高一必修二数学第一单元重点:空间几何体的三视图和直观图
- 格式:doc
- 大小:11.50 KB
- 文档页数:2
高中数学空间几何体的三视图和直观图知识点1.多面体的结构特征(1)棱柱有两个面相互平行,其余各面都是平行四边形,每相邻两个四边形的公共边平行。
正棱柱:侧棱垂直于底面的棱柱叫做直棱柱,底面是正多边形的直棱柱叫做正棱柱.反之,正棱柱的底面是正多边形,侧棱垂直于底面,侧面是矩形.(2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形.正棱锥:底面是正多边形,顶点在底面的射影是底面正多边形的中心的棱锥叫做正棱锥.特别地,各棱均相等的正三棱锥叫正四面体.反过来,正棱锥的底面是正多边形,且顶点在底面的射影是底面正多边形的中心.(3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形.2.旋转体的结构特征(1)圆柱可以由矩形绕一边所在直线旋转一周得到.(2)圆锥可以由直角三角形绕一条直角边所在直线旋转一周得到.(3)圆台可以由直角梯形绕直角腰所在直线旋转一周或等腰梯形绕上下底面中心所在直线旋转半周得到,也可由平行于底面的平面截圆锥得到.(4)球可以由半圆面绕直径旋转一周或圆面绕直径旋转半周得到.3.空间几何体的三视图空间几何体的三视图是用平行投影得到,这种投影下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是全等和相等的,三视图包括正视图、侧视图、俯视图.三视图的长度特征:“长对正,宽相等,高平齐”,即正视图和侧视图一样高,正视图和俯视图一样长,侧视图和俯视图一样宽.若相邻两物体的表面相交,表面的交线是它们的分界线,在三视图中,要注意实、虚线的画法.4.空间几何体的直观图空间几何体的直观图常用斜二测画法来画,基本步骤是:(1)画几何体的底面在已知图形中取互相垂直的x轴、y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴、y′轴,两轴相交于点O′,且使∠x′O′y′=45°或135°,已知图形中平行于x轴、y轴的线段,在直观图中平行于x′轴、y′轴.已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度变为原来的一半.(2)画几何体的高在已知图形中过O点作z轴垂直于xOy平面,在直观图中对应的z′轴,也垂直于x′O′y′平面,已知图形中平行于z轴的线段,在直观图中仍平行于z′轴且长度不变.。
空间几何体的三视图与直观图开篇语上一讲我们认识了柱体、锥体、台体、球体以及简单组合体的结构特征。
为了将这些空间几何体画在纸上,用平面图形表示出来,使我们能够根据平面图形想像空间几何体的形状和结构,这是我们这一讲要研究的主要内容——视图。
我们常用三视图和直观图表示空间几何体,三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形;直观图是观察者站在某一点观察一个空间几何体而画出的图形。
三视图和直观图在工程建设、机械制造以及日常生活中具有重要意义。
一、中心投影与平行投影1.投影:光是直线传播的,由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影。
2.中心投影:把光又一点向外散射形成的投影,叫做中心投影;3.平行投影:把在一束平行光线照射下形成的投影,叫做平行投影。
平行投影的投影线是平行的,在平行投影中,投影线正对着投影面时,叫做正投影;否则叫做斜投影。
在平行投影下,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小是完全相同的。
例如,一个三角板在中心投影和不同方向的平行投影下所产生的投影如图:我们用平行投影的方法,画空间几何体的三视图和直观图。
二、空间几何体的三视图把一个空间几何体投影到一个平面上,可以获得一个平面图形,但是只有一个平面图形难以把握几何体的全貌,因此,我们需要从多个角度进行投影,才能较好地把握几何体的形状和大小。
通常,总是选择三种正投影:一种是光线从几何体的前面向后面正投影,得到投影图,这种投影图叫做几何体的正(主)视图;一种是光线从几何体的左面向右面正投影,得到投影图,这种投影图叫做几何体的侧(左)视图;第三种是光线从几何体的上面向下面正投影,得到投影图,这种投影图叫做几何体的俯视图。
几何体的正视图、侧视图和俯视图统称为几何体的三视图。
一个几何体的侧视图和正视图高度相等;俯视图与正视图长度一样;侧视图与俯视图宽度相同.题一:请画出圆柱和圆锥的三视图.题二:请画出下面不同放置情况的正三棱柱的三视图.题三:一个几何体的三视图如图,请说出它对应的几何体的名称.bF侧视图俯视图正视图(1)(2)(3) (4)(5)题四:一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该几何体的俯视图为( )以上都是简单几何体的三视图,再看这样一个几何体.三、空间几何体的直观图要画空间几何体的直观图,首先要学会水平放置的平面图形的画法。
高中数学必修二第一章空间几何体的结构特征及三视图和直观图学习目标1. 能画出柱、锥、台、球等简易组合体的三视图,并能识别三视图所表示的立体模型.会用斜二测法画出它们的直观图.2.了解平行投影与中心投影,了解空间图形的不同表示形式.3.从近三年的新课标高考试题来看,三视图已成为必考内容,应引起高度重视.知识再现•1.几何体的三视图是指:正视图、侧视图、俯视图.又称为:主视图、左视图、俯视图.•2.三视图的画法要求•(1)在画三视图时,重叠的线只画一条,挡住的线要画成虚线,单位不注明,则按mm计.•(2)三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廊线.画三视图的基本要求是:“正俯一样长、正侧一样高、俯侧一样宽”.•(3)由三视图想象几何体特征时要根据“长对正、高平齐、宽相等”的基本原则.•3.平面图形的直观图画法•在斜二测画法中,平行于x轴的线段长度不变;平行于y轴的线段长度减半.•4.平行投影的投影线互相平行;中心投影的投影线相交于一点.教材回归例题1.下列几何体的三视图中,恰好有两个视图相同的几何体是( )•A.球•B.正方体•C.圆锥•D.长宽高互不相等的长方体•答案 C例2 如图是某几何体的三视图,其中正视图是腰长为2a的等腰三角形,俯视图是半径为a的半圆,则该几何体的表面积是________.•例3由下列几何体的三视图画出直观图.•例4 一个几何体的三视图如图所示,则这个几何体的体积为________.※动手试试1.下列三个命题,其中正确的有 ( )①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;②两个底面平行且相似,其余各面都是梯形的多面体是棱台;③有两个面互相平行,其余各面都是等腰梯形的六面体是棱台.A.0个B.1个C.2个D.3个2.关于直观图画法的说法中,不正确的是()A.原图中平行于x轴的线段,其对应线段仍平行于x轴,其长度不变B.原图中平行于y轴的线段,其对应线段仍平行于y轴,长度不变C.画与坐标系xOy对应的坐标系x′O′y′时,∠x′O′y′可等于135°D.作直观图时,由于选轴不同,所画直观图可能不同3. 如图所示,甲、乙、丙是三个几何体的三视图,甲、乙、丙对应的标号正确的是()①长方体②圆锥③三棱锥④圆柱A.④③②B.①③②C.①②③D.④②③4.(2011届·江苏常州调研)如图所示,矩形O′A′B′C′是水平放置一个平面图形的直观图,其中O′A′=6 cm,O′C′=2 cm,则原图形是()A.正方形B.矩形C.菱形D.一般的平行四边形5. 四棱台的上下底面均为正方形,它们的边长分别为2 cm和6 cm,两底面之间的距离为2 cm,则该四棱台的侧棱长为()A.3cmB.22cmC.23cmD.5cm6. 已知水平放置的△ABC的直观图△A′B′C ′(斜二测画法)是边长为2a的正三角形,则原△ABC的面积为()A.2a2B.32a2 C.62a2 D.6a2二、填空题(本大题共4小题,每小题7分,共28分)7.(2011届·山东威海质检)如下图所示,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是下图的(要求:把可能的图的序号都填上). 8.由大小相同的正方体木块堆成的几何体的三视图如图所示,则该几何体中正方体木块的个数是 .9. 如图所示的立体图形,都是由相同的小正方体拼成的.(1)图①的正视图与图②的相同.(2)图③的与图④的不同.三、解答题10.根据三视图(如图)想象物体原型,并画出直观图.12.(2011届·浙江台州模拟)已知某几何体的俯视图是如图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V.(2)求该几何体的侧面积S.。
1.2空间几何体的三视图和直观图知识点1 平行投影和中心投影基本概念:光由一点向外散射而成的投影叫做中心投影,把一束平行光线照射下形成的投影叫做平行投影。
知识点2 三视图三视图的相关概念:正视图,侧视图(左向右),俯视图画三视图的规则:正视图侧视图一样高,正视图俯视图一样长,俯视图侧视图一样宽。
(长对正、高平齐、宽相等)能看见用实线,不能看见用虚线。
知识点3 常见几何体的三视图圆柱、三棱柱、四棱锥、球知识点4 斜二测画法(直观图)斜二测画法:1在已知图形所在的空间中取水平平面,作互相垂直的轴Ox,Oy,再作Oz轴,使Lx0z=90°,且.LyOz=90°.2画直观图时,把Ox,Oy,Oz.2画成对应的轴O'x',O'y',O'2',使Lx'0'y'=45°(或135°),Ly'0'z'=90°。
x'O'y'所确定的平面表示水平平面.3已知图形中,平行于x轴、y轴或z轴的线段,在直观图中分别画成平行于x'轴、y'轴或z'轴的线段.并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.4已知图形中平行于x轴或z轴的线段,在直观图中保持长度不变,平行于y轴的线段,长度变为原来的一半5画图完成后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图.6用斜二测画法画出的水平放置的平面图形的V2直观图的面积是原图形面积的四分之根号二。
(课本16页例1、例2)基础训练:习题1.2 A组1、2。
高中数学必修二空间几何体的三视图和直观图一、教学目标:1、学会根据物体的三视图描述出几何体的基本形状或实物原型;2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。
教学重点与难点:根据物体的三视图描述出几何体的基本形状或实物原型二、教学过程:(一)复习引入前面我们讨论了由立体图形(实物)画出三视图,那么由三视图能否也想象出立体图形(实物)呢?引导学生结合例例例的三视图想象一下构造还原过程(发展空间想象能力)(二)新课学习例4根据下面的三视图说出立体图形的名称.分析:由三视图想象立体图形时,要先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后再综合起来考虑整体图形,解:(1)从三个方向看立体图形,图象都是矩形,可以想象出:整体是长方体,如图(1)所示;(2)从正面、侧面看立体图形,图象都是等腰三角形;从上面看,图象是圆;可以想象出:整体是圆锥,如图(2)所示.例5根据物体的三视图(如下图)描述物体的形状.分析.由主视图可知,物体正面是正五边形,由俯视图可知,由上向下看物体是矩形的,且有一条棱(中间的实线)可见到。
两条棱(虚线)被遮挡,由左视图知,物体的侧面是矩形的.且有一条棱〔中间的实线)可见到,综合各视图可知,物体是五棱柱形状的.解:物体是五棱柱形状的,如下图所示.(三)巩固再现1、P121 练习2、如图所示图形是一个多面体的三视图,请根据视图说出该多面体的具体名称。
三、小结:1、一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看。
2、一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性。
例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等。
3、对于较复杂的物体,有三视图形象出物体的原型,应搞清三个视图之间的前后、左右、上下的对应关系。
四、作业空间几何体的直观图一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。
空间几何体的三视图与直观图知识集结知识元投影的概念与绘制知识讲解中心投影和平行投影1.投影的定义由于光的照射,在不透明物体后面的屏幕上可以留下这个物体的影子,这种现象叫做投影.其中,把光线叫做投影线,把留下物体影子的屏幕叫做投影面.2.中心投影与平行投影投影定义特征分类中心投影光由一点向外散射形成的投影投影线交于一点平行投影在一束平行光线照射下形成的投影投影线互相平行正投影和斜投影3.中心投影和平行投影具有的性质(1)中心投影中投影线交于一点.(2)平行投影中:①直线或线段的投影是直线或线段或点,平行直线的投影平行或重合或为两个点.②平行于投影面的线段,它的投影与这条线段平行且等长.③与投影面平行的平面图形,它的投影与这个图形全等.4.中心投影和平行投影具有的区别(1)中心投影的投影线交于一点,平行投影的投影线互相平行.(2)在平行投影中,与投影面平行的平面图形留下的影子,与这个平面图形的形状和大小完全相同;而中心投影则不同.(3)画实际效果图一般用中心投影法;画立体几何中的图形一般用平行投影法.5.判断一个几何体的投影是什么图形,先分清楚是平行投影还是中心投影,投影面的位置如何,再根据平行投影或中心投影的性质来判断.当图形中的直线或线段不平行于投影线时,平行投影具有下述性质:(1)直线或线段的平行投影仍是直线或线段.(2)平行直线的平行投影是平行或重合的直线.(3)平行于投影面的线段,它的投影与这条线段平行且等长.(4)与投影面平行的平面图形,它的投影与这个图形全等.例题精讲投影的概念与绘制例1.一条直线在平面上的正投影是()A.直线B.点C.线段D.直线或点例2.如图,E、F分别是正方体的面ADD1A1,面BCC1B1的中心,则四边形BFD1E在该正方体的面上的正射影可能是________.(要求:把可能的图的序号都填上)例3.如图,点O为正方体ABCD-A′B′C′D′的中心,点E为面B′BCC′的中心,点F为B′C′的中点,则空间四边形D′OEF在该正方体的面上的正投影可能是________(填出所有可能的序号).例4.设四面体ABCD 各棱长均相等,S 为AD 的中点,Q 为BC 上异于中点和端点的任一点,则△SQD 在四面体的面BCD 上的射影可能是()A.B .C .D .根据三视图分析几何体空间结构知识讲解空间几何体的三视图1.三视图的基本概念三视图概念规律正视图光线从几何体的前面向后面正投影得到的投影图一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样侧视图光线从几何体的左面向右面正投影得到的投影图俯视图光线从几何体的上面向下面正投影得到的投影图2.旋转体的三视图旋转体是由某个平面图形绕着旋转轴旋转形成的,显然它是关于旋转轴对称的一类几何体.当旋转体的底面水平放置时(除球外),它的三视图比较简单,这时常见的三视图分别为:(1)圆柱的正视图和侧视图都是矩形,俯视图是圆;(2)圆锥的正视图和侧视图都是等腰三角形,俯视图是圆和圆心;(3)圆台的正视图和侧视图都是等腰梯形,俯视图是两个同心圆.例题精讲根据三视图分析几何体空间结构例1.已知某几何体的正视图和侧视图均如图所示,给出下列5个图形:其中可以作为该几何体的俯视图的图形个数是()A.5个B.4个C.3个D.2个例2.已知如图所示的正方体ABCD-A1B1C1D1,点P,Q分别在棱BB1,DD1上,且=,过点A,P,Q作截面截去该正方体的含点A1的部分,则下列图形中不可能是截去后剩下几何体的正视图的是()A .B .C .D.例3.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积S 的取值范围是________.根据空间几何体绘制三视图知识讲解空间几何体的三视图1.三视图的基本概念三视图概念规律正视图光线从几何体的前面向后面正投影得到的投影图一个几何体的正视图和侧视图高度一样,正视图和俯视图长度一样,侧视图与俯视图宽度一样侧视图光线从几何体的左面向右面正投影得到的投影图俯视图光线从几何体的上面向下面正投影得到的投影图2.旋转体的三视图旋转体是由某个平面图形绕着旋转轴旋转形成的,显然它是关于旋转轴对称的一类几何体.当旋转体的底面水平放置时(除球外),它的三视图比较简单,这时常见的三视图分别为:(1)圆柱的正视图和侧视图都是矩形,俯视图是圆;(2)圆锥的正视图和侧视图都是等腰三角形,俯视图是圆和圆心;(3)圆台的正视图和侧视图都是等腰梯形,俯视图是两个同心圆.例题精讲根据空间几何体绘制三视图例1.如图,下列四个几何体中,它们的三视图(正视图、俯视图、侧视图)有且仅有两个相同,而另一个不同的两个几何体是________.(1)棱长为2的正方体(2)底面直径和高均为2的圆柱(3)底面直径和高均为2的圆锥例2.'画出如图所示的几何体的三视图.'例3.已知点E,F,G分别是正方体ABCD-A1B1C1D1的棱AA1,C C1,DD1的中点,点M,N,Q,P分别在线段DF,AG,BE,C1B1上.以M,N,Q,P为顶点的三棱锥P-MNQ的俯视图不可能是()A.B.C.D.例4.'用小立方体搭成一个几何体,使它的正视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?'绘制水平放置的平面图形的直观图知识讲解空间几何体的直观图1.直观图的概念(1)定义:把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.(2)说明:在立体几何中,空间几何体的直观图是在平行投影下画出的空间图形.2.用斜二测画法画水平放置的平面图形的直观图的步骤(1)画轴:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴交于O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)画线:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’轴或y’轴的线段.(3)取长度:已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半.3.立体图形直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′,且平行于O′z′的线段长度不变.其他同平面图形的画法.例题精讲绘制水平放置的平面图形的直观图例1.关于斜二测画法所得直观图的说法正确的是()A.直角三角形的直观图仍是直角三角形B.梯形的直观图是平行四边形C.正方形的直观图是菱形D.平行四边形的直观图仍是平行四边形例2.如图为一平面图形的直观图的大致图形,则此平面图形可能是()A.B.C.D.例3.'画边长为1cm的正三角形的水平放置的直观图.'绘制空间几何体的直观图知识讲解空间几何体的直观图1.直观图的概念(1)定义:把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.(2)说明:在立体几何中,空间几何体的直观图是在平行投影下画出的空间图形.2.用斜二测画法画水平放置的平面图形的直观图的步骤(1)画轴:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴交于O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)画线:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’轴或y’轴的线段.(3)取长度:已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半.3.立体图形直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′,且平行于O′z′的线段长度不变.其他同平面图形的画法.例题精讲绘制空间几何体的直观图例1.'如图所示,在平面直角坐标系中,各点坐标为O(0,0),A(1,3),B(3,1),C(4,6),D(2,5).试画出四边形ABCD的直观图.'例2.'有一个正六棱锥(底面为正六边形,侧面为全等的等腰三角形的棱锥),底面边长为3cm,高为3cm,画出这个正六棱锥的直观图.'例3.'一几何体的三视图如图:(1)画出它的直观图;(2)求该几何体的体积.'直观图的还原知识讲解空间几何体的直观图1.直观图的概念(1)定义:把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.(2)说明:在立体几何中,空间几何体的直观图是在平行投影下画出的空间图形.2.用斜二测画法画水平放置的平面图形的直观图的步骤(1)画轴:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴交于O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)画线:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’轴或y’轴的线段.(3)取长度:已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半.3.立体图形直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′,且平行于O′z′的线段长度不变.其他同平面图形的画法.例题精讲直观图的还原例1.用斜二测画法画水平放置的△ABC时,若∠A的两边分别平行于x轴、y轴,且∠A=90°,则在直观图中∠A′等于()A.45°B.135°C.45°或135°D.90°例2.水平放置的△ABC的斜二测直观图如图所示,已知B′C′=4,A′C′=3,则△ABC中AB边上的中线的长度为()A.B.C.5D.例3.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=1,A′O′=,那么原△ABC中∠ABC的大小是()A.30°B.45°C.60°D.90°根据空间几何体的直观图进行相关计算知识讲解空间几何体的直观图1.直观图的概念(1)定义:把空间图形(平面图形和立体图形的统称)画在平面内,使得既富有立体感,又能表达出主要部分的位置关系和度量关系的图形叫做直观图.(2)说明:在立体几何中,空间几何体的直观图是在平行投影下画出的空间图形.2.用斜二测画法画水平放置的平面图形的直观图的步骤(1)画轴:在已知图形中取互相垂直的x轴和y轴,两轴相交于点O,画直观图时,把它们画成对应的x′轴和y′轴,两轴交于O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.(2)画线:已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x’轴或y’轴的线段.(3)取长度:已知图形中平行于x轴的线段,在直观图中长度不变,平行于y轴的线段,长度为原来的一半.3.立体图形直观图的画法画立体图形的直观图,在画轴时,要多画一条与平面x′O′y′垂直的轴O′z′,且平行于O′z′的线段长度不变.其他同平面图形的画法.例题精讲根据空间几何体的直观图进行相关计算例1.如图是利用斜二测画法画出的△ABO的直观图,已知O′B′=4,且△AOB的面积为16,A′B′∥y′轴,过A′作A′C′⊥x′轴,则A′C′=__________.例2.如图,△A′B′C′表示水平放置的△ABC在斜二测画法下的直观图,A′B′在x′轴上,B′C′⊥x′轴,且B′C′=3,则△ABC的边AB上的高为__________.例3.'在水平放置的平面α内有一个边长为1的正方形A′B′C′D′,如图,其中的对角线A′C′在水平位置,已知该正方形是某个四边形用斜二测画法画出的直观图,试画出该四边形的真实图形ABCD并求出其面积.'例4.'一个水平放置的平面图形的斜二测直观图是直角梯形ABCD,如图所示,∠ABC=45°,AB=AD=1,DC⊥BC,求原平面图形的面积.'备选题库知识讲解本题库作为知识点“空间几何体的直观图与三视图”的题目补充.例题精讲备选题库例1.某几何体的三视图如图所示,则该几何体的体积为()A.64+B.64+C.64+D.64+8π例2.已知一个几何体的三视图如图所示,其中俯视图是一个边长为2的正方形,则该几何体的表面积为()A.B.20C.D.例3.如图,网格纸上小正方形边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A.πB.πC.πD.π例4.'某几何体的直观图如图1,其按一定比例画出的三视图如图2,三视图中的长度a对应直观图中2cm.(1)结合两个图形,试指出该几何体中相互垂直的面与相互垂直的线段,并指出相关线段的长度;(2)求AB与CD所成角的大小:(3)求二面角A-BD-C的平面角的正切值;(4)计算该几何体的体积与表面积.'例5.'ABCD是长方形,四个顶点在平面α上的射影分别为A′、B′、C′、D′,直线A′B′与C′D′不重合.①求证:A′B′C′D′是平行四边形;②在怎样的情况下,A′B′C′D′是长方形?证明你的结论.'当堂练习单选题练习1.已知一个棱长为2的正方体被两个平面所截得的几何体的三视图如图所示,则该几何体的体积是()A.B.4C.D.练习2.一个三棱锥的三视图如图所示.则该三棱椎的表面积是()A.B.C.D.练习3.如图,格纸上小正方形的边长为1,粗实线画出的是一个三棱锥的三视图,则该三棱锥的体积为()A.B.C.D.8练习4.如图是某几何体的视图,则该几何体的体积为()A.B.C.D.练习5.某四棱锥的底面为正方形,其三视图如图所示,则该四棱锥的外接球的表面积为()A.πB.2πC.3πD.4π练习1.一个几何体的三视图如图所示,则该几何体的体积为___.练习2.某几何体的三视图如图所示,则该几何体的体积是___;表面积是_____.解答题练习1.'已知某个几何体的三视图如图,根据图中标出的尺寸(单位:cm),(1)求这个几何体的体积;(2)求这个几何体的表面积.'(Ⅰ)给定线段AB=4,用斜二测画法作正方体ABCD-A1B1C1D1;(Ⅱ)设P是棱A1B1上一点,,求多面体P-BCC1B1的体积.'练习3.'一个多面体的三视图和直观图如下:(1)求证:MN∥平面CDEF;(2)求证:MN⊥AH;(3)求多面体A-CDEF的体积.'。
2021高一必修二数学第一单元重点:空间几何
体的三视图和直观图
数学在科学发展和现代生活生产中的应用非常广泛,以下是查字典数学网为大家整理的高一必修二数学第一单元
重点,希望可以解决您所遇到的相关问题,加油,查字典数学网一直陪伴您。
1、空间几何体的三视图
空间几何体的三视图是用正投影得到,在这种投影下,与投影面平行的平面图形留下的影子与平面图形的开关和大小
是完全相同的,三视图包括正视图、侧视图、俯视图。
2、空间几何体的直观图
空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x轴、y 轴的夹角为45o(或135o),z轴与x轴和y轴所在平面垂直;
(2)原图形中平行于坐标轴的线段,直观图中仍平行。
平行于x轴和z轴的线段长度在直观图不变,平行于y轴的线段长度在直观图中减半。
3、平行投影与中心投影
平行投影的投影线互相平行,而中心投影的投影线相交于一点。
要点诠释:空间几何体的三视图和直观图在观察角度和投影
效果上的区别是:(1)观察角度:三视图是从三个不同位置观察几何体而画出的图形;直观图是从某一点观察几何体而画出的图形;(2)投影效果:三视图是正投影下的平面图形,直观图是在平行投影下画出的空间图形。
最后,希望小编整理的高一必修二数学第一单元重点对您有所帮助,祝同学们学习进步。