几何图形折叠问题解法浅析
- 格式:doc
- 大小:42.50 KB
- 文档页数:2
平行四边形折叠问题解题技巧平行四边形折叠问题解题技巧什么是平行四边形折叠问题平行四边形折叠问题是一种数学问题,要求将一块平行四边形纸张折叠成特定的形状。
解决这个问题需要一些技巧和方法。
以下是一些常用的技巧,可以帮助你解题。
技巧一:注意对称性•在折叠平行四边形时,要注意纸张的对称性。
利用对称性可以简化问题,并找到更快的解决方案。
•如果可以发现平行四边形纸张具有对称性,可以根据对称性进行折叠,将问题简化为更小的子问题。
技巧二:利用角度相等•在平行四边形折叠问题中,角度是一个重要的概念。
角度相等的性质可以帮助我们确定折叠的方式。
•如果已知某个角度相等,可以通过将纸张折叠使得两个角度重合,从而找到解题的关键位置。
技巧三:利用边长比例•平行四边形的边长比例也是一个重要的信息。
通过观察边长比例,可以推导出纸张的折叠方式。
•如果已知两个边长的比例,可以利用这个比例关系进行折叠,从而找到解题的关键位置。
技巧四:分析折痕•折痕是平行四边形折叠问题中的关键点。
分析折痕的特点可以帮助我们确定折叠的方式。
•观察折痕的位置、形状和角度,可以推断出纸张的折叠方式,并找到最终的解答。
技巧五:尝试反向思考•在解决平行四边形折叠问题时,有时候可以尝试反向思考。
即从最终的形状出发,逆向推导出折叠的方式。
•这种方法可以帮助我们更直观地理解问题,从而找到更有效的解题方法。
技巧六:多练习、多实践•最后,最重要的是多练习、多实践。
通过反复练习和实践,可以加深对平行四边形折叠问题的理解,掌握更多的解题技巧。
•在实践中遇到问题不要气馁,可以寻求他人的帮助或参考相关资料,不断提升自己的解题能力。
以上是解决平行四边形折叠问题常用的技巧和方法。
通过灵活运用这些技巧,相信你能够轻松解决各种平行四边形折叠问题。
祝你成功!(以上仅为参考,具体文章内容可以根据实际需要进行修改和补充。
)。
七年级折叠问题解题技巧一、折叠问题中的基本性质与关系1. 折叠性质在折叠过程中,折叠前后的图形全等。
这意味着对应边相等,对应角相等。
例如,将一个三角形沿着某条直线折叠,折叠后的三角形与原三角形的对应边长度不变,对应角的大小也不变。
折痕是对应点连线的垂直平分线。
比如将矩形ABCD沿着EF折叠,使得点A与点C重合,那么EF就是AC的垂直平分线。
2. 常见的几何图形中的折叠三角形折叠例1:在△ABC中,∠C = 90°,将△ABC沿着直线DE折叠,使点A与点B 重合,若AC = 6,BC = 8,求折痕DE的长。
解析:因为点A与点B重合,所以DE是AB的垂直平分线。
先根据勾股定理求出AB=公式。
设AB中点为F,则AF=公式。
由于△ADE和△BDE全等,所以AD = BD。
设BD = x,则AD = x,CD = 8 x。
在Rt△ACD中,根据勾股定理公式,即公式,解得公式。
再根据相似三角形,△ADE∽△ABC,公式,即公式,解得DE=公式。
矩形折叠例2:矩形ABCD中,AB = 3,BC = 4,将矩形沿对角线AC折叠,求重叠部分(△AEC)的面积。
解析:因为矩形沿对角线AC折叠,所以△ADC≌△AEC。
设AE = x,则BE = 4 x。
在Rt△ABE中,根据勾股定理公式,即公式,解得公式。
所以公式。
二、解题步骤与技巧1. 步骤第一步:根据折叠性质确定相等的边和角。
这是解决折叠问题的基础,只有明确了这些关系,才能进一步进行计算。
第二步:设未知数。
通常根据所求的量或者与所求量相关的线段设未知数,然后利用勾股定理、相似三角形等知识建立方程。
第三步:求解方程。
通过解方程得到未知数的值,从而求出最终答案。
2. 技巧利用勾股定理在直角三角形中,折叠后常常会形成新的直角三角形,此时可以利用勾股定理建立方程求解。
如上述矩形折叠的例子中,在Rt△ABE中利用勾股定理求出AE的长度。
利用相似三角形当折叠后的图形与原图形存在相似关系时,利用相似三角形的对应边成比例来求解。
初中几何折叠问题的三种解法初中几何折叠问题的三种解法初中几何是数学中的一个重要分支,而折叠问题则是初中几何中常见的一种问题。
在这里,我们将介绍三种不同的方法来解决初中几何折叠问题。
方法一:手工模拟法手工模拟法是一种简单直观的方法。
它通过将纸张折叠成所需形状来解决问题。
步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。
2. 将纸张按照比例剪成相应大小。
3. 按照题目要求,将纸张进行折叠,直到得到所需形状。
4. 计算所需参数并得出答案。
优点:手工模拟法操作简单易懂,适合初学者使用。
同时也能够帮助学生更好地理解折叠问题的本质。
缺点:手工模拟法需要较长时间完成,并且需要精确测量和折叠。
同时也容易出现误差和偏差。
方法二:平面几何法平面几何法是一种基于平面几何知识来解决问题的方法。
它通过利用图形相似性和对称性来计算所需参数。
步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。
2. 根据平面几何知识,计算所需参数,如角度、长度等。
3. 得出答案。
优点:平面几何法具有计算速度快、精度高等特点。
同时也能够帮助学生更好地理解平面几何知识的应用。
缺点:平面几何法需要学生具备一定的数学基础,并且需要对图形相似性和对称性有深入理解。
同时也容易出现计算错误和漏算情况。
方法三:三维几何法三维几何法是一种基于立体几何知识来解决问题的方法。
它通过利用立体图形的投影和相似性来计算所需参数。
步骤:1. 根据题目给出的图形,画出所需大小和比例的图形。
2. 利用三维几何知识,将立体图形投影到二维平面上,并计算所需参数,如角度、长度等。
3. 得出答案。
优点:三维几何法具有计算速度快、精度高等特点。
同时也能够帮助学生更好地理解立体几何知识的应用。
缺点:三维几何法需要学生具备一定的数学基础,并且需要对立体图形的投影和相似性有深入理解。
同时也容易出现计算错误和漏算情况。
结论:初中几何折叠问题可以通过多种方法来解决,其中手工模拟法、平面几何法和三维几何法是常见的三种方法。
七年级折叠问题知识点总结折叠问题是初中数学中一个相对难度不高但却高频出现的考点,对于七年级学生来说,掌握折叠问题的知识点是非常重要的。
下面将就这一考点进行全面总结。
一、定义折叠问题是指在一个平面图形上通过把它按照一定的方式、方向折叠,最终使得不同的部分重叠在一起或被盖住,要求求出被盖住部分的面积或者所剩下的形状等问题。
其涉及的图形种类繁多,但基本操作类似,具有很高的抽象性和富有思维性,是一种综合运用几何知识的问题。
二、关键思维折叠问题的解题关键在于灵活运用图形之间的等价性质,相关的思维方法主要包括以下几点:1. 分析图形的对称性:折叠通常涉及到“翻折”、“对称”等概念,因此,我们在解题中首先需要分析图形的对称性质,找出各对称轴,这样才能找到正确的折叠方式,避免漏解或者重解。
2. 利用图形不变性:在进行折叠的过程中,需要注意图形的一些不变性质,如面积、周长、角度、比例等,这些特征是可以被运用的,例如,在解决一道求面积的问题时,可能只需找到一个图形特征,便能够得出答案。
3. 选择适当的剖法:在有些情况下,通过简单的折叠很难求解,因此需要选择适当的剖法,如通过切割、旋转、投影等方法,将图形分割成子图形或更容易操作的形状,这样可以更方便地分析和计算。
三、常见的折叠问题1. 棱镜类问题棱镜折叠问题是指给定一个长方形,将其沿着边界折叠成一个四面体,求四面体的表面积或者体积等问题。
这种情况下需要考虑对称和镜像点等概念,利用图形不变性求解。
2. 圆柱类问题圆柱折叠问题是指给定一个长方形或者正方形,将其围绕着一定的轴旋转,并折叠起来,求形成的圆柱的表面积或者体积等问题。
这种情况下需要运用如旋转、映射等数学方法,求解时同样需要考虑对称、面积不变等特征。
3. 复杂图形问题复杂图形折叠问题是指给定一个复杂的图形(如饼干、卡片、飞机等),将其沿着特定的折叠线折叠后,求被覆盖部分的面积,或者被剖开后所得到的不同的图形等问题。
正方形折叠问题解题技巧正方形折叠问题是一类经典的几何问题,其解题技巧可以帮助我们更好地理解几何知识,提高数学思维能力。
本文将从以下几个方面展开讨论:问题描述、基本原理、常见方法和注意事项。
一、问题描述正方形折叠问题是指将一个正方形沿着对角线折叠成一个三角形,然后再将三角形沿着某个边缘折叠成一个新的三角形,如此重复进行下去,直到无法继续折叠为止。
这个过程中形成的图形称为“折纸图”。
二、基本原理在正方形折叠问题中,有两个基本原理需要掌握:1. 对称性原理:在每次折叠时,要保持图形的对称性不变。
例如,在将正方形沿着对角线折叠成三角形时,要使得三角形两侧的长度相等。
2. 重合性原理:在每次折叠时,要使得图形上的某些点或线段与之前已经出现过的点或线段重合。
例如,在将三角形沿着某条边缘折叠成新的三角形时,要使得边缘上的某些点与之前已经出现过的点重合。
三、常见方法在解决正方形折叠问题时,有几种常见的方法:1. 坐标法:将正方形的四个顶点分别标记为坐标系中的点,然后根据对称性和重合性原理进行计算。
这种方法需要较强的计算能力和空间想象能力。
2. 图形法:将正方形折叠成三角形后,用图形上的线段或角度来描述折叠过程。
这种方法需要较强的几何直觉和图像处理能力。
3. 递归法:将正方形折叠成三角形后,不断重复进行相同的折叠操作,直到无法继续为止。
这种方法需要较强的逻辑思维能力和耐心。
四、注意事项在解决正方形折叠问题时,需要注意以下几点:1. 确定基本原理:在进行每次折叠时,一定要遵循对称性和重合性原理,否则可能会得到错误的结果。
2. 注意单位:在使用坐标法时,要注意单位的选择。
如果单位不统一,则可能导致计算错误。
3. 注意精度:在使用图形法或递归法时,要注意精度问题。
如果精度不够,则可能导致结果偏差较大。
4. 多角形折叠问题:除了正方形折叠问题外,还有其他多边形的折叠问题,其解题方法类似,但需要根据实际情况进行调整。
五、结语正方形折叠问题是一类经典的几何问题,其解题技巧可以帮助我们更好地理解几何知识,提高数学思维能力。
2023年高考数学----立体几何折叠问题规律方法与典型例题讲解【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例1.(2022春·江苏南通·高三期中)已知梯形ABCD 中,//AD BC ,π2∠=∠=ABC BAD ,24AB BC AD ===,E ,F 分别是AB ,CD 上的点,//EF BC ,AE x =,G 是BC 的中点,沿EF 将梯形ABCD 翻折,使平面AEFD ⊥平面EBCF . (1)当2x =时①求证:BD EG ⊥;②求二面角D BF C −−的余弦值;(2)三棱锥D FBC −的体积是否可能等于几何体ABE FDC −体积的一半?并说明理由. 【解析】(1)证明:过D 点作EF 的垂线交EF 于H ,连接BH .如图.2AE AD == 且//AE DH ,//AD EF ,π2EAD ∠=. ∴四边形ADHE 是正方形.2EH =,∴四边形EHGB 是正方形.所以BH EG ⊥(正方形对角线互相垂直).因为平面AEFD ⊥平面EBCF ,平面AEFD ⋂平面EBCF EF =,,AE EF AE ⊥⊂平面AEFD , 所以⊥AE 平面EBCF , 所以DH ⊥平面EBCF , 又因为EG ⊂平面EBCF ,所以EG DH ⊥. 又,,BHDH H BH DH =⊂平面BDH ,所以EG ⊥平面BDH ,又BD ⊂平面BDH , 所以EG BD ⊥.②以E 为原点,EB 为x 轴,EF 为y 轴,EA 为z 轴,建立空间直角坐标系,(2B ,0,0),(0F ,3,0),(0D ,2,2),(2C ,4,0),(2BF =−,3,0),(2BD =−,2,2),设平面BDF 的法向量(n x =,y ,)z ,则·2220·230n BD x y z n BF x y ⎧=−++=⎪⎨=−+=⎪⎩,取3x =,得(3n =,2,1),又平面BCF 的法向量(0m =,0,1),1cos ,||||14m n m n m n <>==∴钝二面角D BF C −−的余弦值为.(2)AE EF ⊥Q ,平面AEFD ⊥平面EBCF , 平面AEFD ⋂平面EBCF EF =,AE ⊂平面AEFD . AE ∴⊥平面EBCF .结合DH ⊥平面EBCF ,得//AE DH ,∴四边形AEHD 是矩形,得DH AE =,故以F 、B 、C 、D 为顶点的三棱锥D BCF −的高DH AE x ==, 又114(4)8222BCFSBC BE x x ==⨯⨯−=−. ∴三棱锥D BCF −的体积为()2=11822(82)433333BFCV SDH x x x x x x ==−=−−,ABE FDC ABE DGH D HGCF V V V −−−=+13ABEHGCF SAD S DH =+111111(4)2(2)(4)=(4)1+(2)232262x x x x x x x x ⎡⎤=−⨯+⨯+−−+⎢⎥⎣⎦, 令()112(4)1+(2)=24623x x x x x ⎡⎤−+⨯−⎢⎥⎣⎦,解得0x =或4x =,不合题意;∴棱锥D FBC −的体积不可能等于几何体ABE FDC −体积的一半.例2.(2022春·辽宁·高三辽宁实验中学校考期中)如图1,在平面四边形ABCD 中,已知ABDC ,AB DC ∥,142AD DC CB AB ====,E 是AB 的中点.将△BCE 沿CE 翻折至△PCE ,使得2DP =,如图2所示.(1)证明:DP CE ⊥;(2)求直线DE 与平面P AD 所成角的正弦值. 【解析】(1)如图取CE 的中点F ,连接PF ,DF ,由题易知△PCE ,△DCE 都是等边三角形, ⸫DF ⊥CE ,PF ⊥CE , ⸫DFPF F =,DF ⊂平面DPF ,PF ⊂平面DPF⸫CE ⊥平面DPF . ⸫DP ⊂平面DPF ⸫DP ⊥CE . (2)解法一:由题易知四边形AECD 是平行四边形, 所以AD ∥CE ,又AD ⊂平面P AD ,所以CE ⊂平面P AD , 所以点E 与点F 到平面P AD 的距离相等. 由(1)知CE ⊥平面DPF ,所以AD ⊥平面DPF . 又AD ⊂平面P AD , 所以平面P AD ⊥平面DPF .过F 作FH ⊥PD 交PD 于H ,则FH ⊥平面P AD .DF PF ==2DP =,故点F 到平面P AD 的距离FH =设直线DE 与平面P AD 所成的角为θ,则sin FH DE θ==, 所以直线DE 与平面P AD 所成角的正弦值为4. 解法二:由题易知四边形AECD 是平行四边形,所以AD ∥CE ,由(1)知CE ⊥平面DPF ,所以AD ⊥平面DPF . 如图,以D 为坐标原点,DA ,DF 所在直线分别为x ,y 轴,过D 且垂直于平面AECD 的直线为z 轴建立空间直角坐标系, 则()0,0,0D ,()4,0,0A ,()E , 设()0,,P a b ,0a >,0b >. 易知DF PF ==2DP =,故(2222124a b a b ⎧−+=⎪⎨⎪+=⎩,P ⎛ ⎝⎭, 所以()4,0,0DA =,DP ⎛= ⎝⎭,()DE =,设平面P AD 的法向量为(),,n x y z =, 则00n DA n DP ⎧⋅=⎪⎨⋅=⎪⎩,得00x y =⎧⎪⎨+=⎪⎩,令y =1z =−,所以()0,11,1n =−.设直线DE 与平面P AD 所成的角为θ,则11sin |cos ,|4DE nDE n DE nθ⋅=〈〉==, 故直线DE 与平面P AD 例3.(2022春·湖南长沙·高三宁乡一中校考期中)如图,平面五边形P ABCD 中,PAD 是边长为2的等边三角形,//AD BC ,AB =2BC =2,AB BC ⊥,将PAD沿AD 翻折成四棱锥P -ABCD ,E 是棱PD 上的动点(端点除外),F ,M 分别是AB ,CE 的中点,且PC(1)证明:AB FM ⊥;(2)当直线EF 与平面P AD 所成的角最大时,求平面ACE 与平面PAD 夹角的余弦值. 【解析】(1)设O 是AD 的中点,连接,OP OC , 三角形PAD 是等边三角形,所以OP AD ⊥,OP =四边形ABCD 是直角梯形,//,OA BC OA BC =,所以四边形ABCO 是平行四边形,也即是矩形,所以OC AD ⊥,2==OC AB .折叠后,PC =222OP OC PC +=,所以OP OC ⊥, 由于,,AD OC O AD OC ⋂=⊂平面ABCD , 所以OP ⊥平面ABCD ,则,,OC OD OP 两两相互垂直,由此建立如图所示的空间直角坐标系, ()2,0,0,AB OC ==()1,1,0F −,设)()0,1,01E t t t −<<,()2,0,0C,所以)11,,22t t M ⎛⎫− ⎪ ⎪⎝⎭,则)120,,22t t FM ⎛⎫−+= ⎪ ⎪⎝⎭,所以0AB FM ⋅=, 所以AB FM ⊥.(2)由于OP ⊥平面ABCD ,AB ⊂平面ABCD ,所以OP AB ⊥, 由于,,,AB AD AD OP O AD OP ⊥⋂=⊂平面PAD ,所以AB ⊥平面PAD ,由于AE ⊂平面PAD ,所以AB AE ⊥, 所以FEA ∠是直线EF 与平面PAD 所成角, 在直角三角形AEF 中,tan AFFEA AE∠=, 由于1AF =,所以当AE 最小时,tan FEA ∠最大,也即FEA ∠最大,由于三角形PAD 是等边三角形,所以当E 为PD 的中点时,AE PD ⊥,AE 取得最小值.由于(P ,()0,1,0D,故此时10,2E ⎛ ⎝⎭,平面PAD 的法向量为()1,0,0m =,()()()30,1,0,2,0,0,2,1,0,0,2A C AC AE ⎛−== ⎝⎭,设平面ACE 的法向量为(),,n x y z =,则20302n ACx y n AE y ⎧⋅=+=⎪⎨⋅==⎪⎩,故可设(1,n =−, 设平面ACE 与平面PAD 的夹角为θ, 则1cos 17m n m nθ⋅===⋅例4.(2022·四川雅安·统考模拟预测)如图①,ABC 为边长为6的等边三角形,E ,F 分别为AB ,AC 上靠近A 的三等分点,现将AEF △沿EF 折起,使点A 翻折至点P 的位置,且二面角P EF C −−的大小为120°(如图②).(1)在PC 上是否存在点H ,使得直线//FH 平面PBE ?若存在,确定点H 的位置;若不存在,说明理由.(2)求直线PC 与平面PBE 所成角的正弦值.【解析】(1)满足条件的点H 存在,且为PC 上靠近P 的三等分点.在PC 上取靠近P 的三等分点H ,连接AP ,FH ,如图,则AP 是平面P AB 与平面P AC 的交线,依题意,12PH AF HC FC ==,则有//FH AP ,又AP ⊂平面PBE ,FH ⊄平面PBE ,因此直线//FH平面PBE ,所以在PC 上是存在点H ,为PC 上靠近P 的三等分点,使得直线//FH 平面PBE . (2)取BC 中点G ,连接AG ,交EF 于点D ,连接PD ,因//EF BC ,依题意,EF DG ⊥,EF PD ⊥,则PDG ∠为二面角P EF C −−的平面角,即120PDG ∠=︒,且EF ⊥平面PAD , 而EF ⊂平面BCFE ,则平面PAD ⊥平面BCFE ,在平面PAD 内过P 作PO AD ⊥于O , 又平面PAD ⋂平面BCFE AD =,因此PO ⊥平面BCFE ,在平面BCFE 内过O 作Ox AD ⊥, 显然Ox ,AD ,OP 两两垂直,分别以向量Ox ,OD ,OP 的方向为x ,y ,z 轴正方向,建立空间直角坐标系O xyz −,如图,则B ⎛⎫ ⎪ ⎪⎝⎭,C ⎛⎫− ⎪ ⎪⎝⎭,E ⎛⎫ ⎪ ⎪⎝⎭,30,0,2P ⎛⎫ ⎪⎝⎭,所以,32PC ⎛⎫=−− ⎪ ⎪⎝⎭,()EB =,31,2EP ⎛⎫=− ⎪ ⎪⎝⎭, 设平面PBE 的一个法向量为(),,n x y z =r,由20302n EB x n EP x y z ⎧⋅=+=⎪⎨⋅=−+=⎪⎩,令y =()3,3,1n =−,设直线PC 与平面PBE 所成角为α,则||18sin |cos ,|||||30PC n PC n PC n α⋅=〈〉===⋅所以直线PC 与平面PBE .。
空间几何中的折叠问题例题和知识点总结在空间几何的学习中,折叠问题是一个较为复杂但又十分有趣的部分。
通过折叠,可以将平面图形转化为立体图形,从而考察我们对空间想象力、几何定理的运用以及逻辑推理能力。
接下来,让我们通过一些具体的例题来深入了解空间几何中的折叠问题,并对相关知识点进行总结。
一、例题展示例 1:有一个矩形 ABCD,其中 AB = 4,AD = 3。
现将矩形沿着对角线 AC 折叠,使得点 B 与点 B'重合,求折叠后形成的三棱锥 B' ACD 的体积。
思路分析:首先,我们需要求出对角线AC 的长度。
根据勾股定理,AC =√(AB²+ AD²) = 5。
然后,由于折叠前后,三角形 ABC 的面积不变,所以三角形 ABC 的面积为 1/2 × AB × AD = 6。
接着,我们需要求出点 B' 到平面 ACD 的距离。
因为 B' 在平面 ACD 上的射影为三角形 ACD 的重心 G,且 AG : GD = 2 : 1,所以 B'G = 2/3 × B'E (E 为 AC 的中点)。
又因为 B'E = 12/5,所以 B'G = 8/5。
最后,根据三棱锥的体积公式 V = 1/3 × S × h(S 为底面积,h 为高),可得三棱锥 B' ACD 的体积为 1/3 × 1/2 × AD × CD × B'G = 8/5。
例 2:已知正方形 ABCD 的边长为 2,E、F 分别为 BC、CD 的中点。
现将正方形沿着 AE、AF 折叠,使 B、D 两点重合于点 P,求三棱锥 P AEF 的外接球表面积。
思路分析:折叠后,三棱锥 P AEF 的三条侧棱 PA、PE、PF 两两垂直。
所以三棱锥 P AEF 的外接球就是以 PA、PE、PF 为棱的长方体的外接球。
数学初中折叠问题解题技巧
初中数学中的折叠问题是一种常见的几何问题,涉及到对图形的折叠、展开或转化等操作。
以下是一些常见的折叠问题解题技巧:
1. 观察特殊图形法:直接观察题目所给出的目标图形中的特殊面,或者特殊图形连接的位置,然后对比选项,与之不符的直接排除。
2. 相对面不相邻法:空间折叠类题目要结合排除法解题,最常用的排除技巧是相对面不相邻原则。
即一定要抓住某两个相邻面或对立面的图形特征,从而可以利用排除法选择正确答案,违背这些特征的,便是错误选项。
3. 初中数学坐标系里折叠的问题:对于在平面直角坐标系中的折叠问题,可以通过建立直角坐标系来解决。
一般来说,需要根据折叠前后的形状及坐标变化关系,画出折叠后的图形,然后根据题意找到对应的坐标值。
4. 长方形折叠问题:对于长方形的折叠问题,可以通过对折将长方形变成长方体,然后根据长方体的面积公式及长方形的面积公式来求解。
另外,也可以利用折叠的性质:折叠后的图形与图形全等,来解决问题。
总结起来,对于折叠问题的解题技巧,需要结合具体的题目来进行理解和应用。
同时,需要学生具备一定的空间想象能力和逻辑思维能力,才能更好地解决折叠问题。
三角形折叠问题总结三角形折叠问题是一类具有较强实践应用性的数学问题,涉及到几何、代数学、拓扑学等多个领域。
本文将就三角形折叠问题,从以下几个方面进行总结和归纳:1.折叠前后的关系在折叠三角形时,折叠前后的三角形具有一些共性,如底边长度、对称性等。
折叠后,三角形的角度和边长可能会发生变化,但某些性质保持不变,如折叠后两边的夹角等于折叠前两边的夹角。
2.折叠后图形性质折叠后的三角形图形性质包括面积、周长、对称性等。
面积和周长可能会发生变化,但对称性保持不变。
此外,根据折叠的方式和位置不同,三角形内部可能会形成一些直线、点、线段等图形。
3.折叠的应用三角形折叠在实践中有许多应用,如建筑学、几何学等领域。
例如,在建筑中,三角形折叠结构可以提供更好的稳定性和力学性能;在几何学中,三角形折叠可以用来构造全等图形,从而证明几何定理。
4.折叠的证明方法证明三角形折叠问题的方法有多种,如割补法、尺规作图法等。
其中,割补法是将三角形分成几部分,分别证明每个部分的折叠性质,再将它们合并起来;尺规作图法则是利用尺规作图的知识,通过一系列精确的作图步骤来证明折叠性质。
5.折叠的作图方法解决三角形折叠问题需要一定的作图能力。
常用的作图方法有画图法、坐标系法等。
画图法是通过手工绘制三角形和折叠线来解决问题;坐标系法则是将三角形和折叠线放入坐标系中,通过计算坐标来解决问题。
6.折叠的解题策略解决三角形折叠问题需要一定的解题策略,主要有化简求解、构造全等图形等。
化简求解是通过将问题简化,从而减少问题的复杂度;构造全等图形则是通过构造全等三角形,来证明折叠前后的三角形全等。
根据不同的问题特点,选择合适的解题策略至关重要。
在实际应用中,三角形折叠问题常常出现在各种竞赛和考试中,如数学竞赛、物理竞赛等。
因此,掌握三角形折叠问题的相关知识,有助于提高解题能力和竞赛成绩。
此外,解决三角形折叠问题也有助于培养数学思维能力和空间想象能力,提高对数学问题的分析和解决能力。
初二数学四边形的折叠问题技巧一、引言在初二数学的学习中,四边形是一个重要的知识点,而四边形的折叠问题又是四边形中的一个难点。
很多同学在解决这类问题时感到无从下手,其实只要掌握了相应的技巧,就能轻松解决这类问题。
本文将详细介绍解决四边形折叠问题的技巧,帮助同学们更好地理解和掌握这一知识点。
二、技巧一:明确折叠前后的图形关系在解决四边形折叠问题时,首先要明确折叠前后的图形关系。
通常,折叠后会有折痕,而折叠前后的图形可以通过折痕进行重合。
因此,要仔细分析折叠前后的图形,找出它们之间的联系和区别。
三、技巧二:利用轴对称性解题四边形是轴对称图形,而折叠问题通常可以利用轴对称性来解题。
通过分析折叠前后的图形,找出轴对称性,可以帮助我们快速找到解题思路。
四、技巧三:掌握常见折叠问题的解决方法四边形的折叠问题通常有几种常见题型,如折叠后一个角的大小变化、折叠后四边形的形状变化等。
对于这些常见题型,我们需要掌握相应的解决方法。
例如,可以通过计算折叠后各角度的大小,来判断四边形的形状;可以通过比较折叠前后的边长关系,来判断折叠后是否重叠。
五、技巧四:善于运用辅助线在解决四边形折叠问题时,有时候需要添加辅助线来帮助解题。
辅助线的添加需要根据题目的具体情况来决定,但只要善于运用,就能帮助我们更快地找到解题思路。
六、例题解析通过以下例题,我们可以更好地掌握上述技巧。
【例题】:如图,在四边形ABCD中,AB//CD,对角线AC、BD相交于点E,点F在BD上,将四边形ABFC沿BD折叠,点A、C恰好落在点F处,已知∠ABC=60°,BD=8cm。
求:沿BD折叠后四边形ABFC的形状。
分析:首先需要明确折叠前后的图形关系,即BD是折痕。
根据题意可知,沿BD折叠后点A、C落在点F处,因此可以得出∠AFB=∠ABC=60°。
另外,根据已知条件可知BD=8cm,因此可以通过计算各角度的大小来得出四边形ABFC的形状。
第15讲 立体几何折叠问题1.如图,矩形ABCD 中,24AD AB ==,E 为BC 的中点,现将BAE ∆与DCE ∆折起,使得平面BAE 及平面DEC 都与平面ADE 垂直.(1)求证://BC 平面ADE ; (2)求二面角A BE C --的余弦值.【解答】解:(1)证明:分别取AE ,DE 的中点M ,N ,连结BM ,CN ,MN , 则BM AE ⊥,CN DE ⊥,平面BAE 与平面DEC 都与平面ADE 垂直, BM ∴⊥平面ADE ,CN ⊥平面ADE ,由线面垂直的性质定理得//BM CN ,BM CN =,∴四边形BCNM 是平行四边形,//BC MN ∴, BC ⊂/平面ADE ,//BC ∴平面ADE .(2)解:如图,以E 为原点,ED ,EA 为x ,y 正半轴,过E 作平面ADE 的垂线为z 轴,建立空间直角坐标系,则B ,C ,平面ABE 的法向量(1n =,0,0), 设平面CBE 的法向量(m x =,y ,)z ,则2020EB m y EC m x ⎧=+=⎪⎨==⎪⎩,取1x =,得(1m =,1,1)-, 设二面角A BE C --的平面角为θ,由图知θ为钝角,||1cos ||||3m n m n θ∴=-=-=∴二面角A BE C --的余弦值为.2.如图,在直角梯形ABCD 中,//AD BC ,AB BC ⊥,且24BC AD ==,E ,F 分别为线段AB ,DC 的中点,沿EF 把AEFD 折起,使AE CF ⊥,得到如下的立体图形. (1)证明:平面AEFD ⊥平面EBCF ;(2)若BD EC ⊥,求二面角F BD C --的余弦值.【解答】(1)证明:在直角梯形ABCD 中,//AD BC ,AB BC ⊥, E ,F 分别为线段AB ,DC 的中点, //EF AD ∴,AE EF ∴⊥,又AE CF ⊥,且EF CF F =,AE ∴⊥平面EBCF , AE ⊂平面AEFD ,∴平面AEFD ⊥平面EBCF .(2)解:由(1)可得EA ,EB ,EF 两两垂直, 故以E 为原点建立空间直角坐标系,(如图)设AE m =,则(0E ,0,0),(0A ,0,)m ,(B m ,0,0), (0F ,3,0),(C m ,4,0),(0D ,2,)m ,∴(BD m =-,2,)m ,(,4,0)EC m =,DB EC ⊥,280m ∴-+=,22m ∴=∴(22BD =-,2,2),(22,3,0)FB =-,(0,4,0)CB =-,设面DBF 的法向量为(,,)m x y z =,则00m BD m FB ⎧⋅=⎪⎨⋅=⎪⎩,即2222202230x y z x y ⎧-++=⎪⎨-=⎪⎩,令4y =可得:(32m =,42), 同理可得平面CDB 的法向量为(1,0,1)n =, 422cos ,||||362m n m n m n ⋅∴<>===⨯.由图形可知二面角F BD C --为锐角,∴二面角F BD C --的余弦值为23.3.如图1,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,现把平行四边形111ABB A 沿1CC 折起如图2所示,连接1B C 、1B A 、11B A . (1)求证:11AB CC ⊥;(2)若16AB =11C AB A --的正弦值.【解答】证明:(1)取1CC 的中点O ,连接OA ,1OB ,1AC ,在平行四边形11ABB A 中,160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点, 1ACC ∴∆,1BCC ∆为正三角形,则1AO CC ⊥,11OB CC ⊥,又1AOOB O =,1CC ∴⊥平面1OAB ,1AB ⊂平面1OAB 11AB CC ∴⊥;4⋯分(2)160ABB ∠=︒,4AB =,12AA =,C 、1C 分别为AB 、11A B 的中点,2AC ∴=,13OA OB ==16AB =22211OA OB AB +=,则三角形1AOB 为直角三角形,则1AO OB ⊥,6⋯分以O 为原点,以OC ,1OB ,OA 为x ,y ,z 轴建立空间直角坐标系, 则(1C ,0,0),1(0B ,30),1(1C -,0,0),(0A ,0,3),则1(2,0,0)CC =- 则11(2,0,0)AA CC ==-,1(0AB =33)-,(1AC =,0,3)-, 设平面1AB C 的法向量为(,,)n x y z =,则133030n AB y z n AC x z ⎧==⎪⎨==⎪⎩,令1z =,则1y =,3x =(3,1,1)n =, 设平面11A B A 的法向量为(,,)m x y z =,则1120330m AA x m AB y z ⎧=-=⎪⎨==⎪⎩,令1z =,则0x =,1y =,即(0,1,1)m =,8⋯分则10cos ,105m n <>=分 ∴二面角11C AB A --15.12⋯分.4.如图1所示,在等腰梯形ABCD 中,,3,15,33BE AD BC AD BE ⊥===把ABE ∆沿BE 折起,使得62AC =得到四棱锥A BCDE -.如图2所示. (1)求证:面ACE ⊥面ABD ;(2)求平面ABE 与平面ACD 所成锐二面角的余弦值. 【解答】证明:(1)在等腰梯形ABCD 中3BC =,15AD =,BE AD ⊥,可知6AE =,9DE =.因为3,33,BC BE BE AD ==⊥,可得6CE =.又因为6,62AE AC ==,即222AC CE AE =+,则AE EC ⊥.又BE AE ⊥,BEEC E =,可得AE ⊥面BCDE ,故AE BD ⊥.又因为tan 333DE DBE BE ∠===, 则60DBE ∠=︒,3tan 33BC BEC BE ∠===,则30BEC ∠=︒, 所以CE BD ⊥,又AE EC E =,所以BD ⊥面ACE ,又BD ⊂面ABD ,所以面ABD ⊥面ACE ;解:(2)设ECBD O =,过点O 作//OF AE 交AC 于点F ,以点O 为原点,以OB ,OC ,OF 所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系O BCF -. 在BCE ∆中,30BEO ∠=︒,BO EO ⊥,∴9333,,22EO CO BO ===2339((0,,0),(0,,0)22B C E -,1//,,62FO AE FO AE AE ==,3FO ∴=,则9(0,0,3),(0,,6)2F A -,//DE BC ,9DE =,∴3ED BC =,∴93(D ,∴339933(,,0),(0,0,6),(0,6,6),(,0)2222BE AE CA CD ===-=--,设平面ABE 的法向量为1111(,,)n x y z =,由1111160339022n AE z n BE y ⎧==⎪⎨=+=⎪⎩,取13x =ABE 的法向量为1(3,1,0)n =-, 设平面ACD 的一个法向量为2222(,,)n x y z =,由222222660933022n CA y z n CD y ⎧=-+=⎪⎨=--=⎪⎩, 取21x =,可得平面ABE 的一个法向量为2(1n =,33-,33)-.设平面ABE 与平面ACD所成锐二面角为θ,则1212||432165cos ||||255n n n n θ===,所以平面ABE 与平面ACD 所成锐二面角的余弦值为21655.如图1,菱形ABCD 的边长为12,60BAD ∠=︒,AC 与BD 交于O 点.将菱形ABCD 沿对角线AC 折起,得到三棱锥B ACD -,点M 是棱BC 的中点,62DM = (Ⅰ)求证:平面ODM ⊥平面ABC ; (Ⅱ)求二面角M AD C --的余弦值.【解答】(本小题满分12分) 证明:(Ⅰ)ABCD 是菱形, AD DC ∴=,OD AC ⊥,ADC ∆中,12AD DC ==,120ADC ∠=︒, 6OD ∴=,又M 是BC 中点,∴16,622OM AB MD === 222OD OM MD +=,DO OM ∴⊥,OM ,AC ⊂面ABC ,OM AC O =,OD ∴⊥面ABC ,又OD ⊂平面ODM ,∴平面ODM ⊥平面ABC .⋯(6分) 解:(Ⅱ)由题意,OD OC ⊥,OB OC ⊥,又由(Ⅰ)知OB OD ⊥,建立如图所示空间直角坐标系,由条件知:(6,0,0),(0,63,0),(0,33,3)D A M - 故(0,93,3),(6,63,0)AM AD ==, 设平面MAD 的法向量(,,)m x y z =,则00m AM m AD ⎧=⎪⎨=⎪⎩,即93306630y z x ⎧+=⎪⎨+=⎪⎩,令3y =-3x =,9z = ∴(3,3,9)m =-由条件知OB ⊥平面ACD ,故取平面ACD 的法向量为(0,0,1)n = 所以,393cos ,||||31m n m n m n 〈〉==由图知二面角M AD C --为锐二面角, 故二面角M AD C --393(12分)6.如图1,已知在菱形ABCD 中,120B ∠=︒,E 为AB 的中点,现将四边形EBCD 沿DE 折起至EBHD ,如图2.(1)求证:DE ⊥面ABE ;(2)若二面角A DE H --的大小为23π,求平面ABH 与平面ADE 所成锐二面角的余弦值. 【解答】(1)证明:四边形ABCD 为菱形,且120B ∠=︒, ABD ∴∆为正三角形, E 为AB 的中点,DE AE ∴⊥,DE BE ⊥, DE ∴⊥面ABE ;(2)解:以点E 为坐标原点,分别以线段ED ,EA 所在直线为x ,y 轴,再以过点E 且垂直于平面ADE 且向上的直线为z 轴,建立空间直角坐标系如图所示.DE ⊥面ABE ,AEB ∴∠为二面角A DE H --的一个平面角,则23AEB π∠=, 设1AE =,则(0E ,0,0),(0A ,1,0),(0B ,12-3),(3D 0,0),由2DH EB =,得(3,3)H -,∴33(0,2AB =-,(3,3)AH =-, 设平面ABH 的法向量为(,,)n x y z =,则33023230n AB y n AH x y z ⎧=-+=⎪⎨⎪=-=⎩,令3y =,得(1,3,3)n =-.而平面ADE 的一个法向量为(0,0,1)m =,设平面ABH 与平面ADE 所成锐二面角的大小为θ,则313313cos |||||||13n m n m θ===. ∴平面ABH 与平面ADE 313.7.如图1,四边形ABCD 中AC BD ⊥,2222CE AE BE DE ====,将四边形ABCD 沿着BD 折叠,得到图2所示的三棱锥A BCD -,其中AB CD ⊥. (Ⅰ)证明:平面ACD ⊥平面BAD ;(Ⅱ)若F 为CD 中点,求二面角C AB F --的余弦值.【解答】证明:(Ⅰ)AE BD ⊥,且BE DE =,ABD ∴∆是等腰直角三角形,AB AD ∴⊥,又AB CD ⊥,且AD ,CD ⊂平面ACD ,ADCD D =,AB ∴⊥平面ACD ,又AB ⊂平面BAD ,∴平面ACD ⊥平面BAD . 解:(Ⅱ)以E 为原点,EC 为x 轴,ED 为y 轴,过E 作平面BDC 的垂直为z 轴,建立空间直角坐标系,过A 作平面BCD 的垂线,垂足为G ,根据对称性,G 点在x 轴上,设AG h =,由题设知: (0E ,0,0),(2C ,0,0),(0B ,1-,0),(0D ,1,0), 2(1A h -0,)h ,(1F ,12,0),2(1BA h =-1,)h ,(2DC =,1-,0),AB CD ⊥,∴22110BA DC h =-=,解得3h =,13(2A ∴. 13(2BA =,(1BF =,32,0),设平面ABF 的法向量(a μ=,b ,)c ,则1302302BA a b BF a b μμ⎧=+=⎪⎪⎨⎪=+=⎪⎩, 令9a =,得(9μ=,6-,3),AD AB ⊥,AD AC ⊥,2(1DA ∴=,2-3)是平面ABC 的一个法向量,cos μ∴<,(2)91231525|||2|1208DA DA DA μμ++>===,二面角C AB F --是锐角,∴二面角C AB F --的余弦15.8.如图1,在直角梯形ABCD 中,//AD BC ,AB BC ⊥,BD DC ⊥,点E 是BC 边的中点,将ABD ∆沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体. (Ⅰ)求证:AB ⊥平面ADC ;(Ⅱ)若1AD =,二面角C AB D --6,求二面角B AD E --的余弦值.【解答】解:(Ⅰ)因为平面ABD ⊥平面BCD ,平面ABD ⋂平面BCD BD =,又BD DC ⊥,所以DC ⊥平面ABD .⋯(1分)因为AB ⊂平面ABD ,所以DC AB ⊥.⋯(2分) 又因为折叠前后均有AD AB ⊥,DCAD D =,⋯(3分)所以AB ⊥平面ADC .⋯(4分)(Ⅱ)由(Ⅰ)知AB ⊥平面ADC ,所以二面角C AB D --的平面角为CAD ∠.⋯(5分) 又DC ⊥平面ABD ,AD ⊂平面ABD ,所以DC AD ⊥.依题意tan 6CDCAD AD∠==.⋯(6分) 因为1AD =,所以6CD =(0)AB x x =>,则21BD x =+ 依题意~ABD BDC ∆∆,所以AB CDAD BD=,即2611x x =+⋯(7分)解得2x ,故222,3,3AB BD BC BD CD ===+.⋯(8分)如图所示,建立空间直角坐标系D xyz -,则(0D ,0,0),(3,0,0)B ,6,0)C ,36(E ,36(A ,所以36(2DE =,36(3DA =.由(Ⅰ)知平面BAD 的法向量(0,1,0)n =.⋯(9分)设平面ADE 的法向量(,,)m x y z =由0,0m DE m DA ⋅=⋅=得360360.y == 令6x =,得3,3y z =-=,所以(6,3,3)m =-.⋯(10分)所以1cos ,||||2n m n m n m ⋅<>==-⋅.⋯(11分)由图可知二面角B AD E --的平面角为锐角,所以二面角B AD E --的余弦值为12.⋯(12分) 9.如图所示,在平行四边形ABCD 中,4AB =,BC =45ABC ∠=︒,点E 是CD 边的中点,将DAE ∆沿AEE 折起,使点D 到达点P 的位置,且PB =(1)求证:平面PAE ⊥平面ABCE ;(2)若平面PAE 和平面PBC 的交线为l ,求二面角B lE --的余弦值.【解答】(1)证明:连接BE ,在平行四边形ABCD 中,2DE =,AD =45ADC ∠=︒,2AE∴=AE DE ∴⊥,即AE PE ⊥,且AE BA ⊥.在Rt BEA ∆中,得BE ==.又2PE =,PB =222PE BE PB ∴+=,即PE BE ⊥.又AE ⊂平面ABCE ,BE ⊂平面ABCE ,且AE BE E =,PE ∴⊥平面ABCE .又PE ⊂平面PAE ,∴平面PAE ⊥平面ABCE ; (2)解:由(1)得PE ,AE ,CE 两两垂直,故以E 为原点,EC ,EA ,EP 所在直线分别为x ,y ,z 轴建立空间直角坐标系. 则(0A ,2-,0),(2C ,0,0),(0P ,0,2),(4B ,2-,0).∴(2,0,2)PC =-,(2,2,0)BC =-可知1(1,0,0)n =是平面PAE 的一个法向量,设平面PBC 的一个法向量为2(,,)n x y z =.由22220220n PC x z n BC x y ⎧⋅=-=⎪⎨⋅=-+=⎪⎩,取1z =,得2(1,1,1)n =.1212123cos,3||||n n n n n n ⋅∴<>==⋅.10.已知长方形ABCD 中,1AB =,2AD ,现将长方形沿对角线BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD ,AD 与BC 能否垂直?若能垂直,求出相应的a 值;若不垂直,请说明理由.(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值.【解答】解:(1)若AB CD ⊥,由AB AD ⊥,ADCD D =,得AB ⊥面ACD ,AB AC ∴⊥,222AB a BC ∴+=,即212a +=,解得1a =, 若AD BC ⊥,由AB AD ⊥,ABBC B =,得AD ⊥平面ABC ,AD AC ∴⊥,222AD a CD ∴+=,即221a +=,解得21a =-,不成立,AD BC ∴⊥不成立.(2)四面体A BCD -体积最大,BCD ∆2,∴只需三棱锥A BCD -的高最大即可,此时面ABD ⊥面BCD ,以A 为原点,在平面ACD 中过O 作BD 的垂线为x 轴,OD 为y 轴,OA 为z 轴,建立空间直角坐标系,则(0A ,06),63(,C ,0),(0D 23,0), 面BCD 的法向量为(0OA =,06, 面ACD 的法向量(n x =,y ,)z ,63(3CD =-,236(0,)DA =,则630323603n CD x y n DA y ⎧=-=⎪⎪⎨⎪=-+=⎪⎩,取2y =,得(1,2,2)n =, 设二面角A CD B --的平面角为θ,则26||273cos |cos ,|||||673n OA n OA n OA θ=<>===, ∴二面角A CD B --2711.如图,在长方形ABCD 中,AB π=,2AD =,E 、F 为线段AB 的三等分点,G 、H 为线段DC 的三等分点.将长方形ABCD 卷成以AD 为母线的圆柱W 的半个侧面,AB 、CD 分别为圆柱W 上、下底面的直径.(1)证明:平面ADHF ⊥平面BCHF ;(2)求二面角A BH D --的余弦值.【解答】(本小题满分12分)证明:(1)因为H 在下底面圆周上,且CD 为下底面半圆的直径, 所以DH HC ⊥,又因为DH FH ⊥,且CH FH H =,所以DH ⊥平面BCHF , 又因为DH ⊂平面ADHF ,所以平面ADHF ⊥平面BCHF . 解:(2)以H 为坐标原点,分别以HD 、HC 、HF 为x ,y ,z 轴建立空间直角坐标系O xyz -, 设下底面半径为r ,由题r ππ=,所以1r =,2CD =因为G 、H 为DC 的三等分点所以30HDC ∠=︒, 所以在Rt DHC ∆中,3,1HD HC ==所以(3,0,2)A ,(0B ,1,2),(3,0,0)D , 设平面ABH 的法向量(,,)n x y z=,因为(,,)(3,0,2)0n HA x y z ==, (,,)(0,1,2)0n HB x y z ==,所以2020z y z +=+=⎪⎩,所以平面ABH 的法向量(2,n =--, 设平面BHD 的法向量(,,)m x y z =, 因为(,,)(3,0,0)0m HD x y z ==,(,,)(0,1,2)0m HB x y z ==所以020x y z =⎧⎨+=⎩,所以平面BHD 的法向量(0,2,1)m =-. 所以二面角A BH D --的余弦值为285cos ||||||19m n m n θ==. 12.在菱形ABCD 中,2AB =且60ABC ∠=︒,点M ,N 分别是棱CD ,AD 的中点,将四边形ANMC 沿着AC 转动,使得EF 与MN 重合,形成如图所示多面体,分别取BF ,DE 的中点P ,Q .(1)求证://PQ 平面ABCD ;(2)若平面AFEC ⊥平面ABCD ,求多面体ABCDFE 的体积.【解答】解:(1)证明:取BE 中点R ,连接PR ,QR ,BD ,由P ,Q 分别是BF ,DE 的中点, //PR EF ∴,//QR BD ,又//EF AC ,//PR ∴平面ABCD ,//QR 平面ABCD ,又PRQR R =, ∴平面//PQR 平面ABCD ,又PQ ⊂平面PQR , //PQ ∴平面ABCD .(2)解:连接AC ,设AC ,BD 交于点O ,BD AC ∴⊥,又平面AFEC ⊥平面ABCD ,平面AFEC ⋂平面ABCD AC =, BD ∴⊥平面AFEC .∴多面体ABCDFE 可以分解为四棱锥B ACEF -和四棱锥D ACEF -,菱形ABCD 中,2AB =且60ABC ∠=︒知:2AC =,BD =12AC EF ==, 设梯形EFAC 的面积为133()244EFAC BD S EF AC =+=, ∴多面体ABCDFE 的体积为1332ABCDFE EFAC V S BD ==.13.已知等腰直角△S AB ',4S A AB '==,S A AB '⊥,C ,D 分别为S B ',S A '的中点,将△S CD '沿CD 折到SCD ∆的位置,22SA =,取线段SB 的中点为E .()I 求证://CE 平面SAD ; (Ⅱ)求二面角A EC B --的余弦值.【解答】(Ⅰ)证明:取SA 中点F ,连接DF ,EF ,SE EB =,SF FA =,//EF AB ∴,12EF AB =, 又//CD AB ,12CD AB =, CD EF ∴=,//CD EF ,∴四边形CDEF 为平行四边形,则//CE FD .CE ⊂/平面SAD ,FD ⊂平面SAD ,//CE ∴平面SAD ;(Ⅱ)解:面SCD ⊥面ABCD ,面SCD ⋂面ABCD CD =,SD CD ⊥,SD ⊂面SCD ,SD ∴⊥面ABCD , AD ,CD ⊂面ABCD ,SD AD ∴⊥,SD CD ⊥.又AD DC ⊥,DA ∴,DC ,DS 两两互相垂直,如图所示,分别以DA ,DC ,DS 为x ,y ,z 轴建立空间直角坐标系D xyz -. 则(2A ,0,0),(0C ,2,0),(0S ,0,2),(2B ,4,0),(1E ,2,1), (1,0,1)CE =,(2,2,0)CA =-,(2,2,0)CB =, 设平面ECA ,平面ECB 的法向量分别为111(,,)m x y z =,222(,,)n x y z =, 则11110220m CE x z m CA x y ⎧=+=⎪⎨=-=⎪⎩,取11y =,可得(1,1,1)m =-; 22220220n CE x y n CB x y ⎧=+=⎪⎨=+=⎪⎩,取21y =-,得(1,1,1)n =--. 111cos ,||||33m n m n m n -+∴<>===⨯. ∴二面角A EC B --的平面角的余弦值为13-.。
1 / 2
几何图形折叠问题解法浅析
贵州省兴仁县巴铃中学 张志明
折叠型问题是近年中考的热点问题,通常是把某个图形按照给定的条件折叠,通过折叠前后图形变换的相互关系来命题。
折叠型问题立意新颖,变幻巧妙,对培养学生的识图能力及灵活运用数学知识解决问题的能力非常有效。
下面我们一起来探究这种题型的解法。
折叠的规律是:折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等。
1. 如图,长方形ABCD 沿AE 折叠,使D 落在边BC 上的F 点处,如果∠BAF=60°,则 ∠DAE=___。
答案:A ,15°
分析 根据折叠的规律:可证△ADE ≌△AFE,从而
∠DAE=∠FAE=(90°-60°)÷2=150
A.15°
B.30°
C.45°
D.60°
2. 如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG. 答案:AG =
2
1
5- 分析 折叠后的图形(如图一),
设A 点落在BD 上的位置为A 1,
则 A 点关于直线 DG 的对称点为点 A 1
, 连结 A 1G ,(如图二)
可知△ADG ≌ △A 1DG ,AG = A 1G , AD = A 1D 。
∵矩形ABCD ,AB = 2,
BC = 1,∴BD =2
212+=5,
BA 1 =
5–1,∵∠ BA 1G = ∠ A = 90°。
设AG = A 1G= X ,在Rt △BA 1G 中,
利用勾股定理列出方程:x 2 +(5–1)2 = ( 2 – x )2,
∴ x =
215-,即:AG =2
1
5-. 3. 如图,在Rt △ABC 中,∠ACB=90°∠A<∠B ,CM 是斜边AB 的中线,将△ACM 沿直线CM
折叠,点A 落在D 处,如果CD 恰好与AB 垂直,那么∠A 等于_____.
答案:30°
解析:
根据折叠规律:可知△CMA ≌ △CMD ,
∴ ∠ 1 = ∠ 2,∵CM 为斜边AB 的中线,
∴ CM = AM ,∴ ∠ A= ∠ 1。
设∠ A= x
∵ CD ⊥ AB 于点E ,∴∠ A+ ∠ 1+∠ 2=90°
A B
C
D
F E 1
A C
G
B
如图一
G D
A
B
C
如图二
2 / 2
∴ x + 2x = 90°
,
∴ x = 30°,即∠A = 30°。
5.如图,折叠长方形的一边AD ,点D 落在BC 边的点F 处,已知AB=8cm, BC=10cm , 求EC 的长. 答案:3cm 。
分析:设,EC=x,则EF=DE=8-x 在Rt △ABF 中,AF=AD=10, AB=8,所以BF=6,FC=4 在Rt △EFC 中,由勾股定理,得,
()16822
+=-x x
解得x=3(cm)
邮政编码:562306 联系电话: 手机:
B F C。