基因克隆基本实验方法
- 格式:doc
- 大小:400.00 KB
- 文档页数:27
第1篇一、实验目的本实验旨在通过分子克隆技术,将目的基因从基因库中提取并克隆到合适的载体上,为后续的基因表达、功能研究及基因工程应用奠定基础。
二、实验原理分子克隆技术是基因工程的核心技术之一,其基本原理是将目的基因片段与载体DNA片段通过酶切、连接等步骤形成重组DNA分子,然后将重组DNA分子导入宿主细胞进行扩增和表达。
三、实验材料1. 实验试剂:限制性核酸内切酶、T4 DNA连接酶、DNA聚合酶、dNTPs、质粒载体、目的基因DNA、LB液体培养基、LB固体培养基、IPTG、X-Gal、0.1 M MgCl2、0.1 M CaCl2等。
2. 实验仪器:PCR仪、电泳仪、凝胶成像系统、离心机、恒温培养箱、显微镜、超净工作台等。
四、实验步骤1. 目的基因的获取(1)设计引物:根据目的基因的序列,设计特异性引物,引物5'末端带有酶切位点。
(2)PCR扩增:以目的基因DNA为模板,PCR扩增目的基因片段。
(3)PCR产物回收:采用PCR产物回收试剂盒回收目的基因片段。
2. 载体与目的基因的连接(1)载体线性化:用限制性核酸内切酶酶切质粒载体,获得线性化载体。
(2)连接反应:将回收的目的基因片段与线性化载体在T4 DNA连接酶作用下进行连接。
(3)连接产物转化:将连接产物转化到大肠杆菌感受态细胞中。
3. 重组子筛选与鉴定(1)菌落培养:在含有IPTG和X-Gal的LB固体培养基上培养转化菌,挑选白色菌落。
(2)菌落PCR鉴定:以白色菌落为模板,进行PCR扩增,检测目的基因片段是否插入载体。
(3)重组子测序:对PCR鉴定阳性的重组子进行测序,验证目的基因片段是否正确插入载体。
五、实验结果与分析1. PCR扩增结果:通过PCR扩增,成功获得了目的基因片段。
2. 菌落PCR鉴定结果:白色菌落PCR鉴定阳性,表明目的基因片段已插入载体。
3. 重组子测序结果:测序结果显示,目的基因片段正确插入载体。
六、实验结论本实验成功克隆了目的基因,为后续的基因表达、功能研究及基因工程应用奠定了基础。
实验室克隆技术解析实验室克隆技术是一种重要的生物技术手段,它可以通过复制和重组DNA分子,实现对生物体的复制和改造。
本文将对实验室克隆技术进行详细解析,包括克隆的原理、方法和应用。
一、克隆的原理实验室克隆技术的原理是基于DNA的复制和重组。
DNA是生物体遗传信息的载体,通过复制和重组DNA分子,可以实现对生物体的复制和改造。
克隆的原理主要包括以下几个步骤:1. DNA提取:从目标生物体中提取DNA分子,通常使用化学方法或者机械方法进行提取。
2. DNA复制:将提取到的DNA分子进行复制,通常使用聚合酶链式反应(PCR)或者细菌的DNA复制机制进行复制。
3. DNA重组:将复制得到的DNA分子与载体DNA进行重组,通常使用质粒或者病毒作为载体。
4. 转化:将重组后的DNA分子导入到宿主细胞中,使其表达目标基因。
二、克隆的方法实验室克隆技术有多种方法,常用的方法包括限制性内切酶切割、DNA 连接、转化和筛选等。
1. 限制性内切酶切割:限制性内切酶是一种能够识别特定DNA序列并切割DNA分子的酶,通过限制性内切酶的作用,可以将DNA分子切割成特定的片段。
2. DNA连接:将切割得到的DNA片段与载体DNA进行连接,通常使用DNA连接酶进行连接。
3. 转化:将连接后的DNA分子导入到宿主细胞中,使其表达目标基因。
转化的方法有多种,包括化学法、电穿孔法和冷冻法等。
4. 筛选:通过筛选方法,筛选出含有目标基因的克隆体。
常用的筛选方法包括抗生素筛选、荧光筛选和PCR筛选等。
三、克隆的应用实验室克隆技术在生物学研究和生物工程领域有着广泛的应用。
以下是一些常见的应用领域:1. 基因功能研究:通过克隆技术,可以将目标基因导入到宿主细胞中,研究其在生物体中的功能和作用机制。
2. 基因工程:通过克隆技术,可以将外源基因导入到宿主细胞中,使其表达目标蛋白质,用于生物制药和农业改良等领域。
3. 基因治疗:通过克隆技术,可以将正常基因导入到患者的细胞中,修复或替代异常基因,用于治疗遗传性疾病。
整个基因克隆实验规程完整Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】一、组织总RNA的提取相关试剂:T rizol;氯仿;苯酚;异丙醇;75%乙醇;RNase-free水相关仪器:制冰机;液氮&研钵/生物样品研磨仪;高速离心机;移液器(1ml、200μl、100μl/50μl);涡旋振荡仪;恒温金属浴。
相关耗材:解剖工具,冰盒,离心管,离心管架,吸头(1ml,200μl/300μl),一次性手套,实验手套。
实验步骤1.取暂养草鱼,冰上放置一段时间,然后解剖,剪取肠道50~100mg,放入研钵中,加入液氮迅速研磨,然后加入1ml 预冷TRIzol试剂,充分研磨至无颗粒物存在。
2.转移到离心管中,室温放置5min,使细胞充分裂解;3.按1ml Trizol加入200μl氯仿,盖上盖子,迅速充分摇匀15s,然后室温放置3min;4.4℃,,12000g 离心15min;此时混合物分为三层,下层红色的苯酚氯仿层,中间层和上层无色水相;RNA存在于无色水相中;5.小心吸取上清液,千万不要吸取中间界面,否则有DNA污染;转移至一个新的离心管,加入等体积的异丙醇,轻轻混匀;6.室温放置10min;4℃,,12000g 离心10min;7.弃上清,加入1ml 75%乙醇洗涤;涡旋,悬浮沉淀;4℃,,12000g 离心5min;8.弃上清;可以再次用75%乙醇洗涤沉淀;9.弃上清;用移液器轻轻吸取管壁或管底的残余乙醇,注意不要吸取沉淀;室温放置5min晾干沉淀;(RNA样品不要过于干燥,否则极难溶解)10.沉淀中加入30μl RNase-free水,轻弹管壁,使RNA溶解。
RNA质量检测相关试剂:溴酚蓝, TEB/TAE电泳缓冲液,溴乙锭(EB)相关仪器:(超微量分光光度计,移液器(2.5μl 或2μl 规格,10μl规格),电子天平,电泳仪,电泳槽,凝胶成像仪,微波炉,制冰机)相关耗材:(无菌无绒纸,吸头,离心管架,PCR管,PCR管架,锥形瓶,烧杯,一次性手套,实验手套,冰盒)(1)RNA纯度的检测:测定其OD260和OD280的值,根据其OD260/ OD280的比值,当其比值在1.9~2.1之间,说明提取的总RNA纯度比较高,没有蛋白质和基因组的污染。
基因工程中的基因克隆与基因表达实验总结基因工程作为一门新兴的交叉学科,已经广泛应用于生物医学、农业、环境保护等领域。
其中,基因克隆和基因表达实验是基因工程的核心技术,对于研究基因功能和开发新药已经起到了重要作用。
本文将对基因工程中的基因克隆和基因表达实验进行总结,并探讨其在科学研究和应用中的前景。
一、基因克隆实验基因克隆是通过重组DNA技术,将感兴趣的基因从一个生物体中复制并插入到另一个生物体中的过程。
它是研究基因功能、生物制药和转基因等领域的基础。
基因克隆实验主要包括以下几个步骤:1. DNA提取与限制性内切酶切割:通过提取DNA样品,使用限制性内切酶切割将目标基因和载体DNA切割成相应片段。
2. 基因插入:将目标基因与载体DNA片段进行连接,常用的方法是使用DNA连接酶将两者黏合。
3. 转化与筛选:将连接后的DNA转入到宿主细胞中,使其成为转基因细胞。
通过选择性培养基进行筛选,可以获得拥有目标基因的转基因细胞。
通过基因克隆实验,我们可以获得不同生物体的目标基因,并进行后续的研究和应用。
例如,通过将某种植物的耐旱基因克隆到其他作物中,可以提高作物的抗旱能力,增加农作物产量。
二、基因表达实验基因表达实验是将目标基因在宿主细胞中进行转录和翻译,产生具有特定功能的蛋白质的过程。
基因表达实验是研究基因功能和制备重组蛋白等领域的重要手段。
基因表达实验主要包括以下几个步骤:1. 选择合适的表达系统:根据需要表达的蛋白质的性质和规模,选择合适的表达系统。
常用的表达系统包括细菌、酵母、哺乳动物细胞等。
2. 构建表达载体:将目标基因插入到表达载体中,通常使用限制性内切酶和DNA连接酶进行连接,并通过测序确保插入正确。
3. 细胞转染:将构建好的表达载体导入到宿主细胞中。
不同表达系统有不同的转染方法,如细菌的化学转型、酵母的电转染等。
4. 表达和纯化:经过一定时间的培养,宿主细胞会表达目标基因,合成目标蛋白质。
可以通过蛋白质纯化技术,如亲和层析、凝胶电泳等手段获得纯度较高的目标蛋白质。
简述基因克隆的基本过程
基因克隆是指利用生物学技术进行繁殖某一抗原性基因组片段实现基因复制的过程。
主要由下面几个步骤组成:
一、启动物获取:
1. 从细胞中分离出DNA片段;
2. 使用酶切技术将DNA片段的‘钩子’附加到对应的载体上;
二、基因克隆扩增:
1. 把完美结合的细菌进行培养,促进DNA分子的复制;
2. 使用克隆抗体来处理载体以防止它们散发;
三、基因克隆分离:
1. 使用特定的限制酶进行裂解,将前面复制的DNA分离出来;
2. 使用水和石蜡将克隆体分离;
四、基因克隆实验:
1. 实验研究克隆DNA片段表达的基因;
2. 用PCR微量实验研究克隆体的表达水平;
五、基因突变:
1. 对克隆的DNA片段进行诱变;
2. 使用嵌合子技术将变异的片段插入到载体中;
六、基因表达检测:
1. 检测新插入的基因是否有正常表达;
2. 研究新基因对于抗性或者功能的影响;
七、生成抗原性基因组片段:
1. 用PCR实验研究整个新基因的表达水平;
2. 使用基因合成技术进一步改善新基因的特性;
基因克隆技术的应用有很大的广度,能够有效地增强病原体与病毒的抗体力,提升受抗原抗药的抵抗力,为生物科学的发展提供更多的研究材料。
DNA分子克隆技术(也称基因克隆技术):在体外将DNA分子片段与载体DNA片段连接,转入细胞获得大量拷贝的过程中DNA分子克隆(或基因克隆)。
其基本步骤包括:制备目的基因→将目的基因与载体用限制性内切酶切割和连接,制成DNA重组→导入宿主细胞→筛选、鉴定→扩增和表达。
载体(vecors)在细胞内自我复制,并带动重组的分子片段共同增殖,从而产生大量的DNA分子片段。
主要目的是获得某一基因或NDA片段的大量拷贝,有了这些与亲本分子完全相同的分子克隆,就可以深入分析基因的结构与功能,随着引入的DNA片段不同,有两种DNA库,一种是基因组文库(genomic library),另一种是cDNA库。
载体所谓载体是指携带靶DNA片段进入宿主细胞进行扩增和表达的工具。
细菌质粒是一种细菌染色体外小型双链环状结构的DNA,分子大小为1-20kb,对细菌的某些代谢活动和抗药性表型具有一定的作用。
质粒载体是在天然质粒的基础上人工改造拼接而成。
最常用的质粒是pBR322。
基因库的建造含有某种生物体全部基历的随机片段的重组DNA克隆群体,其含有感光趣的基因片段的重组子,可以通过标记探针与基因库中的重组子杂交等方法而筛选出来,所得到的克隆经过纯化和扩增,可用于进一步的研。
其主步骤包括:(1)构建基因库迅速的载体;(2)DNA片段的制备;(3)DNA片段与载体DNA 的连接;(4)包装和接种。
cDNA库的建造是指克隆的DNA片段,是由逆转录酶自mRNA制备的cDNA。
cDNA库包括某特定细胞的全部cDNA克隆的文库,不含内含子。
特异基因的筛选常用的方法有:(1)克隆筛选即探针筛选法;(2)抗体检测法,检测其分泌蛋白质来筛选目的基因;(3)放射免疫筛选法,查出分泌特异抗原的基因;(4)免疫沉淀法,进行特异基因的筛选。
核酸序列测定DNA的碱基序列决定着基因的特性,DNA序列分析(测序,sequencing)是分子生物学重要的基本技术。
分子生物学实验技术二、基因的克隆(一)DNA片断与载体的连接本实验做PCR回收产物与pMD-18T载体的连接,应用TaKaRa公司的试剂盒进行。
TA克隆原理:利用Taq酶能够在PCR产物的3’末端加上一个非模板依赖的A,而T载体是一种带有3’T突出端的载体,在连接酶作用下,可以快速地、一步到位地把PCR产物直接插入到质粒载体的多克隆位点(MCS)中,主要用于PCR产物的克隆和测序。
实验安排:每人做一管。
反应体系(10μl):Ligation Solution I 5 μLPCR回收产物 4.5 μLpMD-18T vector 0.5 μL总体积10 μL反应条件:16℃ 4 h以上(二)感受态细胞的制备实验安排:每人做一管。
试剂配制:1、LB液体培养基(Luria-Bertani):称取蛋白胨(Tryptone)10 g,酵母提取物(Yeast extract)5 g,NaCl 10 g,溶于800mL去离子水中,用NaOH调pH至7.5, 加去离子水至总体积1 L,高压下蒸气灭菌20 min。
2、0.1 mol/L CaCl2溶液:称取1.11 g CaCl2(无水,分析纯),溶于超纯水中,定容至100 mL,高压灭菌或0.22 μm滤膜过滤除菌。
3、无菌甘油:取甘油100 mL,高压灭菌即可。
操作步骤(无菌操作):1、从生长有大肠杆菌DH5α的平板上挑取一个单菌落,接种于2 mL LB液体培养基中,37℃200 r/min振荡培养过夜,作为一级种子。
2、将一级种子按1:50比例无菌转接到5 mL LB液体培养基中,37℃200 r/min振荡培养约2-3 h,至细菌的OD600达到0.5左右。
3、在无菌条件下将细菌转移到一个无菌的1.5mL Ep管中,冰浴30 min。
4、4℃4000 r/min离心10 min,弃上清。
5、加入1 mL冰预冷的0.1 mol/L CaCl2重悬沉淀,继续冰浴15-30 min。
第1篇一、实验目的本实验旨在学习并掌握克隆基因提取的基本原理和操作步骤,通过实验操作,提取目的基因,为后续的基因克隆、表达和功能研究奠定基础。
二、实验原理克隆基因提取主要利用DNA提取技术,通过破碎细胞、释放DNA、去除杂质等步骤,得到高纯度的DNA。
本实验采用碱裂解法提取目的基因,该方法具有操作简单、提取效率高、DNA纯度好等优点。
三、实验材料1. 实验试剂:NaCl溶液、Tris-HCl缓冲液、无水乙醇、异丙醇、二苯胺染液、DNA提取试剂盒等。
2. 实验仪器:高速离心机、电子天平、移液器、PCR仪、凝胶成像系统等。
3. 实验样品:目的基因载体(含目的基因)、细菌菌液等。
四、实验步骤1. 细菌培养:将目的基因载体转化至大肠杆菌,挑取单克隆菌落,接种于含有适量抗生素的LB液体培养基中,37℃、200 r/min培养过夜。
2. 酵母提取物制备:将过夜培养的菌液按1:100比例稀释,加入酵母提取物、葡萄糖等,37℃、200 r/min培养至对数生长期。
3. 细菌裂解:将培养好的菌液按照1:10比例加入裂解液,55℃水浴30 min,期间每隔5 min振荡1次,使菌体充分裂解。
4. DNA沉淀:将裂解液按照1:2比例加入等体积的异丙醇,混匀,4℃、12 000r/min离心10 min,弃上清液。
5. DNA洗涤:将沉淀用70%乙醇洗涤1次,4℃、7 500 r/min离心5 min,弃上清液。
6. DNA溶解:将沉淀用适量TE缓冲液溶解,-20℃保存。
7. DNA纯化:按照DNA提取试剂盒说明书进行操作,得到高纯度的目的基因。
8. 验证:将提取的目的基因进行PCR扩增,观察扩增结果,确认目的基因提取成功。
五、实验结果与分析1. PCR扩增结果:通过PCR扩增,成功获得目的基因,扩增产物大小与预期相符。
2. DNA纯度:利用NanoDrop2000检测提取的目的基因,A260/A280比值在1.8-2.0之间,表明DNA纯度较高。
基因克隆得几种常见方法基因(gene)就是遗传物质得最基本单位,也就是所有生命活动得基础。
不论要揭示某个基因得功能,还就是要改变某个基因得功能,都必须首先将所要研究得基因克隆出来。
特定基因得克隆就是整个基因工程或分子生物学得起点。
本文就基因克隆得几种常用方法介绍如下。
1 根据已知序列克隆基因对已知序列得基因克隆就是基因克隆方法中最为简便得一种。
获取基因序列多从文献中查取,即将别人报道得基因序列直接作为自己克隆得依据。
现在国际上公开发行得杂志一般都不登载整个基因序列,而要求作者在投稿之前将文章中所涉及得基因序列在基因库中注册,拟发表得文章中仅提供该基因在基因库中得注册号(accession number),以便别人参考与查询。
目前,世界上主要得基因库有1)EMBL,为设在欧洲分子生物学实验室得基因库,其网上地址为;(2)Genbank,为设在美国国家卫生研究院(NIH)得基因库,其网上地址为;(3)Swissport与TREMBL,Swissport就是一蛋白质序列库,其所含序列得准确度比较高,而TREMBL只含有从EMBL库中翻译过来得序列。
目前,以Genbank得应用最频繁。
这些基因库就是相互联系得,在Genbank注册得基因序列,也可能在Swissport注册。
要克隆某个基因可首先通过Internet查询一下该基因或相关基因就是否已经在基因库中注存。
查询所有基因文库都就是免费得,因而极易将所感兴趣得基因从库中拿出来,根据整个基因序列设计特异得引物,通过PCR从基因组中克隆该基因,也可以通过RT-PCR克隆cDNA。
值得注意得就是,由于物种与分离株之间得差异,为了保证PCR扩增得准确性,有必要采用两步扩增法,即nested PCR。
根据蛋白质序列也可以将编码该蛋白质得基因扩增出来。
在基因文库中注册得蛋白质序列都可以找到相应得DNA或cDNA序列。
如蛋白质序列就是自己测定得,那么需要设计至少1对简并引物(degenerated primer),从cDNA文库中克隆该基因。
基因克隆实验报告一、实验目的本次基因克隆实验的主要目的是从特定的生物体中获取感兴趣的基因,并将其插入到合适的载体中,以便进一步研究该基因的功能、表达和应用。
二、实验原理基因克隆是指通过一系列分子生物学技术,将一个目的基因从其所在的基因组中分离出来,并在体外进行扩增和修饰,然后将其连接到一个能够自我复制的载体分子上,形成重组 DNA 分子,最后将重组DNA 分子导入到宿主细胞中,使其能够在宿主细胞中稳定遗传和表达。
基因克隆的基本步骤包括:目的基因的获取、载体的选择和制备、目的基因与载体的连接、重组 DNA 分子的转化、重组子的筛选和鉴定等。
三、实验材料和试剂(一)实验材料1、含有目的基因的生物体样本,如细菌、植物或动物组织。
2、宿主细胞,如大肠杆菌。
(二)实验试剂1、限制性内切酶、DNA 连接酶。
2、聚合酶链式反应(PCR)所需的试剂,包括引物、dNTPs、Taq 聚合酶等。
3、琼脂糖、电泳缓冲液。
4、质粒提取试剂盒、DNA 凝胶回收试剂盒。
5、抗生素,如氨苄青霉素。
四、实验步骤(一)目的基因的获取1、设计引物根据目的基因的序列,设计一对特异性引物。
引物的设计要考虑到引物的长度、GC 含量、Tm 值等因素,以确保引物能够有效地与目的基因结合,并在 PCR 反应中扩增出目的基因。
2、 PCR 扩增目的基因以生物体样本的基因组 DNA 为模板,进行 PCR 反应。
PCR 反应体系包括模板 DNA、引物、dNTPs、Taq 聚合酶和反应缓冲液。
PCR 反应条件包括预变性、变性、退火和延伸等步骤,通过多个循环的扩增,得到大量的目的基因片段。
(二)载体的选择和制备1、选择合适的载体根据实验目的和宿主细胞的特点,选择合适的载体。
常用的载体有质粒、噬菌体和病毒等。
本实验中选择质粒作为载体。
2、制备线性化载体使用限制性内切酶对载体进行酶切,使其成为线性化的载体,以便于与目的基因进行连接。
(三)目的基因与载体的连接1、回收目的基因和线性化载体使用 DNA 凝胶回收试剂盒,分别回收 PCR 扩增得到的目的基因片段和线性化的载体片段。
原核或真核细胞基因克隆的实验方案
基因克隆是指将一个生物体的基因序列复制并导入到另一个生物体中。
下面是一个原核或真核细胞基因克隆的实验方案的概述:
原核细胞基因克隆实验方案如下:
1. 选择一个合适的质粒(vector),如pUC19。
2. 从原核细胞中提取目标基因的DNA序列。
3. 将目标基因的DNA序列连接至质粒上的适当限制酶切位点,形成重组质粒。
4. 将重组质粒转化至宿主细菌中,如大肠杆菌。
5. 在含有适当选择性培养基的培养皿中培养转化后的细菌。
6. 通过筛选克隆检测获得目标基因被成功插入质粒的细菌。
7. 最后,提取重组质粒中的目标基因。
真核细胞基因克隆实验方案如下:
1. 选择一个合适的真核细胞载体(vector),如pCDNA3.
2. 将目标基因的DNA序列放入真核细胞载体中,形成重组载体。
3. 将重组载体转染入真核细胞中,如哺乳动物细胞。
4. 在培养基中培养转染后的真核细胞。
5. 筛选和收集含有目标基因的克隆细胞。
6. 验证克隆细胞中目标基因的存在,如通过PCR或DNA测序等方法。
7. 最终,可通过克隆细胞培养、提取目标基因的方式获得目标基因。
在进行任何实验操作前,请确保遵守实验室的安全规范和伦理要求,并获得相应的研究伦理审批。
一、实验目的1. 理解基因克隆的基本原理和操作步骤。
2. 掌握限制性核酸内切酶、DNA连接酶、质粒载体等工具的使用方法。
3. 培养实验操作技能,提高实验数据分析能力。
二、实验原理基因克隆是指将目的基因片段插入到载体DNA中,构建重组DNA分子,并在宿主细胞中扩增。
实验过程中,主要利用限制性核酸内切酶、DNA连接酶等工具进行DNA片段的切割、连接和转化。
三、实验材料与仪器1. 材料:质粒载体、目的基因片段、限制性核酸内切酶、DNA连接酶、DNA分子量标准、DNA琼脂糖凝胶电泳试剂盒、DNA纯化试剂盒、感受态细胞等。
2. 仪器:PCR仪、电泳仪、凝胶成像系统、微量移液器、离心机、培养箱、超净工作台等。
四、实验步骤1. 制备DNA模板:以质粒载体为模板,利用PCR技术扩增目的基因片段。
2. 酶切:将目的基因片段和质粒载体分别用限制性核酸内切酶进行酶切,得到具有相同粘性末端的DNA片段。
3. 连接:将酶切后的目的基因片段和质粒载体在DNA连接酶的作用下连接成重组DNA分子。
4. 转化:将重组DNA分子转化到感受态细胞中,使其成为重组质粒。
5. 鉴定:通过PCR、DNA琼脂糖凝胶电泳等方法对转化后的细胞进行鉴定,筛选出含有目的基因的克隆。
6. 提取目的基因:从阳性克隆中提取重组质粒,并进行DNA纯化。
7. 验证:利用DNA测序技术对提取的目的基因进行验证,确保其序列与预期一致。
五、实验结果与分析1. 酶切:酶切后的目的基因片段和质粒载体在DNA琼脂糖凝胶电泳上呈现出两条带,分别对应目的基因片段和质粒载体。
2. 连接:连接产物在DNA琼脂糖凝胶电泳上呈现出一条带,表明目的基因片段和质粒载体已成功连接。
3. 转化:转化后的细胞在PCR、DNA琼脂糖凝胶电泳上呈现出一条带,表明转化成功。
4. 提取目的基因:提取的重组质粒在PCR、DNA琼脂糖凝胶电泳上呈现出一条带,表明目的基因已成功提取。
5. 验证:DNA测序结果显示,提取的目的基因序列与预期一致,实验成功。
基因克隆具体实验报告基因克隆是指将一个物种的基因从其源生物体中提取出来,并插入到另一个宿主生物体中的过程。
基因克隆可以用于基础研究、医学诊断和治疗、农业改良等领域。
以下是一个基因克隆具体实验的报告。
实验目的:本实验旨在将一段目标DNA序列从一个细菌中克隆到另一个细菌中,以验证克隆技术的可行性。
实验材料:- 源生菌株:提供目标DNA序列的细菌- 宿主菌株:用于接受目标DNA序列并进行复制的细菌- 高浓度DNA提取试剂盒:用于提取源生菌株中的基因组DNA- 质粒:使用质粒介导转化的方式将目标DNA序列插入到质粒中- 缓冲液:用于稀释DNA、提供合适的反应环境- 培养基:提供细菌生长所需的养分- 抗生素:用于选择具有目标DNA序列的细菌实验步骤:1. 提取源生菌株中的基因组DNA:a. 从培养基中取一些源生菌落,转移到离心管中。
b. 加入适量的高浓度DNA提取试剂盒,根据试剂盒说明书进行细胞破裂和DNA纯化的步骤。
c. 将提取的DNA用缓冲液稀释,并进行质量检查。
2. 克隆目标DNA序列到质粒中:a. 将提取的DNA和质粒按照一定比例混合。
b. 加入适量的酶切酶,根据目标DNA序列的酶切位点选择适当的酶切方法。
c. 在恒温水浴中进行酶切反应,使目标DNA序列与质粒酶切后的末端互补连接。
d. 加入适量的合成DNA ligase,进行连接反应,形成目标DNA序列与质粒的连接产物。
3. 将质粒插入宿主细菌:a. 将宿主细菌制备成化学计量的细菌悬液。
b. 加入目标DNA序列与质粒连接产物到宿主细菌悬液中。
c. 进行质粒介导转化,使目标DNA序列与质粒插入到宿主细菌中。
4. 筛选具有目标DNA序列的细菌:a. 将转化后的宿主细菌悬液分别均匀涂布在含有适量抗生素的培养基平板上。
b. 在适当的培养条件下,培养细菌培养基平板,并观察是否有菌落生长。
c. 通过PCR、酶切等方法对菌落进行初步筛选。
d. 对初步筛选出的菌落进行进一步的测序和验证。
克隆基因的步骤姓名:王静马红梅施翔骞武洋梁丹罗星(指导老师)克隆基因的步骤摘要:基因是遗传物质的最基本单位,也是所有生命活动的基础,不论是揭示某个基因的功能还是要改变某个基因的功能,都必须将所要研究的基因克隆出来。
本文将试验中的体会以及查阅文献后获得的知识做一汇总,简述克隆基因中的步骤以及在操作中应该注意到的一些问题。
关键词:基因克隆;质粒;重组基因克隆可概括为∶分、切、连、转、选。
"分"是指分离制备合格的待操作的DNA,包括作为运载体的DNA和欲克隆的目的DNA;"切"是指用序列特异的限制性内切酶切开载体DNA,或者切出目的基因;"连"是指用DNA连接酶将目的DNA同载体DNA连接起来,形成重组的DNA分子;"转"是指通过特殊的方法将重组的DNA 分子送入宿主细胞中进行复制和扩增;"选"则是从宿主群体中挑选出携带有重组DNA分子的个体。
DNA克隆的第一步是获得包含目的基因在内的一群DNA分子,常用的方法有机械切割和核酸限制性内切酶消化。
如果基因的两端部分序列已知,根据已知序列设计引物,从基因组DNA 或cDNA 中通过PCR技术可以获得目的基因。
该试验为设计引物来获得目的基因。
接下来选择载体,本次试验采用的是质粒载体,利用质粒进行载体构建。
载体构建的原理为:依赖于限制性核酸内切酶,DNA连接酶和其他修饰酶的作用,分别对目的基因和载体DNA进行适当切割和修饰后,将二者连接在一起,再导入宿主细胞,实现目的基因在宿主细胞内的正确表达。
体外重组则可完成上述过程。
体外重组即体外将目的片断和载体分子连接的过程。
大多数核酸限制性内切酶能够切割DNA分子形成有粘性末端,用同一种酶或同尾酶切割适当载体的多克隆位点便可获得相同的粘性末端,粘性末端彼此退火,通过T4 DNA连接酶的作用便可形成重组体,此为粘末端连接。
重组质粒的连接、转化及筛选 第一节 概 述 质粒具有稳定可靠和操作简便的优点。如果要克隆较小的DNA片段(<10kb)且结构简单,质粒要比其它任何载体都要好。在质粒载体上进行克隆,从原理上说是很简单的,先用限制性内切酶切割质粒DNA和目的DNA片段, 然后体外使两者相连接, 再用所得到重组质粒转化细菌,即可完成。但在实际工作中, 如何区分插入有外源DNA的重组质粒和无插入而自身环化的载体分子是较为困难的。通过调整连接反应中外源DNA片段和载体DNA的浓度比例,可以将载体的自身环化限制在一定程度之下,也可以进一步采取一些特殊的克隆策略,如载体去磷酸化等来最大限度的降低载体的自身环化,还可以利用遗传学手段如α互补现象等来鉴别重组子和非重组子。 外源DNA片段和质粒载体的连接反应策略有以下几种: 1、带有非互补突出端的片段 用两种不同的限制性内切酶进行消化可以产生带有非互补的粘性末端,这也是最容易克隆的DNA片段,一般情况下,常用质粒载体均带有多个不同限制酶的识别序列组成的多克隆位点,因而几乎总能找到与外源DNA片段末端匹配的限制酶切位点的载体,从而将外源片段定向地克隆到载体上。也可在PCR扩增时,在DNA片段两端人为加上不同酶切位点以便与载体相连。 2、带有相同的粘性末端 用相同的酶或同尾酶处理可得到这样的末端。 由于质粒载体也必须用同一种酶消化,亦得到同样的两个相同粘性末端,因此在连接反应中外源片段和质粒载体DNA均可能发生自身环化或几个分子串连形成寡聚物, 而且正反两种连接方向都可能有。所以,必须仔细调整连接反应中两种DNA的浓度, 以便使正确的连接产物的数量达到最高水平。还可将载体DNA的5'磷酸基团用碱性磷酸酯酶去掉, 最大限度地抑制质粒DNA的自身环化。带5'端磷酸的外源DNA片段可以有效地与去磷酸化的载体相连, 产生一个带有两个缺口的开环分子,在转入E. coli受体菌后的扩增过程中缺口可自动修复。 3、带有平末端 是由产生平末端的限制酶或核酸外切酶消化产生,或由DNA聚合酶补平所致。由于平端的连接效率比粘性末端要低得多,故在其连接反应中,T4 DNA连接酶的浓度和外源DNA及载体DNA浓度均要高得多。通常还需加入低浓度的聚乙二醇(PEG 8000)以促进DNA分子凝聚成聚集体的物质以提高转化效率。 特殊情况下,外源DNA分子的末端与所用的载体末端无法相互匹配,则可以在线状质粒载体末端或外源DNA片段末端接上合适的接头(linker)或衔接头(adapter)使其匹配, 也可以有控制的使用E. coli DNA聚合酶Ⅰ的klenow大片段部分填平3'凹端,使不相匹配的末端转变为互补末端或转为平末端后再进行连接。 本实验所使用的载体质粒DNA为pBS,转化受体菌为E. coli DH5α菌株。由于pBS上带有Ampr 和lacZ基因,故重组子的筛选采用Amp抗性筛选与α-互补现象筛选相结合的方法。 因pBS带有Ampr 基因而外源片段上不带该基因,故转化受体菌后只有带有pBS DNA的转化子才能在含有Amp的LB平板上存活下来;而只带有自身环化的外源片段的转化子则不能存活。此为初步的抗性筛选。 pBS上带有β-半乳糖苷酶基因(lacZ)的调控序列和β-半乳糖苷酶N端146个氨基酸的编码序列。这个编码区中插入了一个多克隆位点,但并没有破坏lacZ的阅读框架,不影响其正常功能。E. coli DH5α菌株带有β-半乳糖苷酶C端部分序列的编码信息。在各自独立的情况下,pBS和DH5α编码的β-半乳糖苷酶的片段都没有酶活性。但在pBS和DH5α融为一体时可形成具有酶活性的蛋白质。这种lacZ基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β-半乳糖苷酸阴性突变体之间实现互补的现象叫α-互补。由α-互补产生的Lac+ 细菌较易识别,它在生色底物X-gal(5-溴-4氯-3-吲哚-β-D-半乳糖苷)下存在下被IPTG(异丙基硫代-β-D-半乳糖苷)诱导形成蓝色菌落。当外源片段插入到pBS质粒的多克隆位点上后会导致读码框架改变, 表达蛋白失活, 产生的氨基酸片段失去α-互补能力, 因此在同样条件下含重组质粒的转化子在生色诱导培养基上只能形成白色菌落。在麦康凯培养基上,α-互补产生的Lac+细菌由于含β-半乳糖苷酶,能分解麦康凯培养基中的乳糖,产生乳酸,使pH下降,因而产生红色菌落,而当外源片段插入后,失去α-互补能力,因而不产生β-半乳糖苷酶,无法分解培养基中的乳糖,菌落呈白色。由此可将重组质粒与自身环化的载体DNA分开。此为α-互补现象筛选。
第二节 材料、设备及试剂 一、 材料 外源DNA片段: 自行制备的带限制性末端的DNA溶液,浓度已知; 载体DNA: pBS质粒(Ampr ,lacZ),自行提取纯化,浓度已知; 宿主菌: E. coli DH5α,或JM系列等具有α-互补能力的菌株。 二、 设备 恒温摇床,台式高速离心机,恒温水浴锅, 琼脂糖凝胶电泳装置, 电热恒温培养箱,电泳仪无菌,工作台, 微量移液枪,eppendorf管。 三、 试剂 1、连接反应缓冲液(10×):0.5mol/L Tris·Cl (pH7.6),100mol/L MgCl2,100mol/L 二硫苏糖醇(DTT)(过滤灭菌),500μg/ml 牛血清清蛋白(组分V.Sigma 产品)(可用可不用),10mol/L ATP(过滤灭菌)。 2、T4 DNA连接酶(T4 DNA ligase);购买成品。 3、X-gal储液(20mg/ml): 用二甲基甲酰胺溶解X-gal配制成20mg/ml的储液, 包以铝箔或黑纸以防止受光照被破坏, 储存于-20℃。 4、IPTG储液(200mg/ml): 在800μl蒸馏水中溶解200mg IPTG后,用蒸馏水定容至1ml,用0.22μm滤膜过滤除菌,分装于eppendorf管并储于-20℃。 5、麦康凯选择性培养基(Maconkey Agar):取52g麦康凯琼脂加蒸馏水1000ml,微火煮沸至完全浴解,高压灭菌,待冷至60℃左右加入Amp储存液使终浓度为50mg/ml,然后摇匀后涂板。 6、含X-gal和IPTG的筛选培养基:在事先制备好的含50μg/ml Amp的LB平板表面加40ml X-gal储液和4μlIPTG储液,用无菌玻棒将溶液涂匀,置于37℃下放置3-4小时,使培养基表面的液体完全被吸收。 7、感受态细胞制备试剂: 见第三章。 8、煮沸法快速分离质粒试剂: 见第一章。 9、质粒酶及电泳试剂: 见第二章。
第三节 操作步骤 一、 连接反应 1、取新的经灭菌处理的0.5ml eppendorf管, 编号。 2、将0.1μg载体DNA转移到无菌离心管中,加等摩尔量(可稍多)的外源DNA片段。 3、加蒸馏水至体积为8μl,于45℃保温5分钟,以使重新退火的粘端解链。将混和物冷却至0℃。 4、加入10×T4 DNA ligase buffer 1μl, T4 DNA ligase 0.5μl, 混匀后用微量离心机将液体全部甩到管底,于16℃保温8-24小时。 同时做二组对照反应,其中对照组一只有质粒载体无外源DNA;对照组二只有外源DNA片段没有质粒载体。 二、 E. coli DH5α感受态细胞的制备及转化 每组连接反应混和物各取2μl转化E. coli DH5α感受态细胞。具体方法见第三章。 三、 重组质粒的筛选 1、每组连接反应转化原液取100μl用无菌玻棒均匀涂布于筛选培养基上,37℃下培养半小时以上,直至液体被完全吸收。 2、倒置平板于37℃继续培养12-16小时,待出现明显而又未相互重叠的单菌落时拿出平板。 3、放于4℃数小时,使显色完全(此步麦康凯培养基不做)。 不带有pBS质粒DNA的细胞,由于无Amp抗性,不能在含有Amp的筛选培养基上成活。带有pBS载体的转化子由于具有β-半乳糖苷酶活性,在麦康凯筛选培养基上呈现为红色菌落。在X-gal和ITPG培养基上为蓝色菌落。带有重组质粒转化子由于丧失了β-半乳糖苷酶活性,在麦康凯选择性培养基和x-gal和ITPG培养基上均为白色菌落。 四、 酶切鉴定重组质粒 用无菌牙签挑取白色单菌落接种于含Amp 50μg/ml的 5ml LB液体培养基中,37℃下振荡培养12小时。使用煮沸法快速分离质粒DNA直接电泳,同时以煮沸法抽提的pBS质粒做对照,有插入片段的重组质粒电泳时迁移率较pBS慢。再用与连接未端相对应的限制性内切酶进一步进行酶切检验。还可用杂交法筛选重组质粒。
[注意] 1、DNA连接酶用量与DNA片段的性质有关,连接平齐末端,必须加大酶量,一般使用连接粘性末端酶量的10-100倍。 2、在连接带有粘性末端的DNA片段时,DNA浓度一般为2-10mg/ml,在连接平齐末端时,需加入DNA浓度至100-200mg/ml。 3、连接反应后,反应液在0℃储存数天,-80℃储存2个月,但是在-20℃冰冻保存将会降低转化效率。 4、粘性末端形成的氢键在低温下更加稳定,所以尽管T4 DNA连接酶的最适反应温度为37℃,在连接粘性末端时,反应温度以10-16℃为好,平齐末端则以15-20℃为好。 5、在连接反应中,如不对载体分子进行去5'磷酸基处理,便用过量的外源DNA片段(2-5倍),这将有助于减少载体的自身环化,增加外源DNA和载体连接的机会。 6、麦康凯选择性琼脂组成的平板,在含有适当抗生素时,携有载体DNA的转化子为淡红色菌落,而携有带插入片段的重组质粒转化子为白色菌落。该产品筛选效果同蓝白斑筛选,且价格低廉。但需及时挑取白色菌落,当培养时间延长,白色菌落会逐渐变成微红色,影响挑选。 7、X-gal是5-溴-4-氯-3-吲哚-b-D-半乳糖(5-bromo-4-chloro-3-indolyl-b-D-galactoside)以半乳糖苷酶(b-galactosidase)水解后生成的吲哚衍生物显蓝色。IPTG是异丙基硫代半乳糖苷(Isopropylthiogalactoside),为非生理性的诱导物,它可以诱导lacZ的表达。 8、在含有X-gal和IPTG的筛选培养基上,携带载体DNA的转化子为蓝色菌落,而携带插入片段的重组质粒转化子为白色菌落,平板如在37℃培养后放于冰箱3-4小时可使显色反应充分,蓝色菌落明显。
DNA分子的限制性内切酶消化