全桥逆变焊机高频变压器设计
- 格式:doc
- 大小:112.50 KB
- 文档页数:12
高频电源变压器设计原则要求和程序电源变压器的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用.根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~0.5kVA为中功率,0.5kVA~25VA为小功率,25VA以下为微功率.传送功率不同,电源变压器的设计也不一样,应当是不言而喻的.有人根据它的主要功能是功率传送,把英文名称“Power Transformers”译成“功率变压器”,在许多文献资料中仍然在使用.究竟是叫“电源变压器”,还是叫“功率变压器”好呢?有待于科技术语方面的权威机构来选择决定.同一个英文名称“PowerTransformer”,还可译成“电力变压器”.电力变压器主要用于电力输配系统中起功率传送、电压变换和绝缘隔离作用,原边电压为6kV以上的高压,功率最小5kVA,最大超过上万kVA.电力变压器和电源变压器,虽然工作原理都是基于电磁感应原理,但是电力变压器既强调功率传送大,又强调绝缘隔离电压高,无论在磁芯线圈,还是绝缘结构的设计上,都与功率传送小、绝缘隔离电压低的电源变压器有显著的差别,更不能将电力变压器设计的优化设计条件生搬硬套地应用到电源变压器中去.电力变压器和电源变压器的设计方法不一样,也应当是不言而喻的.高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的.按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、 500kHz~1MHz、1MHz以上.传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高.这样,既有工作频率的差别,又有传送功率的差别,工作频率不同档次的电源变压器设计方法不一样,也应当是不言而喻的.如上所述,作者对高频电源变压器的设计原则、要求和程序不存在错误概念,而是在2003年7月初,阅读《电源技术应用》2003年第6期特别推荐的2篇高频磁性元件设计文章后,产生了疑虑,感到有些问题值得进一步商讨,因此才动笔写本文.正如《电源技术应用》主编寄语所说的那样:“具体地分析具体的情况”,写的目的,是尝试把最难详细说明和选择的磁性元件之一的高频电源变压器的设计问题弄清楚.如有说得不对的地方,敬请几位作者和广大读者指正.2 高频电源变压器的设计原则高频电源变压器作为一种产品,自然带有商品的属性,因此高频电源变压器的设计原则和其他商品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好.有时可能偏重性能和效率,有时可能偏重价格和成本.现在,轻、薄、短、小,成为高频电源的发展方向,是强调降低成本.其中成为一大难点的高频电源变压器,更需要在这方面下功夫.所以在高频电源变压器的“设计要点”一文中,只谈性能,不谈成本,不能不说是一大缺憾,如果能认真考虑一下高频电源变压器的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来.不谈成本,市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰.往往一种新产品最后被成本否决.一些“节能不节钱”的产品为什么在市场上推广不开值得大家深思.产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本.因此,为了节约时间,根据以往的经验,对高频电源变压器的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,有什么不好?为什么一定要按步就班地来回进行推算和仿真,才不是概念错误?作者曾在20世纪80年代中开发高频磁放大器式开关电源,以温升最低为条件,对高频电源变压器进行过优化设计.由于热阻难以确定,结果与试制样品相差甚远,不得不再次修正.现在有些公司的磁芯产品说明书中,为了缩短用户设计高频电源变压器的时间,有的列出简化的设计公式,有的用表列出磁芯在某种工作频率下的传送功率.这种既为用户着想,又推广公司产品的双赢行为,是完全符合市场规律的行为,绝不是什么需要辨析的错误概念.问题是提供的参考数据,推荐的方案是否是经验的总结?有没有普遍性?包括“辨析”一文中提出的一些说法,都需要经过实践检验,才能站得住脚.总之,千万记住:高频电源变压器是一种产品(即商品),设计原则是在具体的使用条件下完成具体的功能中追求性能价格比最好.检验设计的唯一标准是设计出的产品能否经受住市场的考验.3 高频电源变压器的设计要求以设计原则为出发点,可以对高频电源变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本.3.1 使用条件使用条件包括两方面内容:可靠性和电磁兼容性.以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性.可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止.一般使用条件对高频电源变压器影响最大的是环境温度.有些软磁材料,居里点比较低,对温度敏感.例如:锰锌软磁铁氧体,居里点只有215℃,其磁通密度,磁导率和损耗都随温度发生变化,故除正常温度25℃外,还要给出60℃, 80℃,100℃时的各种参考数据.因此,将锰锌软磁铁氧体磁芯的工作温度限制在100℃以下,也就是环境温度为40℃时,温升只允许低于60℃,相当于 A级绝缘材料温度.与锰锌软磁铁氧体磁芯相配套的电磁线和绝缘件,一般都采用E级和B级绝缘材料,采用H级绝缘的三重绝缘电磁线和聚酰胺薄膜,是不是大材小用?成本增加多少?是不是因为H级绝缘的高频电源变压器优化的设计方案,可以使体积减少1/2~1/3的缘故?如果是,请举具体实例数据.作者曾开发H 级绝缘工频50Hz,10kVA干式变压器,与B级绝缘工频50Hz,10kVA干式变压器相比,体积减小15%到20%,已经相当可观了.本来体积就比较小的高频100kHz10VA高频电源变压器,如次级绕组采用三重绝缘线,能把体积减小1/2~1/3,那一定是很宝贵的经验.请有关作者详细介绍优化设计方案,以便广大读者学习.电磁兼容性是指高频电源变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰.电磁干扰包括可闻的音频噪声和不可闻的高频噪声.高频电源变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩.磁致伸缩大的软磁材料,产生的电磁干扰大.例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上.因此锰锌软磁铁氧体磁芯产生的电磁干扰大.高频电源变压器产生电磁干扰的主要原因还有磁芯之间的吸力和绕组导线之间的斥力.这些力的变化频率与高频电源变压器的工作频率一致.因此,工作频率为100kHz左右的高频电源变压器,没有特殊原因是不会产生20kHz以下音频噪声的.既然提出10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz,一定有其原因. 由于没有画出噪声频谱图,具体原因说不清楚,但是由高频电源变压器本身产生的可能性不大,没有必要采用玻璃珠胶合剂粘合磁芯.至于采用这种粘合工艺可将音频噪声降低5dB,请给出实例与数据以及对噪声原因的详细说明,才会令人可信.屏蔽是防止电磁干扰,增加高频电源变压器电磁兼容性的好办法.但是为了阻止高频电源变压器的电磁干扰传播,在设计磁芯结构和设计绕组结构也应当采取相应的措施,只靠加外屏蔽带并不一定是最佳方案,因为它只能阻止辐射干扰,不能阻止传导干扰.3.2 完成功能高频电源变压器完成功能有3个:功率传送,电压变换和绝缘隔离.功率传送有两种方式.第一种是变压器功率的传送方式,加在原绕组上的电压,在磁芯中产生磁通变化,使副绕组感应电压,从而使电功率从原边传送到副边.在功率传送过程中,磁芯又分为磁通单方向变化和双方向变化两种工作模式.单方向变化工作模式, 磁通密度从最大值Bm变化到剩余磁通密度Br,或者从Br变化到Bm.磁通密度变化值ΔB=Bm-Br.为了提高ΔB,希望Bm大,Br小.双方向变化工作模式磁通度从+Bm变化到-Bm,或者从-Bm变化到+Bm.磁通密度变化值ΔB=2Bm,为了提高ΔB,希望Bm大,但不要求Br小,不论是单方向变化工作模式还是双方向变化工作模式,变压器功率传送方式都不直接与磁芯磁导率有关.第二种是电感器功率传送方式,原绕组输入的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁使副绕组感应电压,变成电能释放给负载.传送功率决定于电感磁芯储能,而储能又决定于原绕组的电感.电感与磁芯磁导率有关,磁导率高,电感量大,储能多,而不直接与磁通密度有关.虽然功率传送方式不同,要求的磁芯参数不一样,但是在高频电源变压器设计中,磁芯的材料和参数的选择仍然是设计的一个主要内容.在电源变压器“设计要点”一文中,很遗憾缺少这一个主要内容.只是在“交流损耗”一条中,提出BAC典型值为 0.04~0.075T.显然,文中的高频电源变压器是采用电感功率传送方式,为什么不提磁导率,而提BAC弄不清楚.经查阅,在《电源技术应用》2003年1/2期,同一主要作者写的开关电源“设计要点”一文中,列出了“磁芯的选择”,也没有提磁导率,只是提出最大磁通密度Bm为0.275T.由于没有画磁通密度变化波形,弄不清楚前文中的BAC和后文中的Bm是否一致:为什么BAC和Bm相差6.8~3.7倍?更不清楚,选的是哪一种软磁铁氧体材料?为什么选这种型号?两文中都没有一点说明,只好让读者自己去猜想了.电压变换通过原边和副边绕组匝数比来完成.不管功率传送是哪一种方式,原边和副边的电压变换比等于原绕组和副绕组匝数比,只要不改变匝数比,就不影响电压变换.但是,绕组匝数与高频电源变压器的漏感有关.漏感大小与原绕组匝数的平方成正比.有趣的是,漏感能不能规定一个数值?《电源技术应用》2003年第6期同时刊登的两篇文章有着不同的说法.“设计要点”一文中说:“对于一符合绝缘及安全标准的高频变压器,其漏感量应为次级开路时初级电感量的1% ~3%”.“辨析”一文中说:“在很多技术单上,标注着漏感=1%的磁化电感或漏感<2%的磁化电感等类似的技术要求.其实这种写法或设计标准很不专业.电源设计者应当根据电路正常工作要求,对所能接受的漏感值作一个数值限制.在制作变压器的过程中,应在不使变压器的其他参数(如匝间电容等)变差的情况下尽可能减小漏感值,而非给出漏感与磁化电感的比例关系作为技术要求”.“否则这将表明你不理解漏感知识或并不真正关心实际的漏感值”.虽然两篇文章说法不一样,但是有一点是共同的,就是尽可能减小漏感值.因为漏感值大,储存的能量也大,在电源开关过程中突然释放,会产生尖峰电压,增加开关器件承受的电压峰值,对绝缘不利,也产生附加损耗和电磁干扰.绝缘隔离通过原边和副边绕组的绝缘结构来完成.为了保证绕组之间的绝缘,必须增加两个绕组之间的距离,从而降低绕组间的耦合程度,使漏感增大.还有,原绕组一般为高压绕组,匝数不能太少,否则,匝间或者层间电压相差大,会引起局部短路.这样,匝数有下限,使漏感也有下限.总之,在高频电源变压器绝缘结构和总体结构设计中,要统筹考虑漏感和绝缘强度问题.3.3 提高效率提高效率是对电源和电子设备的普遍要求.虽然从单个高频电源变压器来看,损耗不大.例如,100VA高频电源变压器,效率为98%时,损耗只有2W,并不多.但是成十万个,成百万个高频电源变压器,总损耗可能达到上100kW,甚至上MW.还有,许多高频电源变压器一直长期运行,年总损耗相当可观,有可能达到上10GW·h.这样,提高高频电源变压器效率,可以节约电力.节约电力后,可以少建发电站.少建发电站后,可以少消耗煤和石油,可以少排放CO2, SO2,NOx,废气,废水,烟尘和灰渣,减少对环境的污染.既具有节约能源,又具有环境保护的双重社会经济效益.因此,提高效率是高频电源变压器一个主要的设计要求,一般效率要提高到95%以上,损耗要减少到5%以下.高频电源变压器损耗包括磁芯损耗(铁损)和绕组损耗(铜损).有人关心变压器的铁损和铜损的比例.这个比例是随变压器的工作频率发生变化的.如果变压器的外加电压不变,工作频率越低,绕组匝数越多,铜损越大.因此在50Hz工频下,铜损远远超过铁损.例如:50Hz,100kVAS9型三相油浸式硅钢电力变压器,铜损为铁损的5倍左右.50Hz,100kVASH11型三相油浸式非晶合金电力变压器,铜损为铁损的20倍左右.并不存在“辨析”一文中所说那样,工频变压器从热稳定热均匀角度出发,把铜损等于铁损作为经验设计规则.随着工作频率升高,绕组匝数减少,虽然由于趋表效应和邻近效应存在而使绕组损耗增加,但是总的趋势是铜损随着工作频率升高而下降.而铁损包括磁滞损耗和涡流损耗,随着工作频率升高而迅速增大.在某一段工作频率,有可能出现铜损和铁损相等的情况,超过这一段工作频率,铁损就大于铜损.造成铁损不等于铜损的原因,也并不象“辨析”一文中所说那样是由于“高频变压器采用非常细的漆包线作为绕组”.导线粗细的选择,虽然受趋表效应影响,但主要由高频电源变压器的传送功率来决定,与工作频率不存在直接关系.而且,选用非常细的漆包线作为绕组,反而会增加铜损,延缓铜损的下降趋势.说不定在设计选定的工作频率下,还有可能出现铜损等于铁损的情况.根据有的资料介绍,中小功率高频电源变压器的工作频率在100kHz左右,铁损已经大于铜损,而成为高频电源变压器损耗的主要部分.正因为铁损是高频电源变压器损耗的主要部分,因此根据铁损选择磁芯材料是高频电源变压器设计的一个主要内容.铁损也成为评价软磁芯材料的一个主要参数.铁损与磁芯的工作磁通密度工作频率有关,在介绍软磁磁芯材料铁损时,必须说明在什么工作磁通密度下和在什么工作频率下损耗.用符号表示时,也必须标明PB/f〔式中工作磁通密度B的单位是T(特斯拉),工作频率f的单位是Hz(赫芝)〕.例如,P0.5/400表示工作磁通密度为0.5T,工作频率为 400Hz时的损耗.又例如,P0.1/100k表示工作磁通密度为0.1T,工作频率为100kHz时的损耗.铁损还与工作温度有关,在介绍软磁磁芯材料铁损时,必须指明它的工作温度,特别是软磁铁氧体材料,对温度变化比较敏感,在产品说明书中都要列出25℃至100℃的铁损.软磁材料的饱和磁通密度并不完全代表使用的工作磁通密度的上限,常常是铁损限制了工作磁通密度的上限.所以,在新的电源变压器用软磁铁氧体材料分类标准中,把允许的工作磁通密度和工作频率乘积B×f,作为材料的性能因子,并说明在性能因子条件下允许的损耗值.新的分类标准根据性能因子把软磁铁氧体材料分为PW1,PW2,PW3,PW4,PW5等5类,性能因子越高的,工作频率越高,极限频率也越高.例如,PW3类软磁铁氧体材料,工作频率为 100kHz,极限频率为300kHz,性能因子B×f为10000mT×kHz,即在100mT(0.1T)和100kHz下,100℃时损耗a 级≤300kW/m(300mW/cm3),b级≤150kW/m3(150mW/cm3).日本TDK公司生产的PC44型软磁铁氧体材料达到PW3a级标准,达不到PW3b级标准.“设计要点”一文中提出高频变压器使用的铁氧体磁芯在100kHz时的损耗应低于50mW/cm3,没指明是选哪一类软磁铁氧体材料,也没说明损耗对应的工作磁通密度.读者只好去猜:损耗对应的工作磁通密度是《电源技术应用》2003年6期“设计要点”一文中的BAC典型值0.04~0.075T?还是《电源技术应用》2003年1/2期“设计要点”一文中的Bm值0.237T?不管是0.075T,还是0.237T?要达到100kHz下铁损低于 50mW/cm3的铁氧体材料是非常先进的.请介绍一下是哪家公司哪种型号产品,以便读者也去购买.在某一段工作频率下,高频电源变压器的绕组损耗(铜损)与铁损相接近时,例如,铜损/铁损=100%~25%范围内,铜损也不能忽视,也应当考虑采取措施来减少铜损.由于原绕组和副绕组承担的功率相近,往往在设计中取原绕组的铜损等于副绕组的铜损,以便简化设计计算过程,这并不象“辨析”一文中所说的那样:“只是工频变压器设计的一种经验规则,”对一定工作频率下高频电源变压器设计也适用.不能只强调依靠温升来设计高频电源变压器,由于热阻不容易准确确定,设计计算相当麻烦.因此,为了简化计算,有时根据经验预先推荐一些原则和数据是必要的.同样,为了简化计算,对不同工作频率,不同功率的高频电源变压器推荐不同的绕组电流密度,也是必要的,但不限于某一个电流密度值,例如,2A/mm2~3A/mm2.应当看到:实现高频电源变压器设计要求的方法并不限于一种,应当允许进行多种多样的探索.“你走你的阳关道,我走我的独木桥”.为什么一定要按你指定的道路走,才不是“错误概念”呢?3.4 降低成本降低成本是高频电源变压器的一个主要设计要求,有时甚至是决定性的要求.高频电源变压器作为一种产品,和其他商品一样,都面临着市场竞争.竞争的内容包括性能和成本两个方面,缺一不可.不注意降低成本,往往会在竞争中被淘汰.高频电源变压器的成本包括材料成本,制造成本和管理成本.设计是高频电源变压器降低成本的主要手段.高频电源变压器所用的材料和零部件的贵贱和数量的多少?是否方便采购?是否要备有多少库存量?磁芯,线圈和总体结构的加工和装配工艺复杂还是简单?需要人工占的比例多大(实现生产过程的机械化和自动化,可以减少人工工时,更能保证产品的一致性和质量)?是否需要工模具?质量控制中需要检测的工序和参数:哪些参数要在加工过程中检测?哪些参数要在出厂试验中检测(出厂试验的参数应选择能决定性能的关键参数,数量不要多,以便能即时判断产品质量.)?哪些参数要在型式试验中检测?要用什么检测仪器和设备,价格如何?等等,都是由设计来决定的.因此,高频电源变压器的设计者除了要了解高频电源变压器的理论和设计方法而外,还要了解各种软磁材料和磁芯的性能和价格,各种电磁线的性能和价格,各种绝缘材料的性能和价格;还要了解磁芯加工热处理工艺,线圈绕制和绝缘处理工艺及变压器组装工艺;还要了解实现质量控制的检测参数和仪器设备;还要了解生产管理的基本知识以及高频电源变压器的市场动态等等.只有知识全面的设计者,才能设计出性能好,成本低的高频电源变压器产品.降低成本是促进高频电源变压器技术发展的一种推动力.为什么轻、薄、短、小成为高频电源变压器的发展方向?原因之一是这样既能降低材料成本,又能降低制造成本.提高工作频率,可以使高频电源变压器的重量和体积下降.但是,要克服高频带来的负面影响,必须采用新的软磁材料和导电材料并增加抑制高频电磁干扰的措施,因此,对具体使用条件下的高频电源变压器究竟选用多高的工作频率?要在综合考虑性能和总体成本后决定.提高效率,降低损耗发生的热量,可以减少高频电源变压器散热的表面积,从而使体积和重量下降.但是,降低损耗必须采用新材料和新工艺.因此,对具体使用条件下的高频电源变压器究竟达到多高的效率?也要在综合考虑性能和总体成本后决定. 4高频电源变压器的设计程序高频电源变压器的设计程序,包括磁芯材料,磁芯结构,磁芯参数,线圈参数,组装结构和温升校核等内容.下面分别进行讨论.4.1 磁芯材料根据高频电源变压器的设计要求,选择软磁材料本来应当是设计程序的第一项.但是,现在一般都认为高频电源变压器应当选择软磁铁氧体,是自然而然的事情.许多有关高频电源变压器的论文,专著和教材,只针对软磁铁氧体进行讨论,而对其他软磁材料有时说明一下,有时只字不提.而且究竟选择哪一类软磁铁氧体,也不加以说明,好象大家都知道.《电源技术应用》2003年第6期中的两篇文章就是一例.和任何软磁磁芯材料一样,软磁铁氧体有自己的优缺点.软磁铁氧体的优点是电阻率高、交流涡流损耗小,价格便宜,易加工成各种形状的磁芯.缺点是工作磁通密度低,磁导率不高,磁致伸缩大,对温度变化比较敏感.因此,有些高频电源变压器并不适合选择软磁铁氧体.例如,工作频率比较低(50kHz以下),功率比较大的高频电源变压器,如果选择软磁铁氧体,由于工作磁通密度低,用材料多,磁芯体积大,加工困难,易碎,成品率不高,显不出价格便宜的优势.又例如,工作频率高(500kHz以上),功率比较小的高频电源变压器,磁芯重量和体积本来都小,如果选择软磁铁氧体,必须用PW4、PW5类材料,价格也不便宜, 与其他软磁材料相比,磁芯价格基本相当,有时反而由于体积大,而处于不利地位.即使在适合于软磁铁氧体的工作频率范围内,也要对选择哪一类软磁铁氧体更能全面满足高频电源变压器的设计要求,进行认真考虑,才可以使设计出来的高频电源变压器达到比较理想的性能价格比.4.2 磁芯结构高频电源变压器设计中选择磁芯结构时考虑的因素有:降低漏磁和漏感,增加线圈散热面积,有利于屏蔽,线圈绕线容易,装配接线方便等.漏磁和漏感与磁芯结构有直接关系.如果磁芯不需要气隙,则尽可能采用封闭的环形和方框型结构磁芯,特别是工作频率高的电源变压器,因为,有一点漏感,就容易产生比较大的漏阻抗.封闭磁芯的磁通基本上集中在磁芯里面,漏磁小.同时,不论外界干扰磁场从哪个方向侵入,都在磁芯中分为两个方向通过,产生的干扰互相抵消.但是,封闭磁芯绕线困难,且环形磁芯散热要通过线圈,而且内层引出线也要穿过线圈引出,故必须加强绝缘.不封闭磁芯绕线容易,磁芯散热面大,可直接散热,引出线也容易.建议装线圈的磁路部分为圆柱形截面,减少平均匝长,降低损耗.矮胖圆柱形磁芯的漏磁和漏感比瘦高圆柱形磁芯大,一个原因是胖,圆柱形大,漏磁辐射面大;另一个原因是矮,上下两磁轭距离近,容易形成漏磁通的路径.不封闭磁芯中的气隙大小和位置与漏磁和漏感有密切关系.在保证完成功能所需的气隙条件下,尽可能减少气隙尺寸.因为,气隙尺寸增大,不但增加漏磁和漏感,还减少等值磁导率,增加激磁功率,对高频电源变压器工作不利.另外,气隙的位置最好处于线圈的中间部位,可以起到减少气隙漏磁通的作用.窗口面积的大小与线圈发热损耗和散热面积有关.窗口面积大,绕的电磁线截面。
常见高频电源变压器的设计原则要求以及程序前言 电源变压器的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用。
根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~0.5kVA为中功率,0.5kVA~25VA 为小功率,25VA以下为微功率。
传送功率不同,电源变压器的设计也不一样,应当是不言而喻的。
有人根据它的主要功能是功率传送,把英文名称Power Transformers译成功率变压器,在许多文献资料中仍然在使用。
究竟是叫电源变压器,还是叫功率变压器好呢?有待于科技术语方面的权威机构来选择决定。
同一个英文名称PowerTransformer,还可译成电力变压器。
电力变压器主要用于电力输配系统中起功率传送、电压变换和绝缘隔离作用,原边电压为6kV以上的高压,功率最小5kVA,最大超过上万kVA。
电力变压器和电源变压器,虽然工作原理都是基于电磁感应原理,但是电力变压器既强调功率传送大,又强调绝缘隔离电压高,无论在磁芯线圈,还是绝缘结构的设计上,都与功率传送小、绝缘隔离电压低的电源变压器有显着的差别,更不能将电力变压器设计的优化设计条件生搬硬套地应用到电源变压器中去。
电力变压器和电源变压器的设计方法不一样,也应当是不言而喻的。
高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。
按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。
传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较。
高频变压器制作脉冲变压器也可称作开关变压器,或简单地称作高频变压器。
在传统的高频变压器设计中,由于磁芯材料的限制,其工作频率较低,一般在20kHz左右。
随着电源技术的不断发展,电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。
因此,研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。
随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。
开关变压器与普通变压器的区别大致有以下几点:(1)电源电压不是正弦波,而是交流方波,初级绕组中电流都是非正弦波。
(2)变压器的工作频率比较高,通常都在几十赫兹,甚至高达几十万赫兹。
在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的影响。
(3)绕组线路比较复杂,多半都有中心抽头。
这不仅增大了初级绕组的尺寸,增大了变压器的体积和重量,而且使绕组在铁芯窗口中的分布关系发生变化。
图1 开关电源原理图本文介绍了一款如图1所示的DC—DC变换器,输入电压为直流24V,输出电压分别为5V及12V的多路直流输出。
要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200k Hz。
根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。
2变压器磁芯的选择与工作点的确定2.1 磁芯材料的选择从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。
磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中来考虑。
坡莫合金、钴基非晶态价格高,约为铁氧体材料的数倍,而饱和磁感应强度B s也不是很高,且加工工艺复杂。
考虑到我们所要求的电源输出功率并不高,大约为30W,因此,综合几种材料的性能比较,我们还是选择了饱和磁感应强度B s较高,温度稳定性好,价格低廉,加工方便的性价比较低的锌锰铁氧体材料,并选以此材料作为框架的EI2 8来绕制本例中的脉冲变压器。
Corp:xxx Designer:xxx TEL:xxx Date:2010-2-26
变压器型号:xxxxxx VER: 2.0
CHE200-30GT1
NP8NP7NP6NP5NP4NP3
图1、变压器原理图
技术要求:
1、绕制要求紧密、均匀,不同绕组间要用绝缘胶带隔开(见图3)
2、NS2、NS3并绕,NP3~NP8并绕。
3、引出线要套高压铁氟龙套管,套管伸至边空内。
4、原副边耐压要求:各绕组-绕组之间及绕组-磁芯之间3000V AC/1分钟,要求无闪
烙,漏电流<1mA 。
(NP为原边绕组,NS为副边绕组)
5、磁芯型号:PC40
6、骨架:采用我司最新开模骨架:ETD34 (18+18PIN)
7、NP1绕组电感:3.5 mH±5%
8、漏感:<80 uH(1kHz,1V,短NP2~NP8、NS1~NS4,测NP1)
9、变压器要浸漆烘干并拔掉不用的引脚
10、变压器铁芯最外层加焊宽12mm的铜铂,并外包一层绝缘胶带。
请标示出第
1脚。
11、标明变压器型号和生产日期。
图2、变压器骨架引脚图(引脚朝下,俯视图)
1T 1T
1T 1T 1T 1T 1T
2T
绕组
绝缘胶带
边空档带
图3、内部绕线示意图
注: 1、各层之间的绝缘胶带必须要绕;(尤其NP1绕组层间绝缘胶带必须有); 2、内层NP1绕60匝,最外层NP1绕38匝。
3、NP1、NP2均留边墙胶带。
请打样 10 PCS ,希望3月5日前完成。
谢谢合作! 如有疑问,请电话联系。
8、效率η; 9、温升∝。
二、计算步骤:1、计算视在功率PT ;视在功率PT 因工作电路不同而别,如下图:7、选用磁芯型式;高频变压器的设计方法之一一、设计条件: 1、工作电路; 2、原边电压Vp ; 3、输出电压Vo; 4、输出电流Io ; 5、开关工作频率fs ; 6、工作磁通密度Bw ; AP=Aw · Ae视在功率与线路结构关系线路(b ) PT=Po ( + 1 )线路(a ) PT=Po (1+ )线路(b) PT=Po ( +√ )AP 值是磁芯窗口面积Aw 与磁芯有效截面积Ae 的乘积,即各种磁芯的AP 示意图如下:1η1η1η2EI 叠片铁芯GC 型铁芯环形铁芯R( b )R( a )AP=()Ae Aw Le Wt Ml 其中:V01=KvAP 0.75 Wt=KwAP 0.75As=KsAP 0.5根据选取的磁芯,查出(计算)出如下参数:Le ——磁芯有效磁路长度(cm ); Wt ——磁芯重量(KG ); Ml ——绕组平均匝长(cm )。
式中:AP ——为Aw 和Ae 两面积乘积(cm 4); PT ——变压器视在功率(w ); Bw ——工作磁通密度(T ); Fs ——开关工作频率(Hz ); Ko ——窗口使用系数,一般取0.4;Kf ——波形系数,方波Kf =4.0,正弦波Kf =4.44; Kj ——电流密度比例系数; X ——与磁芯有关常数。
J= KjAP X带绕铁芯罐形铁芯KoKf FsBwKjPT ×10411 + XNp=(匝)Ip=(A)(A/cm 2)(cm )(cm 2)(Ω)(W )3、计算原边绕组匝数Np :平均匝长计算如下图:4、计算原边电流I p :5、计算电流密度J :J=Kj (Aw · Ae )X6、计算原边绕组裸线直径dP 和截面积Axp :Ppcu = I p 2Rp 8、计算副边绕组匝数:dP=1.13※式中,在有中心抽头电路时,Ip 需乘0.707的修正因素,根据计算的dP 值选取初级导线,并查出带漆皮的线径、截面积和每cm 电阻(Ω/cm )值。
逆变焊机原理与设计逆变焊机是一种采用逆变器技术实现焊接过程的焊接设备。
它通过将输入电源的直流电转换为高频交流电,然后再经过整流、滤波等处理,最终得到适合焊接使用的直流或交流电。
逆变焊机的设计原理是基于能量转换和电路控制的原理。
它主要由输入电源、逆变电路、整流滤波电路、输出电路和控制电路等组成。
输入电源通常为交流电源,通过整流电路将交流电转换为直流电。
逆变电路则将直流电转换为高频交流电,一般常用的逆变电路有单相逆变电路和三相逆变电路。
逆变焊机的整流滤波电路用于将逆变电路输出的高频交流电转换为平稳的直流电,以供焊接使用。
整流电路通常由整流桥或整流装置组成,可以有效地将交流电转换为直流电。
滤波电路则通过电感器和电容器等元件进行滤波处理,使输出的电流更平稳。
输出电路是逆变焊机的关键部分,它通常由变压器、输出开关和输出电容器等组成。
变压器用于将输入电压变换为适合焊接的工作电压。
输出开关则根据控制电路的信号进行开关动作,控制输出电流大小和频率。
输出电容器则用于存储能量,以保证焊接电流的平稳输出。
控制电路对逆变焊机的输出电流和电压进行调节和控制。
它通常由控制芯片、反馈电路和保护电路等部分组成。
控制芯片接收输入信号,根据设定的焊接参数调节输出电流和电压。
反馈电路用于监测输出电流和电压,将实际数值反馈给控制芯片进行调节。
保护电路用于监测焊接过程中的异常情况,当发生过流、过压、过载等情况时,保护电路将采取相应的措施,避免设备或焊接工件受到损坏。
综上所述,逆变焊机通过逆变器技术将输入电源的直流电转换为高频交流电,再经过整流、滤波等处理,得到适合焊接使用的电流和电压。
它的设计原理主要基于能量转换和电路控制,通过合理的电路布局和控制策略,实现焊接过程中电流和电压的稳定输出,以满足不同焊接工艺的需求。
设计实例:要求:输入AC 220V±10%效率:80%工作频率 40KHZ输出电压 62V 电流:2A辅助绕组电压:20V/0.1A最大占空比: 0.48一.计算最小直流电压和最大直流电压Emin=220*0.9*1.1=218VEmax=220*1.1*1.4=339V二.计算输入功率和视在功率Pin==Po/η=62*2/0.8=155WPt=Po/η+Po=155+124=279w三.计算AP 值选择磁芯Pin*10²2*F*Bm*J*Ku*Ki279*10²2*40*103*0.15*4*0.4*1== 1.45选择PQ32/30磁芯Ae=1.6Aw=0.994Ap=1.6*0.994=1.59结果大于计算的值,符合要求。
材质选用PC40型。
四.计算初级电流峰值和有效值设定电路工作在连续模式,根据输入电压的范围取Krp 为0.6 2Pin Emin*Dmax*(2-Krp) 2*155 218*0.48*(2-0.6)= 2.1AIrms =Ip* Dmax*(Krp²/3-Krp+1)=2.1* 0.48*(0.6²/3-0.6+1)=1.05A五.计算初级电感量连续模式 Emin*Dmax Ip1 =Ip2(1-Krp) F*(Ip2-Ip1) =2.1*(1-0.6)=0.84 218*0.48 40*103*(2.1-0.84) =2.076mH 断续模式 Emin²*Dmax² 2*Pin*F 218²*0.48² 2*155*40*103=883.0uH=Lp==AP ==Aw*Ac== ==Ip = = Lp =六.计算初级、次级、反馈绕组的圈数 Dmax Upmin 计算变压比:n=1-Dmax Up2=0.4821862= 3.2454初级圈数 Emax*104 4*F*Bm*Ae339*1044*40*103*0.15*1.61=87.7TS 取整数88TS 次级圈数 Np Np*(1-Dmax)*Us1 n Upmin* Dmax =Np 88 n 3.2454 =27TS 反馈圈数Np*(1-Dmax)*Us1 Upmin* Dmax =8.7TS 取9TS八.核算临界电感量(H )T2 0.000025 2*155=882.8uH计算出的结果和断续模式的电感一致。
高频变压器制作流程及检测方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。
输入电压:85~265V输入电压频率:50Hz输出电压电流:18V,1A输出功率:18W开关频率:132KHz电压效率80%反射电压UoR 取98V取0.8Dmax=0.53.7us三、开关电源高频变压器的参数计算Pm=P0/0.8=18/.08W,Ae=0.57,因此选择值比较接近的EE22型磁芯。
从手册中可查出Ae=0.41cm2,Le=3.96 cm,Al=2.4/uH/匝,b=8.43mm.Vin=0.9*2*85=108V,Ton=0.5/132k=3.7us,取k RP=0.8效率80%计算Ilp=0.69A<0.9*818mA, (818为280标准情况下最大电流值)Lp=671uH, 可以适当取大。
取98V= 18+0.7+0.5=19.2V0.1960.5Bs=0.25TNp>=39匝取57匝11匝得13匝此处Vf取22V。
5 最大磁通密度验证计算出来等于0.198T,在范围内6 、磁芯的气隙宽度计算算出气隙宽度至少为0.249mm。
7、计算变压器初、次级裸导线直径取d=2,bE=16.86mm0.296mm,内径取0.29mm。
0.31A计算出J= 4.58A/mm2 ,符合要求。
Isp=3.57A计算为1.02A0.53mm并绕11匝。
共57匝)Φ0.3mm把Φ0.3mm的漆包线用双股并绕的方法绕制10匝因为匝数少,要均与绕制,占满整个骨架,3)绕制二次绕组用Φ0.4mm的漆包线双股并绕的方法绕制8匝,因为匝数少,要均与绕制,占满整个骨架,最后缠绕2~3层绝缘胶带,做为最外层的绝缘材料。
摘要关键词:AbstractKey Words :目录引言文献综述1.1电焊机的构造及原理电焊机是利用正负两极在瞬间短路时产生的高温电弧来熔化电焊条上的焊料和被焊材料,来达到使它们结合的目的。
电焊机的结构十分简单,说白了就是一个大功率的变压器,将220V交流电变为低电压,大电流的电源,可以是直流的也可以是交流的。
电焊变压器有自身的特点,就是具有电压急剧下降的特性。
在焊条引燃后电压下降;在...电焊机的工作电压的调节,除了一次的220/380电压变换,二次线圈也有抽头变换电压,同时还有用铁芯来调节的,可调铁芯... 电焊机一般是一个大功率的变压器,系利用电感的原理做成的.电感量在接通和断开时会产生巨大的电压变化,利用正负两极在瞬间短路时产生的高压电弧来熔化电焊条上的焊料.来达到使它们结合的目的1.2全桥逆变焊机(Full Briudge)工作原理分析工频交流电源的整流滤波回路与双单端逆变器相同,只是在逆变单元中分别由VT1 和VT3 组成左桥臂,VT2 和VT4组成右桥臂,四个开关功率管共同组成桥式电路。
1.3工作原理分析:1) 在NT时,左桥臂中VT1 和右桥臂VT4 门极激励脉冲信号Ugvt1 和Ugvt4 同时现,VT1 和VT4 同时导通,高频变压器将向次级传输能量,原边电流回路为Ud + →VT1 →T1 →VT4 →Ud - 。
经过次级的整流电路整流、直流电抗器DCL 的滤波作用,从而得到合适焊接工艺要求的直流电。
图1b 为此时等效电路(Equivalent circuit) 。
电路稳态方程:输出电压:Uo = D Ud / n2) 在NT + ton 时,功率开关VT1、VT4 的控制极的PWM脉冲激励同时消失,VT1、VT4 同时截止,由于VD2、VD3 的钳位作用,VT1、VT4 承受最大电压Ud ,次级整流管的截止,其阻断了高频变压器与输出回路的联系,此时主电路将不再向输出回路传输能量,高频变压器等效为一个电感,将储存在其中的电磁能量通过VD2、VD3 回馈到电源中。
3) 左桥臂中VT3 和右桥臂VT2 工作原理与1) 、2) 相同,不再叙述,工作波形如图2c 所示。
全桥逆变器优点:高频变压器只需要一个原边绕组,且工作在第一、三象限,副边带有中心抽头绕组,因而采用全波整流输出,高频变压器铁芯和绕组最佳利用。
电阻点焊机的基本结构:主要包括机架、加压机构、中频电源系统、电极等。
a.机架:C型架结构,采用优质钢板、型钢经焊接、热处理(去应力)和精加工而成,保证工件焊接时所需的刚性和精度要求。
b.加压机构:上电极采用垂直加压机构,加压导杆经外圆精磨后镀硬铬,使机构具有良好的随动性,减小了加压时电极对工件的冲击力,防止打伤工件和焊时凹坑过深、减少电极的变形、磨损。
c.气动系统:一体式可调行程气缸、英国“诺冠”低压电磁阀、台湾空气处理器。
气缸采用无油自润气缸筒。
设备自配了储气罐,以稳定气源压力。
d.水路部分:水路部分是设备焊接和工作过程的冷却系统。
它负责逆变器的冷却、焊接变压器的冷却和焊头部分的冷却。
水路系统主要由水流透视管、管路、水过滤器和汇流板等组成。
e.中频电源系统:由中频逆变控制器、中频逆变器和中频变压器等组成。
中频控制器是通过编程软件的程序指令及各种参数的设定完成自动检测、自动焊接、逐级复位、安全保护等项工作。
HJ-MF控制器采用微机控制、八程序,具有功率因素等自动校正、变压器过热保护、电压波动补偿等优点,且带有工作常用参数设计,方便操作者使用。
中频逆变器是引进德国先进的技术,结合多年的焊接经验开发而成,其主要逆变器件如IGBT、SCR及驱动模块全部采用德国进口元件,确保其质量的可靠和稳定性;中频变压器采用进口优质铁芯,变压器体积小重量轻,变压器频率为1000 Hz,采用进口二极管整流,质量稳定可靠,把交流转变为直流提供焊接使能量损失小,可以省更多的能源,降低焊接成本。
f.电极:电极采用优质稀土合金铜材料(铬锆铜)1.4焊机操作规程1.4.1. 接通“照明”开关,此时日光灯亮1.4.2. 接通“电源”开关,此时指示灯亮。
1.4.3. 将焊接开关由“泄放”打响“焊接”,电压表上应有所指接通“照明”开关,此时日光灯亮。
示,顺时针调节“电压”旋钮,充电电压增加。
如果要降低充电电压,可将“开关”由“焊接”打响“泄放”,将“电压” 旋钮反时针调小,待电压表指针降到所需电压时,再把焊接开关打响“焊接”重新调节“电压” 旋钮至所需电压。
1.4.4. 根据被焊工件的要求,在开机前选择充电电容的组数。
如只需一组或两组电容工作,可打开右侧箱后门取下电容器箱上另两组或一组电容的保险丝,如电容器上已冲有电荷,应切记,先将电源开关切断,将电容器上储存的电荷泄放去后,再调换保险丝。
1.4.5. 将工件放于两个电极之间,踩下踏板进行试焊。
1.4.6. 如果需要缩短焊接周期,可以打开右侧箱后门,调节时间继电器至合适的位置即可提高焊接频率。
1.4.7. (1)使用完毕后切断电源“焊接”开关必须达到“泄放”位置。
(2)必须使各组电容确实不带电后,才能打开机箱进行修理,(3)一旦充电电压超过400+20V机器将自动切断电源,排除故障后,方可再开机。
焊机型号编制方法摘要:范围:总则本标准规定了电焊机及其控制器等型号的编制原则,适用产品范围大类名称如下:范围:总则本标准规定了电焊机及其控制器等型号的编制原则,适用产品范围大类名称如下:A.弧焊发电机B.弧焊整流器C.弧焊变压器D.埋弧焊机E. TIG焊机F. MIG/MAG焊机G.电渣焊机H.点焊机I.凸焊机J.缝焊机K.对焊机L.等离子弧焊机和切割机M.超声波焊机N.电子束焊机O.光束焊机P.冷压焊机Q.摩擦焊机R.钎焊机S.高频焊机T.螺柱焊机U.其它焊机V.控制器1.2各大类按其特征和用途,分为若干小类。
(本标准内容详见《电焊机标准汇编》第二册P10—12)型号分类型号的沿用:相同类型和规格的产品转厂生产时,应仍沿用原型号。
本文摘要:逆变与整流是两个相反的概念,整流是把交流电变换为直流电的过程,而逆变则使把直流电改变为交流电的过程,采用逆变技术的弧焊电源称为逆变焊机。
逆变过程需要大功率电子开关器件,采用绝缘栅双极晶体管IGBT作为开关器件的的逆变焊机成为IGBT逆变焊机。
逆变焊机的工作过程如下:将三相或单相工频交流电整流,经滤波后得到一个较平滑的直流电,由IGBT组成的逆变电路将该直流电变为几十KHZ的交流电,经主变压器降压后,再经整流滤波获得平稳的直流输出焊接电流。
由于逆变工作频率很高,所以主变压器的铁心截面积和线圈匝数大大减少,因此,逆变焊机可以在很大程度上节省金属材料,减少外形尺寸及重量,大大减少电能损耗,更重要的是,逆变焊机能够在微妙级的时间内对输出电流进行调整,所以就能实现焊接过程所要求的理想控制过程,获得满意的焊接效果。
逆变焊机的工作过程如下:将三相或单相工频交流电整流,经滤波后得到一个较平滑的直流电,由IGBT组成的逆变电路将该直流电变为几十KHZ的交流电,经主变压器降压后,再经整流滤波获得平稳的直流输出焊接电流。
3高频变压器高频变压器是作为开关电源最主要的组成部分。
开关电源中的拓扑结构有很多。
比如半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行变压,输出交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。
典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W以上的电源,其磁芯直径(高度)就不得小于35mm。
而辅助变压器,在电源功率不超过300W时其磁芯直径达到16mm 就够了。
3.1高频变压器发展随着电子技术的飞速发展,高频变压器已有140余年的历史,并伴随着一系列产品进行更新换代。
目前,消费类电子产品的需求日趋平稳,电子变压器的生产发展速度放慢;但由于音频和视频、办公自动化和通信等高频电子产品使用的普及和需求增长,高频款式电子变压器的需求量不断增长。
高频、低损耗、小尺寸和低价位的电于变压器是目前市场上最畅销的产品。
据不完全统计,2007年生产电子变压器的工厂近3000家,年销售收入250亿元,产品品种达几百种,可为各类整机配套,已跃居世界上电子变压器生产大国之一。
电子变压器60%的产量用于满足国际市场的需要,通过实施以质取胜的战略,电子变压器出口已逐步形成气候,工艺装备也日臻完善。
变压器产品历史悠久,便随着电子技术日新月异,其产品不断的进行换代。
当前,我国生产电子变压器的工厂超过3000家,产品品种有几百种,可为各类整机配套,并且我国已经跃居全球上电子变压器生产大国之一。
电子变压器产量的60%用于满足国际市场的需要,通过实施以质取胜的战略,国内电子变压器出口已逐步形成气候。
电子行业分析师指出:电子产品的应用在不断的扩大,电子变压器行业的前景也非常好。
未来,国内电子变压器发展将呈现三大态势。
近两年,非晶变压器作为变压器的一个细分产品,因其良好的性能受到了广泛的关注。
非晶变压器的空载损耗和空载电流分别比硅钢片铁芯变压器下降80%和85%,可以广泛应用于农村电网。
虽然可以在挂网后可以节省高昂的电费,但由于前几年其价格较昂贵,应用推广效果并不理想。
总体来看,我国非晶变压器行业已经拥有了从带材生产到铁芯加工再到非晶变压器生产较完整的产业链,在技术上得到了长足的发展,其中上海置信电气堪称绝对的龙头,其市场份额占到了80~90%。
分区域来看,非晶变压器市场集中度较高,主要集中在华东区域。
另外,华北、华南区域均有生产企业。
3.2工作原理变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。
变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。
3.3用途高频变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。
按工作频率高低,可分为几个档次:10kHz- 50kHz、50kHz-100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。
传送功率比较大的情况下,功率器件一般采用 IGBT,由于IGBT存在关断电流拖尾现象,所以工作频率比较低;传送功率比较小的,可以采用MOSFET,工作频率就比较高。
3.4高频电源变压器的设计原则高频电源变压器作为一种产品,自然带有商品的属性,因此高频电源变压器的设计原则和其他商品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好。