贪心算法及其实例探究
- 格式:pdf
- 大小:192.16 KB
- 文档页数:3
贪心算法是一种在解决问题的过程中追求局部最优的算法,对于一个有多种属性的事物来说,贪心算法会优先满足某种条件,追求局部最优的同时希望达到整体最优的效果。
以下是一些经典的贪心算法问题:1. 背包问题:给定一组物品,每个物品都有自己的重量和价值,背包的总容量有限。
贪心算法需要选择物品以最大化背包中物品的总价值,同时不超过背包的总容量。
这种问题可以有多种变体,例如分数背包问题和完全背包问题。
2. 硬币找零问题:给定一组硬币的面值和数量,以及需要找零的金额。
贪心算法需要选择硬币以最小化找零的总数量。
这个问题可以通过从大到小排序硬币,并从最大面值的硬币开始选择,直到找零的金额达到所需的总金额。
3. 区间选点问题:给定一系列闭区间,每个闭区间都有一个起始点和结束点。
贪心算法需要选择尽量少的点,使得每个闭区间内至少有一个点被选中。
这个问题可以通过对结束点进行排序,并从左到右选择结束点,直到下一个要选择的结束点与上一个选择的结束点之间的距离大于当前选择的结束点与上一个选择的结束点之间的距离为止。
4. 区间覆盖问题:给定一系列闭区间,贪心算法需要选择尽量少的区间,使得所有区间都被覆盖。
这个问题可以通过对每个闭区间的左端点进行排序,并从左到右选择左端点,直到下一个要选择的左端点与上一个选择的左端点之间的距离大于当前选择的左端点与上一个选择的左端点之间的距离为止。
5. 排班问题:给定一组员工和他们的班次需求,以及一组工作日的日程安排。
贪心算法需要为员工分配班次,以最小化总工作时间并满足所有工作日的需求。
这个问题可以通过从可用的班次中选择最长的班次,并从左到右分配员工,直到所有员工都被分配到一个班次为止。
这些问题是贪心算法的经典示例,它们展示了贪心算法在解决优化问题中的广泛应用。
贪心算法实验报告贪心算法实验报告引言:贪心算法是一种常用的算法设计策略,它通常用于求解最优化问题。
贪心算法的核心思想是在每一步选择中都选择当前最优的解,从而希望最终能够得到全局最优解。
本实验旨在通过实际案例的研究,探索贪心算法的应用和效果。
一、贪心算法的基本原理贪心算法的基本原理是每一步都选择当前最优解,而不考虑整体的最优解。
这种贪婪的选择策略通常是基于局部最优性的假设,即当前的选择对于后续步骤的选择没有影响。
贪心算法的优点是简单高效,但也存在一定的局限性。
二、实验案例:零钱兑换问题在本实验中,我们以零钱兑换问题为例,来说明贪心算法的应用。
问题描述:假设有不同面值的硬币,如1元、5元、10元、50元和100元,现在需要支付给客户x元,如何用最少的硬币数完成支付?解决思路:贪心算法可以通过每次选择当前面值最大的硬币来求解。
具体步骤如下:1. 初始化一个空的硬币集合,用于存放选出的硬币。
2. 从面值最大的硬币开始,如果当前硬币的面值小于等于待支付金额,则将该硬币放入集合中,并将待支付金额减去该硬币的面值。
3. 重复步骤2,直到待支付金额为0。
实验过程:以支付金额为36元为例,我们可以通过贪心算法求解最少硬币数。
首先,面值最大的硬币为100元,但36元不足以支付100元硬币,因此我们选择50元硬币。
此时,剩余待支付金额为36-50=-14元。
接下来,面值最大的硬币为50元,但待支付金额为负数,因此我们选择下一个面值最大的硬币,即10元硬币。
此时,剩余待支付金额为-14-10=-24元。
继续选择10元硬币,剩余待支付金额为-24-10=-34元。
再次选择10元硬币,剩余待支付金额为-34-10=-44元。
最后,选择5元硬币,剩余待支付金额为-44-5=-49元。
由于待支付金额已经为负数,我们无法继续选择硬币。
此时,集合中的硬币数为1个50元和3个10元,总共4个硬币。
实验结果:通过贪心算法,我们得到了36元支付所需的最少硬币数为4个。
列举用贪心算法求解的经典问题贪心算法是一种简单而高效的问题求解方法,通常用于求解最优化问题。
它通过每一步选择当前状态下的最优解,最终得到全局最优解。
贪心算法的核心思想是:每一步都做出一个局部最优的选择,并认为这个选择一定可以达到全局最优。
以下是一些经典问题,可以用贪心算法求解:1. 零钱兑换问题(Coin Change Problem):给定一些不同面额的硬币和一个目标金额,找到最少的硬币数量,使得硬币总额等于目标金额。
贪心算法可以按照硬币的面额从大到小进行选择,每次选择尽量大面额的硬币。
2. 区间调度问题(Interval Scheduling Problem):给定一些区间,找到最多的不相交区间。
贪心算法可以按照区间的结束时间进行排序,每次选择结束时间最早的区间,确保选择的区间不重叠。
3. 分糖果问题(Candy Problem):给定一个数组表示每个孩子的评分,要求给这些孩子分糖果,满足以下要求:每个孩子至少分到一个糖果,评分高的孩子要比相邻孩子分到的糖果多。
贪心算法可以从左到右进行两次遍历,分别处理评分递增和评分递减的情况。
4. 跳跃游戏问题(Jump Game Problem):给定一个非负整数数组,表示每个位置的最大跳跃长度,判断是否能从第一个位置跳到最后一个位置。
贪心算法可以记录当前能够到达的最远位置,并且更新为更远的位置。
5. 任务调度器问题(Task Scheduler Problem):给定一串任务,每个任务需要一定的冷却时间,要求以最短的时间完成所有任务。
贪心算法可以按照出现次数进行排序,优先执行出现次数最多的任务,并在冷却时间内执行其他任务。
6. 区间覆盖问题(Interval Covering Problem):给定一些区间,找到最少的区间数,使得它们的并集覆盖了所有输入区间。
贪心算法可以根据区间的起始位置进行排序,每次选择最早结束的区间,并将它添加到最终结果中。
以上仅是一些经典问题的例子,实际上还有很多问题可以用贪心算法来求解。
贪心算法几个经典例子c语言1. 零钱兑换问题题目描述:给定一些面额不同的硬币和一个总金额,编写一个函数来计算可以凑成总金额所需的最少的硬币个数。
如果没有任何一种硬币组合能够凑出总金额,返回 -1。
贪心策略:每次选择面额最大的硬币,直到凑出总金额或者无法再选择硬币为止。
C语言代码:int coinChange(int* coins, int coinsSize, int amount){int count = 0;for(int i = coinsSize - 1; i >= 0; i--){while(amount >= coins[i]){amount -= coins[i];count++;}}return amount == 0 ? count : -1;}2. 活动选择问题题目描述:有 n 个活动,每个活动都有一个开始时间和结束时间,选择一些活动使得它们不冲突,且能够参加的活动数最多。
贪心策略:每次选择结束时间最早的活动,直到所有活动都被选择或者无法再选择为止。
C语言代码:typedef struct{int start;int end;}Activity;int cmp(const void* a, const void* b){return ((Activity*)a)->end - ((Activity*)b)->end;}int maxActivities(Activity* activities, int n){qsort(activities, n, sizeof(Activity), cmp);int count = 1;int end = activities[0].end;for(int i = 1; i < n; i++){if(activities[i].start >= end){count++;end = activities[i].end;}}return count;}3. 跳跃游戏题目描述:给定一个非负整数数组,你最初位于数组的第一个位置。
因为贪心而失败的例子贪心算法是一种常用的解决问题的算法思想,它通常在每一步选择中都采取当前状态下最好或最优的选择,从而希望最终能够达到全局最优的结果。
然而,贪心算法的贪心选择可能会导致最终结果并非全局最优,而是局部最优或者根本无法得到可行解。
因此,贪心算法在某些问题上会因为贪心而失败。
下面将列举10个因为贪心而失败的例子。
1. 颜色分配问题:假设有n个节点需要着色,并且相邻的节点不能具有相同的颜色。
贪心算法选择每次都选择可用颜色最少的节点进行着色。
然而,这种贪心选择可能会导致最终无法着色所有节点,因为后续节点的颜色选择受到前面节点的限制。
2. 找零问题:假设需要找零的金额为m,而只有面额为1元、5元、10元的硬币。
贪心算法选择每次都选择面额最大的硬币进行找零。
然而,在某些情况下,贪心选择可能会导致找零的硬币数量不是最小的。
3. 最小生成树问题:在一个连通图中,选择一些边构成一个树,使得这些边的权值之和最小,同时保证图中的所有节点都能够通过这些边连通。
贪心算法选择每次都选择权值最小的边加入到树中。
然而,这种贪心选择可能会导致最终得到的树不是最小生成树。
4. 背包问题:给定一组物品,每个物品有自己的重量和价值,在给定的背包容量下,选择一些物品放入背包中,使得背包中物品的总价值最大。
贪心算法选择每次都选择单位重量价值最大的物品放入背包中。
然而,在某些情况下,贪心选择可能会导致最终得到的背包价值不是最大的。
5. 最短路径问题:在一个有向图中,找到两个节点之间的最短路径。
贪心算法选择每次都选择距离最近的节点进行扩展。
然而,这种贪心选择可能会导致最终得到的路径不是最短的。
6. 任务调度问题:给定一组任务,每个任务有自己的开始时间和结束时间,在给定的时间段内,选择一些任务进行调度,使得能够完成尽可能多的任务。
贪心算法选择每次都选择结束时间最早的任务进行调度。
然而,在某些情况下,贪心选择可能会导致最终完成的任务数量不是最多的。
贪心算法的常用范围一、什么是贪心算法?听我说,贪心算法其实就像你身边那些总是想着“现在最好的”那一类人。
啥意思呢?就是他们做事从来不考虑长远,只看眼前能捞多少,想法很简单,行动也特别直接。
比如说你去吃自助餐,眼前有一盘热腾腾的牛排,你只顾着夹那块,脑袋里想的就是“现在不吃,等下没了怎么办”。
这就有点像贪心算法,它在每一步选择中都追求局部的最优解。
问题是,这种做法能得出全局最优解吗?不一定哦。
所以,贪心算法适用的地方就有点挑剔,它只适合那些能通过局部最优解来推导出全局最优解的情况。
二、贪心算法的常见应用1. 活动安排问题咱们先来说个生活中常见的例子,活动安排问题。
假设你是一个忙碌的白领,今天有好多活动要参加,可惜你一整天的时间有限。
怎么安排才能把活动都参加个遍呢?如果你是那种贪心心态的家伙,你会选择哪个活动呢?肯定是选那些花费时间最少,能带来最大回报的活动嘛!简单粗暴的办法就像贪心算法一样,选择每一个最短时间的活动,把空余的时间都填满。
最终,你可能会发现,虽然你参加了很多活动,但并不一定能让你得到最大的收益。
所以说,这个问题就是一个典型的贪心算法的使用场景。
2. 找零问题还有个经典的例子是找零问题。
你去商店买东西,店员找给你零钱。
那如果你是商店的老板,应该怎么挑零钱呢?你肯定会选择把金额大的零钱先找给顾客吧,简单快捷又高效。
比如,顾客给你100块钱,你就找个50块、20块,再来几张5块,剩下的用1块来凑,最后一结账,顾客就满意地走了。
这个过程中,你是按照每次找最大的零钱进行选择,这就是贪心算法的一个典型应用。
找零问题背后就是一个在每一步都做出“局部最优选择”的过程,能够确保找到的零钱数量最少,操作也最为高效。
3. 最短路径问题再说个计算机里的例子,最短路径问题。
在一个图中,假如你是要从A点出发去B 点,你要怎么走才能最省力、最省时?这里的贪心算法会告诉你:每次从当前位置出发,选择一个最短的路径走,这样一步一步走下去,最后就能到达B点了。
一、实验背景贪心算法是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是全局最好或最优的算法策略。
贪心算法并不保证能获得最优解,但往往能获得较好的近似解。
在许多实际应用中,贪心算法因其简单、高效的特点而被广泛应用。
本实验旨在通过编写贪心算法程序,解决经典的最小生成树问题,并分析贪心算法的优缺点。
二、实验目的1. 理解贪心算法的基本原理和应用场景;2. 掌握贪心算法的编程实现方法;3. 分析贪心算法的优缺点,并尝试改进;4. 比较贪心算法与其他算法在解决最小生成树问题上的性能。
三、实验内容1. 最小生成树问题最小生成树问题是指:给定一个加权无向图,找到一棵树,使得这棵树包含所有顶点,且树的总权值最小。
2. 贪心算法求解最小生成树贪心算法求解最小生成树的方法是:从任意一个顶点开始,每次选择与当前已选顶点距离最近的顶点,将其加入生成树中,直到所有顶点都被包含在生成树中。
3. 算法实现(1)数据结构- 图的表示:邻接矩阵- 顶点集合:V- 边集合:E- 已选顶点集合:selected- 最小生成树集合:mst(2)贪心算法实现```def greedy_mst(graph):V = set(graph.keys()) # 顶点集合selected = set() # 已选顶点集合mst = set() # 最小生成树集合for i in V:selected.add(i)mst.add((i, graph[i]))while len(selected) < len(V):min_edge = Nonefor edge in mst:u, v = edgeif v not in selected and (min_edge is None or graph[u][v] < graph[min_edge[0]][min_edge[1]]):min_edge = edgeselected.add(min_edge[1])mst.add(min_edge)return mst```4. 性能分析为了比较贪心算法与其他算法在解决最小生成树问题上的性能,我们可以采用以下两种算法:(1)Prim算法:从任意一个顶点开始,逐步添加边,直到所有顶点都被包含在生成树中。
一、实验目的通过本次实验,使学生对贪心算法的概念、基本要素、设计步骤和策略有更深入的理解,掌握贪心算法的原理和应用,并能够运用贪心算法解决实际问题。
二、实验内容本次实验主要涉及以下两个问题:1. 使用贪心算法解决单起点最短路径问题;2. 使用贪心算法解决小船过河问题。
三、实验原理1. 贪心算法贪心算法(又称贪婪算法)是一种在每一步选择中都采取当前最优的选择,从而希望导致结果是全局最优的算法。
贪心算法在每一步只考虑当前的最优解,不保证最终结果是最优的,但很多情况下可以得到最优解。
2. 单起点最短路径问题单起点最短路径问题是指在一个有向无环图中,从某个顶点出发,找到到达其他所有顶点的最短路径。
3. 小船过河问题小船过河问题是指一群人需要划船过河,船只能容纳两个人,过河后需要一人将船开回,问最少需要多久让所有人过河。
四、实验步骤及说明1. 创建图结构,包括顶点数组和边信息。
2. 使用Dijkstra算法求解单起点最短路径问题,得到最短路径和前驱顶点。
3. 使用贪心算法找到两点之间的最短距离,并更新距离和前驱顶点信息。
4. 遍历所有顶点,找到未纳入已找到点集合的距离最小的顶点,并更新其距离和前驱顶点。
5. 最终输出从源顶点到达其余所有点的最短路径。
6. 使用贪心算法解决小船过河问题,按照以下步骤进行:(1)计算所有人过河所需的总时间;(2)计算每次划船往返所需时间;(3)计算剩余人数;(4)重复(2)和(3)步骤,直到所有人过河。
五、实验结果与分析1. 单起点最短路径问题实验中,我们选取了有向无环图G,其中包含6个顶点和8条边。
使用贪心算法和Dijkstra算法求解单起点最短路径问题,得到的实验结果如下:- 贪心算法求解单起点最短路径问题的时间复杂度为O(V^2),其中V为顶点数;- Dijkstra算法求解单起点最短路径问题的时间复杂度为O(V^2),其中V为顶点数。
2. 小船过河问题实验中,我们选取了一群人数为10的人过河,船每次只能容纳2人。