQ =(-a 2+2a +3)-(a +1)=-a 2+a +2.又∵S △APC =S △APQ +S △CPQ =12PQ·AG=12(-a 2+a +2)×3=-32(a -12)2 +278,∴△APC 的面积的最大值为278.方法二:过点P 作PQ ⊥x 轴交AC 于点Q ,交x 轴于点H ;过点C 作CG ⊥x 轴于点G ,如图②,设Q(a ,a +1),则P(a ,-a 2+2a +3).又∵S △APC =S △APH +S 直角梯形PHGC -S △AGC =12(a +1)(-a 2+2a +3)+12(-a 2+2a +3+3)(2-a)-12×3×3=-32a 2+32a +3=-32(a -12)2 +278,∴△APC 的面积的最大值为278.(第7题)专训31.C 2.C3.C 点拨:根据函数图象开口向下可得a <0,所以①错误;因为抛物线与x 轴的交点坐标为(-1,0),(3,0),所以其对称轴为直线x =1,所以-b2a=1,因此2a +b =0,所以②正确;当x =1时,y =a +b +c >0,所以③正确;当-1<x <3时,y >0, 所以④正确.所以②③④正确.4.(14,78);x >145.12(答案不唯一) 6.D 7.y =-18x 2+2x +1 8.-19.解:∵y =-x 2+x -3=-(x -12)2 -114,∴抛物线的对称轴为直线x =12.∵将此抛物线向上平移,∴抛物线的开口大小、方向及对称轴不变.∴可设平移后抛物线的解析式为y =-(x -12)2+a.将(0,2)代入得2=-(0-12)2 +a.解得a =94.∴平移后抛物线的解析式为y =-(x -12)2 +94,即y =-x 2+x +2.10.解:∵对称轴x =--5a 2a =52,且BC ∥x 轴,∴BC =AC =5.易知OC =4,∴OA =3,即A(-3,0).∴9a +15a +4=0,a =-16.∴抛物线的解析式为y =-16x 2+56x +4.11.A 12.D 13.D 14.解:(1)令y =0,得x 2-(2m -1)x +m 2+3m +4=0,Δ=(2m -1)2-4(m 2+3m +4)=-16m -15.当Δ>0时,方程有两个不相等的实数根,即-16m -15>0,∴m <-1516,此时二次函数的图象与x 轴有两个交点;当Δ=0时,方程有两个相等的实数根,即-16m -15=0,∴m =-1516,此时二次函数的图象与x 轴只有一个交点;当Δ<0时,方程没有实数根,即-16m -15<0,∴m >-1516,此时二次函数的图象与x 轴没有交点.(2)由一元二次方程根与系数的关系得x 1+x 2=2m -1,x 1x 2=m 2+3m +4,∴x 12+x 22=(x 1+x 2)2-2x 1x 2=(2m -1)2-2(m 2+3m +4)=2m 2-10m -7.∵x 12+x 22=5,∴2m 2-10m -7=5.∴m 2-5m -6=0.解得m 1=6,m 2=-1.∵m <-1516,∴m =-1.∴y =x 2+3x +2.令x =0,得y =2,∴二次函数的图象与y 轴的交点C 的坐标为(0,2).又∵y =x 2+3x +2=(x +32)2 -14,∴顶点M 的坐标为(-32,-14).设过点C(0,2)与M(-32,-14)的直线的函数解析式为y =kx +b ,则{2=b ,-14=-32k +b ,解得{k=32,b =2.∴直线CM 的函数解析式为y =32x +2.15.解:由题意,得y =(x -40)[300-10(x -60)],即y =-10x 2+1 300x -36 000(60≤x≤90).配方,得y =-10(x -65)2+6 250.∴当x =65时,y 有最大值6 250.因此,当该T 恤销售单价定为65元时,每周的销售利润最大.(第16题)16.解:(1)如图,过点B作BD⊥x轴,垂足为D.∵∠BCD+∠ACO=90°,∠ACO+∠CAO=90°,∴∠BCD=∠CAO.又∵∠BDC=∠COA=90°,CB=AC,∴△BCD≌△CAO,∴BD=OC=1,CD=OA=2,∴点B的坐标为(-3,1).(2)∵抛物线y=ax2+ax-2经过点B(-3,1),∴1=9a-3a-2,解得a=1 2 .∴抛物线的解析式为y=12x2+12x-2. (3)假设存在点P,使得△ACP仍然是以AC为直角边的等腰直角三角形(如图所示).①若以点C为直角顶点,则延长BC至点P1,使得P1C=BC,得到等腰直角三角形ACP1,过点P1作P1M⊥x轴于点M,∵CP1=BC,∠MCP1=∠BCD,∠P1MC=∠BDC=90°,∴△MP1C≌△DBC,∴CM=CD=2,P1M=BD=1,可求得点P1的坐标为(1,-1);②若以点A为直角顶点,则过点A作AP2⊥CA,且使得AP2=AC,得到等腰直角三角形ACP2,过点P2作P2N⊥y轴于点N,同理可证△AP2N≌△CAO,∴NP2=OA=2,AN=OC=1,可求得点P2的坐标为(2,1).经检验,点P1(1,-1)与点P2(2,1)都在抛物线y=12x2+12x-2上.。
难点探究专题:二次函数与几何图形的综合(选做)——代几结合,突破点的存在性问题类型一二次函数中的线段(和、差)或周长最值问题1. 如图,在平面直角坐标系中,抛物线y=x2-x-与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,对称轴与x轴交于点D,点E(4,n)在抛物线上.(1)求直线AE的解析式;(2)点P为直线CE下方抛物线上的一点,连接PC,PE.当△PCE的面积最大时,连接CD,CB,点K是线段CB的中点,点M是CP上的一点,点N是CD上的一点,求KM+MN+NK的最小值.【答案】(1)y=x+;(2)3.【解析】试题分析:(1)当y=0时,可求得点A、B坐标,将点E(4,n)代入解析式求得点E坐标,根据A、E两点坐标求直线AE解析式;(2)先求出直线CE的解析式,设过点P作PF∥y轴,交CE于点F.设点P的坐标为,则点F,根据S△EPC=×PF×4求得S△EPC最大时x的值,作点K关于CD和CP的对称点G,H,连接GH分别交CD和CP于点N,M.先证点G与点O重合,再求得点H的坐标,由KM+MN+NK=MH+MN+ON.当点O,N,M,H在一条直线上时,KM+MN+NK有最小值,最小值为OH,求得OH即可.解:(1)当y=x2-x-=0时,解得x1=-1,x2=3,∴A(-1,0),B(3,0).当x=4时,y=,∴E(4,).设直线AE的解析式为y=kx+b,将点A和点E的坐标代入得,解得k=,b=.∴直线AE的解析式为y=x+.(2)当x=0时,二次函数y=-,则C(0,-),设直线CE的解析式为y=mx-,将点E的坐标(4,)代入得4m-=,解得m=.∴直线CE的解析式为y=x-.如图,过点P作PF∥y轴,交CE于点F.设点P的坐标为,则点F,则FP=-=-x2+x.∴S△EPC=×(-x2+)×4=-x2+x=-(x-2)2+.∴当x=2时,△EPC的面积最大,∴P(2,-).此时PC∥x轴.学,科,网...学,科,网...类型二二次函数与三角形的综合2. 如图,抛物线y=-x2+bx+c(a≠0)与x轴、y轴分别交于点A(3,0),B(0,3)两点.(1)试求抛物线的解析式和直线AB的解析式;(2)动点E从O点沿OA方向以1个单位/秒的速度向终点A匀速运动,同时动点F沿AB方向以个单位/秒的速度向终点B匀速运动,E,F任意一点到达终点时另一个点停止运动,连接EF,设运动时间为t,当t为何值时,△AEF为直角三角形?【答案】(1)y=-x2+2x+3,y=-x+3;(2)当t为或1时,△AEF为直角三角形.【解析】试题分析:(1)将点A、B坐标代入抛物线解析式,解得b、c即可得抛物线解析式.设直线AB的解析式为y=kx+n,将点A、B坐标代入即可解得直线AB解析式;(2)先求出OA=3,AB=3,OE=t,AF=t,AE=3-t.由△AEF为直角三角形,有∠AEF=90°和∠AFE =90°两种情况,分别利用相识求解.(2)由题意可知OA=3,AB=3,OE=t,AF=t,∴AE=3-t.∵△AEF为直角三角形,有∠AEF=90°和∠AFE=90°两种情况:①当∠AEF=90°时,易证△AOB∽△AEF,∴,即,解得t=;②当∠AFE=90°时,易证△AOB∽△AFE,∴,即,解得t=1.综上所述,当t为或1时,△AEF为直角三角形.3. 如图,抛物线y=ax2+bx-2与x轴交于A,B两点,与y轴交于C点,已知A(3,0),且M(1,)是抛物线上另一点.(1)求a,b的值;(2)连接AC,设点P是y轴上任一点,若以P,A,C三点为顶点的三角形是等腰三角形,求P点的坐标.【答案】(1);(2)P点的坐标为(0,2)或(0,-2)或或(0,-2-).【解析】试题分析:将A、M坐标代入抛物线解析式便可解得a、b的值;(2)分别求出A、P、C的坐标,求得AP、PC、AC的值,当△P AC为等腰三角形时,分3种情况:①P A =CA;②PC=CA;③PC=PA讨论.解:(1)把A(3,0),M(1,)代入y=ax2+bx-2,得,解得.(2)在y=ax2+bx-2中,当x=0时.y=-2,∴C(0,-2),∴OC=2.如图,设P(0,m),则PC=|m+2|.∵A(3,0),∴OA=3,∴AC== .当△P AC为等腰三角形时,有以下3种情况:①当P A=CA时,则OP1=OC=2,∴P1(0,2);②当PC=CA=时,即|m+2|=,∴m=-2或m=--2,∴P2(0,-2)或P4(0,-2-);③当PC=PA时,由PA==,则=|m+2|,解得m=,∴P3.综上所述,P点的坐标为(0,2)或(0,-2)或或(0,-2-).4. 如图,抛物线y=-[(x-2)2+n]与x轴交于点A(m-2,0)和B(2m+3,0)(点A在点B的左侧),与y轴交于点C,连接BC.(1)求m,n的值;(2)点N为抛物线上的一动点,且位于直线BC上方,连接CN,BN.求△NBC面积的最大值.【答案】(1)m=1,n=-9;(2).【解析】试题分析:(1)由抛物线解析式可得出抛物线的对称轴为直线x=2,又由点A和点B是抛物线与x轴的交点,则A和B关于对称轴对称,则=2,便可求得m,得出点A和点B坐标,将A坐标代入抛物线便求得n;(2)过点N作ND∥y轴交BC于D.先求得BC解析式,设点N坐标(x,-x2+x+3),便可得点D坐标,则得ND的值,由S△NBC=S△NDC+S△NDB=×5×ND得S△NBC关于x的二次函数,便可求得最大值.解:(1)∵抛物线的解析式为y=-[(x-2)2+n]=-(x-2)2-n,∴抛物线的对称轴为直线x=2.∵点A和点B关于直线x=2对称,∴=2,解得m=1,∴点A的坐标为(-1,0),点B的坐标为(5,0).把A(-1,0)代入y=-[(x-2)2+n]得9+n=0,解得n=-9.(2)过点N作ND∥y轴交BC于D.由(1)可得抛物线的解析式为y=-[(x-2)2-9]=-x2+x+3.当x=0时,y=3,则点C的坐标为(0,3).设直线BC的解析式为y=kx+b,把B(5,0),C(0,3)代入y=kx+b得,解得 .∴直线BC的解析式为y=-x+3.设点N的坐标为(x,-x2+x+3),则点D的坐标为(x,-x+3),∴ND=-x2+x+3-(-x+3)=-x2+3x,∴S△NBC=S△NDC+S△NDB=×5×ND=(-x2+3x)=-x2+x=-+,当x=时,△NBC面积最大,最大值为.类型三二次函数与特殊四边形的综合5. 如图,抛物线经过A(-1,0),B(5,0),C(0,-) 三点.(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点P,使P A+PC的值最小,求点P的坐标;(3)点M为x轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.【答案】(1)y=x2-2x-;(2);(3)存在,点N的坐标为或或. 【解析】试题分析:本题考查的是二次函数综合题,涉及到用待定系数法求一次函数与二次函数的解析式、平行四边的判定与性质、全等三角形等知识,在解答(3)时要注意进行分类讨论.(1)设抛物线的解析式为y=ax2+bx+c(a≠0),再把A(﹣1,0),B(5,0),C(0,)三点代入求出a、b、c的值即可;(2)因为点A关于对称轴对称的点B的坐标为(5,0),连接BC交对称轴直线于点P,求出P点坐标即可;(3)分点N在x轴下方或上方两种情况进行讨论.试题解析:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,)三点在抛物线上,∴,解得.∴抛物线的解析式为:y=x2﹣2x﹣;(2)∵抛物线的解析式为:y=x2﹣2x﹣,∴其对称轴为直线x=﹣=﹣=2,连接BC,如图1所示,∵B(5,0),C(0,﹣),∴设直线BC的解析式为y=kx+b(k≠0),∴,解得,∴直线BC的解析式为y=x﹣,当x=2时,y=1﹣=﹣,∴P(2,﹣);(3)存在.如图2所示,①当点N在x轴下方时,∵抛物线的对称轴为直线x=2,C(0,﹣),∴N1(4,﹣);②当点N在x轴上方时,如图2,过点N2作N2D⊥x轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC=,即N2点的纵坐标为.∴x2﹣2x﹣=,解得x=2+或x=2﹣,∴N2(2+,),N3(2﹣,).综上所述,符合条件的点N的坐标为N1(4,﹣),N2(2+,)或N3(2﹣,).考点:二次函数综合题.。
2017-2018学年(新课标)华东师大版九年级下册
第26章 二次函数 26.1 二次函数 同步练习题
1.下列函数中,属于二次函数的是( )
A.y=2x+1 B.y=(x-1)2-x2 C.y=2x2-7 D.y=-1x2
2.函数y=(m-5)x2+x是二次函数的条件为( )
A.m为常数,且m≠0 B.m为常数,且m≠5
C.m为常数,且m=0 D.m可以为任何数
3.已知圆柱的高为14 cm,则圆柱的体积V(cm3)与底面半径r(cm)之间的函数表达式为( )
A.V=14r2 B.r=14πV C.V=14πr2 D.r=V14π
4.某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,
则该厂今年三月份新产品的研发资金y(元)关于x的函数表达式为( )
A.y=(1+x2) B.y=a(1+x) C.y=a(1+x2) D.y=a(1+x)2
5.用一根长为10 m的木条,做一个长方形的窗框,若长为x m,则该窗户的面积y(m2)与x(m)之间
的函数表达式为 .
6.某商店从厂家以每件21元的价格购进一批商品,经过调查发现,若每件商品售价为x元,可卖出(350
-10x)件商品.则所获得的利润y(元)与售价x(元)之间的函数表达式
为 .
7.下列各式中,其中是二次函数的有( )
①y=x2+1;②y=1x2+1;
③y=(2x-3)(3x-2)-6x2;
④y=x2+x-1+1;
⑤y=x2+1;
⑥y=(x-1)(x+4).
A.1个 B.2个 C.3个 D.4个
8.下列函数关系中,不是二次函数的是( )
A.正方形面积S与边长x之间的关系
B.半圆的面积S与半径R之间的关系
C.正三角形的面积y与边长x之间的关系
D.长方形的面积是常数S,它的长y与宽x的关系
9.如图,在△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B,C重合),在
AC上取一点E,使∠ADE=45°.设BD=x,AE=y,则y关于x的函数表达式
为 .(不要求写出自变量x的取值范围)
10.已知二次函数y=x2-bx-2,当x=2时,y=-2,求当函数值y=1时,x的值.
11.已知两个变量x,y之间的表达式为y=(m+2)xm2+m-2x-2.
(1)当m为何值时,此函数是二次函数;
(2)当m为何值时,此函数是一次函数.
12.如图,某矩形相框长26 cm,宽20 cm,其四周相框边(图中阴影部分)的宽度相同,都是x cm,
相框内部的面积(指图中较小矩形的面积)为y cm2.
(1)写出y与x的函数表达式;
(2)若相框内部的面积为280 cm2,求相框边的宽度.
13.某商人如果将进货单价为8元的商品按每件10元出售,每天可销售100件.现在他采用提高售价,
减少进货量的办法增加利润,已知这种商品每提高1元,其销售量就要减少10件.若他将售价定为x
元,每天所赚利润为y元.
(1)请你写出y与x之间的函数表达式;
(2)当利润等于360元时,求每件商品的售价.
14.如图,一面利用12 m的住房墙,另外三面利用22 m的建筑材料建成一个矩形花圃,其中有两个
1 m宽的小门,设花圃的宽AB为x m,面积为S m2.
(1)求S与x的函数表达式及x的取值范围;
(2)如果要建成面积为45 m2的花圃,AB的长为多少米?
答案:
1---4 CBCD
5.
y=-x2+5x
6. y=-10x2+560x-7350
7. B
8. D
9. y=x2-2x+1
10.
解:3或-1
11. (1)
解:m=1
(2) 解:m=-2或m=-1或m=-1±52
12.
解:(1)y=4x2-92x+520(0<x<10) (2) 3 cm
13.
解:(1)x=-10x2+280x-1600(10≤x≤20) (2) 14元
14.
解:(1)S=-3x2+24x(4≤x<8) (2)5 m