数列中的不等式有关问题
- 格式:docx
- 大小:285.13 KB
- 文档页数:10
利用导数证明数列不等式利用导数证明数列不等式,在高考题中能较好的考查学生灵活运用知识的能力,一方面以函数为背景让学生探寻函数的性质,另一方面体现数列是特殊的函数,进而利用恒成立的不等式将没有规律的数列放缩为为有具体特征的数列,可谓一题多考,巧妙地将函数、导数、数列、不等式结合在一起,也是近年来高考的热门题型. 1、常见类型:(1)利用放缩通项公式解决数列求和中的不等问题 (2)利用递推公式处理通项公式中的不等问题 2、恒成立不等式的来源:(1)函数的最值:在前面的章节中我们提到过最值的一个作用就是提供恒成立的不等式.(2)恒成立问题的求解:此类题目往往会在前几问中进行铺垫,暗示数列放缩的方向.其中,有关恒成立问题的求解,参数范围内的值均可提供恒成立不等式. 3、常见恒成立不等式:(1) 对数→多项式 (2) 指数→多项式4、关于前项和的放缩问题:求数列前项公式往往要通过数列的通项公式来解决,高中阶段求和的方法有以下几种:(1)倒序相加:通项公式具备第项与第项的和为常数的特点.(2)错位相减:通项公式为“等差等比”的形式(例如,求和可用错位相减).(3)等比数列求和公式(4)裂项相消:通项公式可裂为两项作差的形式,且裂开的某项能够与后面项裂开的某项进行相消. 注:在放缩法处理数列求和不等式时,放缩为等比数列和能够裂项相消的数列的情况比较多见,故优先考虑.5、大体思路:对于数列求和不等式,要谨记“求和看通项”,从通项公式入手,结合不等号方向考虑放缩成可求和的通项公式.6、在放缩时要注意前几问的铺垫与提示,尤其是关于恒成立问题与最值问题所带来的恒成立不等式,往往提供了放缩数列的方向.7、放缩通项公式有可能会进行多次,要注意放缩的方向:朝着可求和的通项公式进行靠拢(等比数列,裂项相消等).ln 1x x <-1x e x >+n n k 1n k -+⨯2nn a n =⋅n a8、数列不等式也可考虑利用数学归纳法进行证明(有时更容易发现所证不等式与题目条件的联系).【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈. 3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性; (2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(xf x eg x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 2.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(1)讨论函数()f x 的单调性;(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈. (1)讨论函数()f x 的单调性;(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈.(1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<.【经典例题】1.(2020·江苏省如皋中学高三三模)已知函数()ln f x kx x x =-,k ∈R . (1)当2k =时,求函数()f x 的单调区间;(2)当01x <≤时,()f x k ≤恒成立,求k 的取值范围; (3)设n N *∈,求证:ln1ln 2ln (1)2314n n n n -+++≤+. 【答案】(1)单调递增区间为(0,)e ,单调递减区间为(,)e +∞;(2)[1,)+∞;(3)证明见解析.【解析】(1)当2k =时,()2ln f x x x x =-,'()1ln f x x =-,由'()0f x >,解得0x e <<;由'()0f x <,解得x e >,因此函数()f x 单调递增区间为(0,)e ,单调递减区间为(,)e +∞.(2)()ln f x kx x x =-,故'()1ln f x k x --=.当1k时,因为01x <≤,所以10ln k x -≥≥,因此'()0f x ≥恒成立,即()f x 在(]0,1上单调递增,所以()(1)f x f k ≤=恒成立.当1k <时,令'()0f x =,解得1(0,1)k x e -=∈.当1(0,)k x e -∈,'()0f x >,()f x 单调递增;当1(,1)k x e -∈,'()0f x <,()f x 单调递减; 于是1(1))(k f ef k -=>,与()f x k ≤恒成立相矛盾.综上,k 的取值范围为[1,)+∞.(3)由(2)知,当01x <≤时,ln 1x x x -≤. 令x =21n *()n N ∈,则21n +22nln 1n ≤,即22ln 1n n -≤, 因此ln 1n n +≤12n -. 所以ln1ln 2ln 011(1) (2312224)n n n n n --+++≤+++=+. 2.(2020·四川省内江市第六中学高三三模)已知函数2()ln(1)(0,0),()2x f x ax x a g x x -=+≥>=+. (1)讨论函数()()y f x g x =-的单调性;(2)若不等式()()1f x g x ≥+在[0,)x ∈+∞时恒成立,求实数a 的取值范围; (3)当1a =时,证明:1111+35721n +++<+…*1()(N )2f n n ∈.【答案】(1)见解析;(2)[1,+∞);(3)证明见解析. 【解析】(1)求导数可得2224441(2)(1)(2)a ax a y ax x ax x +-'=-=++++, 当1a 时,0y ',∴函数()()y f x g x =-在[)0+∞,上单调递增; 当01a <<时,由0y '>可得x > ∴函数在⎡⎫∞⎪⎢⎪⎣⎭上单调递增,在0⎡⎢⎣上单调递减; (2)由(1)知当1a 时,函数()()y f x g x =-在[)0+∞,上单调递增, ()()(0)(0)1f x g x f g ∴--=,即不等式()()1f x g x +在[)0x ∈+∞,时恒成立, 当01a <<时,函数在0⎡⎢⎣上单调递减,存在00x ⎡∈⎢⎣使得00()()(0)(0)1f x g x f g -<-=, 即不等式00()()1f x g x +不成立, 综上可知实数a 的取值范围为[1,)+∞;(3)由(2)得当1a 时,不等式()()1f x g x >+在(0,)x ∈+∞时恒成立, 即2(1)2x ln x x +>+,12(1)12ln k k∴+>+,*()k N ∈. 即11[(1)]122ln k lnk k <+-+, ∴11(21)32ln ln <-,11(32)52ln ln <-,11(43)72ln ln <-,11[(1)]212ln n lnn n ⋯<+-+, 将上述式子相加可得11111111(1)(1)()357212222lnn ln lnn ln n f n n +++⋯+<-=<+=+ 原不等式得证.3.(2020·安徽合肥·三模)已知函数()x xf x e e ax -=--(e 为自然对数的底数),其中a ∈R.(1)试讨论函数f (x )的单调性;(2)证明:22132ln 2(1)ni n n i i n n =-->+∑. 【答案】(1)答案见解析(2)证明见解析.【解析】(1)因为()x xf x e ea -'=+-,且2x x e e -+≥,所以当2a ≤时,()0f x '≥,所以()f x 在R 上为增函数,当2a >时,由()0f x '>,得0x x e e a -+->,所以2()10x xe ae -+>,所以22()124x a a e ->-,所以2x ae ->或2xa e -<,所以2xa e +>2xa e -<,所以24ln2aa x 或24ln2aa x ,由()0f x '<,得0x x e e a -+-<,解得2244ln22aa aax ,所以()f x 在ln 22a a ⎛⎫⎪ ⎪⎝⎭上递减,在,ln2a ⎛--∞ ⎪⎝⎭和ln 2a ⎛⎫++∞ ⎪ ⎪⎝⎭上递增.(2)由(1)知,当2a =时,()2xxf x e e x -=--在R 上为增函数,所以1()(ln )2ln g x f x x x x==--在(0,)+∞上为增函数, 所以当*n N ∈且2n ≥时,13()(2)22ln 2ln 422g n g ≥=--=-=32ln 04e >, 即12ln 0n n n-->,所以212211ln 1(1)(1)11n n n n n n n >==---+-+, 所以211111ln 2ln 23ln 34ln 4ln ni i i n n==++++∑ 1111111121213131414111n n >-+-+-++--+-+-+-+ 111121n n =+--+2322(1)n n n n --=+, 所以22132ln 2(1)ni n n i i n n =-->+∑.4.(2020·安徽相山·淮北一中高三三模)已知函数()||ln (0)f x x a x a =-->. (∈)讨论()f x 的单调性;(∈)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论.【答案】(I )见解析;(II )见解析 【解析】(∈)函数()f x 可化为ln ,()ln ,0x x a x af x a x x x a --≥⎧=⎨--<<⎩,当0x a <<时,1()10f x x '=--<,从而()f x 在(0,)a 上总是递减的, 当x a ≥时,11()1x f x x x'-=-=,此时要考虑a 与1的大小.若1a ≥,则()0f x '≥,故()f x 在[,)a +∞上递增,若01a <<,则当1a x ≤<时,()0f x '<,当1x >时,()0f x '>,故()f x 在[,1)a 上递减, 在(1,)+∞上递增,而()f x 在x a =处连续,所以 当1a ≥时,()f x 在(0,)a 上递减,在[,)a +∞上递增; 当01a <<时,()f x 在(0,1)上递减,在[1,)+∞上递增.(∈)由(∈)可知当1a =,1x >时,1ln 0x x -->,即ln 1x x >-,所以ln 11x x x <-.所以 222222ln 2ln 3ln 23n n+++22211111123n <-+-+-222111123n n ⎛⎫=--+++⎪⎝⎭11112334(1)n n n ⎛⎫<--+++⎪⨯⨯+⎝⎭11121n n ⎛⎫=--- ⎪+⎝⎭1(1)2(1)n n n -=--+ 2221(1)(21)2(1)2(1)n n n n n n --+-+==++.5.(2020·云南高三三模)已知函数()1ln f x x a x =-- (1)讨论()f x 的单调性;(2)证明:()*333ln 2ln3ln 1,222332n n N n n n +++<∈≥---. 【答案】(1)当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明见解析 【解析】(1)解:()1ln (0)f x x a x x =-->,()1af x x'∴=-.∈若0a ,则()0f x '>,()f x ∴在(0,)+∞内单调递增;∈若0a >,则()f x '在(0,)+∞内单调递增,且()0f a '=,∴当(0,)x a ∈时,()0f x '<;当(,)x a ∈+∞时,()0f x '>,()f x ∴在(0,)a 内单调递减,在(,)a +∞内单调递增.综上所述,当0a 时,()f x 在(0,)+∞内单调递增;当0a >时,()f x 在(0,)a 内单调递减,在(,)a +∞内单调递增.(2)证明:当1a =时,()1ln =--f x x x .由(1)知()(1)0f x f =,ln 1x x ∴-,当且仅当1x =时,等号成立, 令()*,2x n n N n =∈,ln 1n n ∴<-,33ln 1111(1)1n n n n n n n n n n -∴<==---++. 从而3ln 2112223<--, 3ln 3113334<-- …3ln 111n n n n n <--+, 累加可得333ln 2ln3ln 11223321n n n n ++⋯+<----+, 111212n -<+, 333ln 2ln3ln 122332n n n ∴++⋯+<---,证毕.【精选精练】1.(2020·榆林市第二中学高三三模)已知(),()1(x f x e g x x e ==+为自然对数的底数).(1)求证()()f x g x ≥恒成立;(2)设m 是正整数,对任意正整数n ,2111(1)(1)(1)333n m ++⋅⋅⋅+<,求m 的最小值. 【答案】(1)证明见解析;(2) 2.【解析】(1)令()()()1xF x f x g x e x =-=--,则()1xF x e '=-∴当(),0x ∈-∞时,()0F x '<;当()0,x ∈+∞时,()0F x '>()F x ∴在(),0-∞上单调递减;在()0,∞+上单调递增()()0min 0010F x F e ∴==--=,即()()()0F x f x g x =-≥恒成立 ()()f x g x ∴≥恒成立(2)由(1)知:13113n n e +≤221111113333332111111333n n n e e e e++⋅⋅⋅+⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤⋅⋅⋅⋅= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又211111111133********13nn n⎛⎫⨯- ⎪⎛⎫⎝⎭++⋅⋅⋅+==⨯-<⎪⎝⎭- 11112322111111333n n e e ⎛⎫⨯- ⎪⎝⎭⎛⎫⎛⎫⎛⎫∴++⋅⋅⋅+≤< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭又2111111333n m ⎛⎫⎛⎫⎛⎫++⋅⋅⋅+< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭恒成立 12m e ∴≥ m 为正整数 m ∴的最小值为:22.(2020·广东广州高三三模·)已知函数()()()3214613x f x x ex x g x a x lnx -⎛⎫=-+-=--- ⎪⎝⎭,.(1)求函数()f x 在()0+∞,上的单调区间; (2)用{}max m n ,表示m n ,中的最大值,()f x '为()f x 的导函数,设函数()()(){}h x max f x g x '=,,若()0h x ≥在()0+∞,上恒成立,求实数a 的取值范围; (3)证明:()*11111ln 312313n N n n n n n+++++>∈++-. 【答案】(1)()f x 单调递增区间为()3+∞,;() f x 单调递减区间为()03,;(2)43a ≥;(3)详见解析. 【解析】(1)因为()()3246x f x x ex x -=-+-,所以()()()()3332632x x f x x ex x e --=-+-='-+,令()0f x '=得3x =,当3x >时,()0f x '>,()f x 单调递增; 当03x <<时,()0f x '<,()f x 单调递减;所以函数()f x 在()0+∞,上的单调递增区间为()3+∞,,单调递减区间为()03,; (2)由(1)知()()()332x f x x e-'=-+,当3x ≥时,()0f x '≥恒成立,故()0h x ≥恒成立;当3x <时,()0f x '<,又因为()()(){}0h x max f x g x '=≥,恒成立,所以()0g x ≥在()03,上恒成立, 所以11ln 03a x x ⎛⎫---≥ ⎪⎝⎭,即11ln 3xa x+-≥在()03,上恒成立, 令()()1ln 03x F x x x +=<<,则()13max a F x -≥, 由()()221ln 1ln x xF x x x-+-'==, 令()0F x '=得1x =,易得()F x 在()01,上单调递增,在[)13,上单调递减,所以()()11max F x F ==,所以113a -≥,即43a ≥, 综上可得43a ≥.(3)证明:设()()10xm x e x x =-->,则()10xm x e '=->,所以()m x 在()0+∞,上单调递增,所以()()00m x m >=,即1x e x >+, 所以1111111111312312333112313n n n nn n n nn n n n n ee eeen n n n n++++++++++++=⋅⋅⋅⋅⋅⋅⋅>⋅⋅⋅⋅⋅⋅⋅⋅++- 123331231n n n nn n n n +++>⋅⋅⋅⋅⋅⋅⋅=++-,所以11111ln 312313n n n n n+++++>++-. 3.(2020·安徽蚌埠·高三三模)已知函数()()ln 1x f x x+=.(1)分析函数()f x 的单调性;(2)证明:2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥. 【答案】(1)()f x 在区间()–1,0和()0,∞+上单调递减;(2)证明见解析. 【解析】(1)由题意得:()f x 的定义域为()()–1,00,+∞,且()()2ln 11xx x f x x -++'=,令()()ln 11x g x x x=-++则()()21x g x x -'=+,()–1,0x ∈时,()0g x '>; ()0,x ∈+∞时,()0g x '<.即()g x 在()–1,0上单调递增,在()0,∞+上单调递减.因为()00g =,则在()–1,0和()0,∞+上()0g x <. 因为20x >,所以在()–1,0和()0,∞+上()0f x '<, 即函数()f x 在区间()–1,0和()0,∞+上单调递减. (2)由(1)可知,当02x <≤时,()()ln 322x f f =≥,即()ln 3ln 12x x +≥, 当2n ≥时,2021n <≤-,则2ln 3ln 111n n ⎛⎫+≥⎪--⎝⎭, 即()()2ln 3ln 1ln 1ln 111n n n n ⎛⎫+=+--≥ ⎪--⎝⎭, 所以()()()ln 1ln 1ln ln 2ln 4ln 2ln3ln1n n n n +--+--++-+-111ln 31122n n ⎛⎫≥++++ ⎪--⎝⎭整理得:()111ln 1ln ln 2ln1ln 31122n n n n ⎛⎫++--≥++++⎪--⎝⎭, 即2111ln 3ln 212n n n ⎛⎫+⎛⎫+++≤ ⎪ ⎪-⎝⎭⎝⎭,2n ≥,不等式得证.4.(2020·全国高三三模)已知函数2()2ln 1()f x ax x x a =--∈R . (1) 若1x e=时,函数()f x 取得极值,求函数()f x 的单调区间; (2) 证明:()*11111ln(21)3521221nn n n n +++⋯+>++∈-+N . 【答案】(1)见解析;(2)见解析【解析】(1)由题意可得,()'222(0,)f x ax lnx x a R =-->∈,由1x e =时,函数()f x 取得极值知12'220af e e ⎛⎫=+-= ⎪⎝⎭,所以0a =. 所以()()21,'22(0)f x xlnx f x lnx x =--=-->, 所以10x e <<时,()'0f x >;1x e>时,()'0f x <; 所以()f x 的单调增区间10e ⎛⎫ ⎪⎝⎭,,单调减区间为1e⎛⎫+∞ ⎪⎝⎭,. (2)当1a =时,()221f x x xlnx =--,所以()()'22221f x x lnx x lnx =--=--,令()ln 1g x x x =--,则()11'1x g x x x-=-=,当01x <<时,()'0g x <;当1x >时,()'0g x >,()g x 的单调减区间为()01,,单调增区间为()1+∞,, 所以()()10g x g ≥=,所以()'0f x ≥,()f x 是增函数,所以1x >时,()()22ln 110f x x x x f =-->=,所以1x >时,12ln x x x->, 令*211,21n x n N n +=>∈-,得2121212ln 212121n n n n n n +-+->-+- 即2221112ln 212121n n n n +⎛⎫+--> ⎪-+-⎝⎭ 所以1121111ln 2122122121n n n n n +⎛⎫>+- ⎪---+⎝⎭上式中123n =,,,…,n ,然后n 个不等式相加, 得到()11111...ln 213521221nn n n ++++>++-+ 5.(2020·辽宁沙河口·辽师大附中高三三模)已知函数()()2ln 11f x p x p x =+-+.(2)当1p =时,()f x kx ≤恒成立,求实数k 的取值范围; (3)证明:()()*111ln 1123n n N n+<+++⋯+∈. 【答案】(1) 见详解;(2)1k;(3)证明见解析.【解析】(1)()f x 的定义域为()0 +∞,,()()()221'21p x p p f x p x x x-+=+-=,当1p >时,()'0f x >,故()f x 在()0,∞+单调递增; 当0p ≤时,()'0f x <,故()f x 在()0,∞+单调递减;当10p -<<时,令()'0f x =,解得x =则当x ⎛∈ ⎝时,()'0f x >; x ⎫∈+∞⎪⎪⎭,时,()'0f x <.故()f x 在⎛ ⎝单调递增,在 ⎫+∞⎪⎪⎭,单调递减. (2)因为0x >,所以:当1p =时,()f x kx ≤恒成立11ln ln kx xx k x+⇔+≤⇔≥, 令()1ln xh x x +=,则()max k x h ≥, 因为()2ln 'xh x x-=,由()'0h x =得x =1, 且当()0,1x ∈时,()'0h x >;当()1,x ∈+∞时,()'0h x <.所以()h x 在()0,1上递增,在()1,+∞上递减,所以()()max 11h x h ==, 故1k .(3)取,则代入由题设可得,取,并将上述各不等式两边加起来可得()()*111ln 1123n n N n+<+++⋯+∈.6.(2020·浙江省宁波市鄞州中学高三三模)已知函数()()2f x ax a a R =+∈.(2)若()0f x ≤对任意的1x ≥-恒成立,求a 的取值范围;(32600⋅⋅⋅+<. 【答案】(1)()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单减;(2)1,2⎛⎤-∞- ⎥⎝⎦;(3)证明见解析. 【解析】()'f x a =+.(1)当0a ≥时,()'0f x ≥,所以()f x 在()1,-+∞上单调递增; 当0a <时,由()'0f x >解得21114x a -<<-, 所以()f x 在211,14a ⎛⎫-- ⎪⎝⎭上单调递增;在211,4a ⎛⎫-+∞ ⎪⎝⎭上单调递减.(2)当0a ≥时,()()2000f x a x =+≥+=,故不合题意;当0a <时,由(∈)知()max 21104x f f a ⎛⎫=-≤ ⎪⎝⎭,211(21)(21)20141244a a f a a a a a a +-⎛⎫=-+- ⎪⎝-+=≤⎭102a a <∴≤-,综上,a 的取值范围为1,2⎛⎤-∞- ⎥⎝⎦.(3)由(2)知,取12a =-112x ≤+成立.当()1,2,3,,20482020kx k ==时,1111220204040k k =≤⨯+=⨯+,⋅⋅⋅+()11234204820484040++++++<20491024204826004040⨯=+<.7.(2020·广东广州·高三三模)已知函数()2ln f x a x x =+,其中a R ∈. (1)讨论()f x 的单调性;(2)当1a =时,证明:()21f x x x ≤+-;(3)试比较22222222ln2ln3ln4ln 234n n++++与()()()12121n n n -++ ()*2n N n ∈≥且的大小,并证明你的结论. 【答案】(1)见解析;(2)见解析;(3)见解析【解析】(1)函数()f x 的定义域为:()0,∞+,()'f x = 222a a x x x x++=∈当0a ≥时,()'0f x >,所以()f x 在()0,∞+上单调递增∈当0a <时,令()'0f x =,解得x =当0x <<时,220a x +<,所以()'0f x <, 所以()f x 在⎛ ⎝上单调递减;当x >220a x +>,所以()'0f x >,所以()f x 在⎫+∞⎪⎪⎭上单调递增. 综上,当0a ≥时,函数()f x 在()0,∞+上单调递增;当0a <时,函数()f x 在⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增. (2)当a 1=时,()2ln f x x x =+,要证明()21f x x x ≤+-,即证ln 1x x ≤-,即证:ln 10x x -+≤. 设()g ln 1x x x =-+,则()g'x =1xx-,令()0g x '=得,1x =. 当()0,1x ∈时,()0g x '>,当()1,x ∈+∞时,()0g x '<. 所以1x =为极大值点,且()g x 在1x =处取得最大值.所以()()10g x g ≤=,即ln 10x x -+≤.故()21f x x x ≤+-.(3)证明:ln 1x x ≤-(当且仅当1x =时等号成立),即11lnx x x≤-, 则有2222ln +22222222223111111111n 132323ln lnn n n n ⎛⎫+⋯+<-+-+⋯+-=--++⋯+ ⎪⎝⎭()111n 123341n n ⎛⎫<--++⋯+ ⎪ ⎪⨯⨯+⎝⎭ ()()()12111111111n 1n 1233412121n n n n n n -+⎛⎫⎛⎫=---+-+⋯+-=---=⎪ ⎪+++⎝⎭⎝⎭, 故:2222ln +()()()22221213321n n ln lnn n n -++⋯+<+ 8.(2020·黑龙江南岗·哈师大附中三模)已知函数()()2ln 1f x ax bx x =+-+.(∈)当0a =时,函数()f x 存在极值,求实数b 的取值范围;(∈)当1b =时,函数()f x 在()0,∞+上单调递减,求实数a 的取值范围;(∈)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 【答案】(∈)0b >;(∈)12a ≤-;(∈)证明见解析. 【解析】(∈)当0a =时,()()()ln 11f x bx x x =-+>-,()()1111bx b f x b x x --'=-=++, ∈当0b ≤时,()0f x '<,则()f x 在()1,-+∞递减,无极值; ∈当0b >时,令()1'0,11f x x b==->-, 1()0,(1,1),()f x x f x b '<∈--单调递减,1()0,(1,),()f x x f x b '>∈-+∞单调递增,所以11,()x f x b=-取得极小值.综上可知:0b >.(∈)当1b =时,()()()2ln 10f x ax x x x =+-+>,()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立, ∈11x +>,∈1011x <<+,∈21a -≥,∈12a ≤-.(∈)由(∈)知:当12a =-时,()()21ln 12f x x x x =-+-+在()0,∞+递减,∈()()00f x f ≤=,即:()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---, 当2n ≥时,()2222122ln 212144121n n n n n n +-<=---+- ()21114121n n n n ⎛⎫<=- ⎪--⎝⎭,∈23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭ 27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑ 5153ln3ln32222n =--<-<, 当1n =时,131ln 324-<,即:1ln 32>,综上,()1113ln 212124nk n k =-+<-∑. 9.(2020·黑龙江哈尔滨·三模)已知函数()()()()ln 111f x x k x k R =---+∈ (1)求函数()f x 的单调区间;(2)若()0f x ≤恒成立,试确定实数k 的取值范围;(3)证明:()()*1ln 2ln 3ln ,13414n n n n n n -++⋅⋅⋅+<∈>+N . 【答案】(1)答案不唯一,具体见解析;(2)[)1,+∞;(3)证明见解析. 【解析】(1)函数()()()ln 111f x x k x =---+的定义域为()1,+∞,且()11f x k x '=--. ∈当0k ≤时,()0f x '>恒成立,故函数()y f x =在()1,+∞上为增函数; ∈当0k >时,令()0f x '<,得1k x k +>时,即函数()y f x =在1,k k +⎛⎫+∞⎪⎝⎭上单调递减, 令()0f x '>,得11k x k +<<时,即函数()y f x =在11,k k +⎛⎫⎪⎝⎭上单调递增.综上:当0k ≤时,函数()y f x =在()1,+∞上为增函数; 当0k >时,函数()y f x =在11,k k +⎛⎫ ⎪⎝⎭上为增函数,在1,k k +⎛⎫+∞⎪⎝⎭上为减函数; (2)当0k ≤时,()211f k =-+≥,显然()0f x ≤不恒成立; 当0k >时,()max 11ln 0k f x f k k +⎛⎫==≤⎪⎝⎭,即1k .综上:实数k 的取值范围是[)1,+∞;(3)由(2)可知,当1k =时()0f x ≤恒成立,即()ln 12x x -<-,()ln 121x x x-∴<-, ()()22ln ln 11121212n n n n n n n --=<=+++,可得出ln 2132<,ln 3242<,,ln 112n n n -<+, ()()*1ln 2ln 3ln 121,23412224n n n n n N n n --∴+++<+++=∈≥+. 10.(2020·浙江三模)已知数列{}n a ,112a =,1ln 1n n a a +=-. (1)求证:11n n a a +<<; (2)求证:123201912020a a a a ⋅⋅⋅⋅⋅⋅<. 【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)∈先利用数学归纳法证明1n a <. (∈)当1n =时,1112a =<成立; (∈)假设n k =时1k a <成立,则1ln 10k k a a +=-<,11k a +∴<. 综上所述,对任意的n *∈N ,1n a <; ∈利用导数证明1x e x -≥,设()1x f x ex -=-,则()1e 1x f x -'=-,当1x <时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()0110f x f e ≥=-=,即1x e x -≥,当且仅当1x =时,等号成立.1n a <,()()10n f a f ∴>=,即1n a n e a ->,1ln 1n n a a +=-,11n a n n a e a -+∴=>,综合∈∈可知11n n a a +<<;(2)利用数学归纳法证明1n n a n ≤+. ∈当1n =时,112a =满足1n n a n ≤+;∈假设n k =时成立,即1k ka k ≤+,则由1ln 1n n a a +=-,得111111k k a k k k a eee---+++==≤,要证1112k k ek -++<+,令11,012t k ⎛⎫-=∈- ⎪+⎝⎭,则要证11012t e t t ⎛⎫<-<< ⎪-⎝⎭,21 / 21 构造()11x f x e x =+-,1,02x ⎛⎫∈- ⎪⎝⎭,()()()()22211111x x e x f x e x x --'=-=--,令()()211x h x e x =--,1,02x ⎛⎫∈- ⎪⎝⎭,则()()()()2212110x x x h x e x e x e x '=-+⋅-=-<, 所以,函数()y f x '=在1,02⎛⎫- ⎪⎝⎭上单调递减,()()00f x f ''∴>=,所以,函数()y f x =在1,02⎛⎫- ⎪⎝⎭上单调递增,()()00f x f ∴<=,即11x e x <-成立,即1112k k e k -++<+,112k k a k ++∴<+, 综上1n na n ≤+,当且仅当1n =时等号成立,由于1ln 1n n a a +=-,可知0n a >, 所以,1102a <≤,2203a <<,,2019201902020a <<,1220191232019123420202020a a a ⋅⋅⋅⋅<⨯⨯⨯⋅⋅⨯=.。
数列绝对值不等式数列是数学中一个重要的概念,它是由一串有顺序的数字组成的序列。
在数列的研究中,绝对值不等式是一种常见的数学问题。
本文将介绍数列绝对值不等式及其性质,并通过例题来解释其应用。
一、数列绝对值不等式的定义和性质数列绝对值不等式是指在一个数列中由绝对值组成的不等式。
数列绝对值不等式常见的形式有以下几种:1. |an|≤a,其中a为实数。
2. |an|≥a,其中a为正实数。
3. |an±bn|≤a,其中a为实数。
4. |an±bn|≥a,其中a为正实数。
在数列绝对值不等式中,|an|表示数列中的第n个数的绝对值,a和b为实数。
根据不等式的性质,我们可以得出以下结论:1. 若|an| ≤ a,则 -a ≤ an ≤ a。
2. 若|an| ≥ a,则an ≤ -a 或an ≥ a。
二、解决数列绝对值不等式的方法解决数列绝对值不等式的关键是确定数列中每个数的取值范围。
以下是一些常用的解题方法:1. 分情况讨论法当数列中的每个数的取值范围不同时,可以采用分情况讨论的方法。
具体步骤如下:(1)根据数列中每个数的绝对值大小,给出每个数的取值范围。
(2)将取值范围代入绝对值不等式中,得出每个数的取值范围。
(3)将每个数的取值范围整合起来,得出整个数列的取值范围。
2. 取最大值和最小值法当数列中每个数的取值范围相同时,可以通过取最大值和最小值的方法求解。
具体步骤如下:(1)根据数列中每个数的绝对值大小,确定每个数的取值范围。
(2)将取最大值和最小值代入绝对值不等式中,得出每个数的取值范围。
(3)将每个数的取值范围整合起来,得出整个数列的取值范围。
三、例题解析为了更好地理解数列绝对值不等式的求解过程,我们来看几个例题。
例题1:已知数列an=3n-2,试求满足绝对值不等式|an+2|≤5的n的取值范围。
解析:首先,我们根据数列an=3n-2,求得数列中每个数的取值。
当 n = 1 时,a1 = 3(1) - 2 = 1;当 n = 2 时,a2 = 3(2) - 2 = 4;当 n = 3 时,a3 = 3(3) - 2 = 7;...根据数列中每个数的取值,我们可以判断出:an+2 = 3(n + 2) - 2 = 3n + 4接下来,我们将an+2代入绝对值不等式中,得到:|3n + 4| ≤ 5根据绝对值不等式的性质,我们可以得到以下两种情况:1. 3n + 4 ≤ 5,即3n ≤ 1,解得n ≤ 1/3;2. -(3n + 4) ≤ 5,即 -3n ≤ 9,解得n ≥ -3。
数列与不等式的综合问题突破策略【题1】 等比数列{a n }的公比q >1,第17项的平方等于第24项,求使a 1+a 2+…+a n >1231111na a a a ++++……恒成立的正整数n 的范围.【题2】设数列{a n }的前n 项和为S n .已知a 1=a ,a n +1=S n +3n ,n ∈N *.(1)设b n =S n -3n ,求数列{b n }的通项公式;(2)若a n +1≥a n ,n ∈N *,求a 的取值范围.【题3】 数列{a n }是等差数列,其前n 项和为S n ,a 3=7,S 4=24.(1)求数列{a n }的通项公式; (2)设p 、q 都是正整数,且p ≠q ,证明:S p +q <12(S 2p +S 2q ).【题4】已知数列{}n a 中,113,21(1)n n a a a n +==-≥(1)设1(1,2,3)n n b a n =-= ,求证:数列{}n b 是等比数列; (2)求数列{}n a 的通项公式(3)设12n n n n c a a +=⋅,求证:数列{}n c 的前n 项和13n S <.【题5】已知数列{}n a 满足11111,,224nn n a a a n N ++⎛⎫==∈ ⎪⎝⎭.(1)求数列{}n a 的通项公式;(2)若数列{}n b 的前n 项和2n s n =,112233n n n T a b a b a b a b =++++ ,求证:3n T <.【题6】已知α为锐角,且12tan -=α,函数)42sin(2tan )(2παα+⋅+=x x x f ,数列{a n }的首项)(,2111n n a f a a ==+. ⑴ 求函数)(x f 的表达式; ⑵ 求证:n n a a >+1; ⑶ 求证:),2(21111111*21N n n a a a n∈≥<++++++<【题7】已知数列{}n a 满足()111,21n n a a a n N*+==+∈(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足n n b n b b b b a )1(44441111321+=---- ,证明:{}n a 是等差数列;(3)证明:()23111123n n N a a a *++++<∈【题8】数列{}n a 满足411=a ,()),2(2111N n n a a a n nn n ∈≥--=--. (1)求数列{}n a 的通项公式n a ; (2)设21nn a b =,求数列{}n b 的前n 项和n S ;(3)设2)12(sinπ-=n a c n n ,数列{}n c 的前n 项和为n T . 求证:对任意的*∈N n ,74<n T .【题9】已知数列{}n a 的前n 项和为n S ,且对于任意的*n N ∈,恒有2n n S a n =-,设2log (1)n n b a =+.(1)求证:数列{1}n a +是等比数列; (2)求数列{}{},n n a b 的通项公式n a 和n b ;(3)若12n b n n n c a a +=⋅,证明:1243n c c c +++< .【题10】 等比数列{a n }的首项为a 1=2002,公比q =-12.(1)设f (n )表示该数列的前n 项的积,求f (n )的表达式; (2)当n 取何值时,f (n )有最大值.【题11】 已知{a n }的前n 项和为S n ,且a n +S n =4. (1)求证:数列{a n }是等比数列;(2)是否存在正整数k ,使S k+1-2S k -2>2成立.【题12】设数列{}{}n n b a ,满足3,4,6332211======b a b a b a , 且数列{}()++∈-Nn a a n n 1是等差数列,数列{}()+∈-N n bn2是等比数列.(1)求数列{}n a 和{}n b 的通项公式;(2)是否存在+∈N k ,使⎪⎭⎫ ⎝⎛∈-21,0k k b a ,若存在,求出k ,若不存在,说明理由.数列与不等式综合解答与评析类型1:求有数列参与的不等式恒成立条件下参数问题求数列与不等式相结合恒成立条件下的参数问题主要两种策略:(1)若函数f (x )在定义域为D ,则当x ∈D 时,有f (x )≥M 恒成立⇔f (x )min ≥M ;f (x )≤M 恒成立⇔f (x )max ≤M ;(2)利用等差数列与等比数列等数列知识化简不等式,再通过解不等式解得.【题1】 利用条件中两项间的关系,寻求数列首项a 1与公比q 之间的关系,再利用等比数列前n 项公式和及所得的关系化简不等式,进而通过估算求得正整数n 的取值范围. 【解】 由题意得:(a 1q 16)2=a 1q 23,∴a 1q 9=1. 由等比数列的性质知数列{1n a }是以11a 为首项,以1q为公比的等比数列,要使不等式成立, 则须1(1)1n a q q -->111(1)11n a q q--,把a 21=q -18代入上式并整理,得q -18(q n -1)>q (1-1n q ),q n >q 19,∵q >1,∴n >19,故所求正整数n 的取值范围是n ≥20.【点评】 本题解答数列与不等式两方面的知识都用到了,主要体现为用数列知识化简,用不等式知识求得最后的结果.本题解答体现了转化思想、方程思想及估算思想的应用.【题2】 第(1)小题利用S n 与a n 的关系可求得数列的通项公式;第(Ⅱ)小题将条件a n +1≥a n 转化为关于n 与a 的关系,再利用a ≤f (n )恒成立等价于a ≤f (n )min 求解. 【解】 (1)依题意,S n +1-S n =a n +1=S n +3n ,即S n +1=2S n +3n ,由此得S n +1-3 n +1=2(S n -3n ).因此,所求通项公式为b n =S n -3n =(a -3)2 n -1,n ∈N *, ① (2)由①知S n =3n +(a -3)2 n -1,n ∈N *,于是,当n ≥2时,a n =S n -S n -1=3n +(a -3)2 n -1-3n -1-(a -3)2 n -2=2×3n -1+(a -3)2 n -2,a n +1-a n =4×3 n -1+(a -3)2 n -2=2 n -2·[12·(32)n -2+a -3],当n ≥2时,a n +1≥a n ,即2 n -2·[12·(32)n -2+a -3]≥0,12·(32)n -2+a -3≥0,∴a ≥-9,综上,所求的a 的取值范围是[-9,+∞)【点评】 一般地,如果求条件与前n 项和相关的数列的通项公式,则可考虑S n 与a n 的关系求解.本题求参数取值范围的方法也一种常用的方法,应当引起重视.类型2:数列参与的不等式的证明问题此类不等式的证明常用的方法:(1)比较法,特别是差值比较法是最根本的方法;(2)分析法与综合法,一般是利用分析法分析,再利用综合法分析;(3)放缩法,主要是通过分母分子的扩大或缩小、项数的增加与减少等手段达到证明的目的.【题3】 根据条件首先利用等差数列的通项公式及前n 项公式和建立方程组即可解决第(1)小题;第(2)小题利用差值比较法就可顺利解决.【解】 (1)设等差数列{a n }的公差是d ,依题意得,⎩⎨⎧ a 1+2d =74a 1+6d =24,解得⎩⎨⎧ a 1=3d =2,∴数列{a n }的通项公式为a n =a 1+(n -1)d =2n +1. (2)证明:∵a n =2n +1,∴S n =1()2n n a a +=n 2+2n . 2S p +q -(S 2p +S 2q )=2[(p +q )2+2(p +q )]-(4p 2+4p )-(4q 2+4q )=-2(p -q )2, ∵p ≠q ,∴2S p +q -(S 2p +S 2q )<0,∴S p +q <12(S 2p +S 2q ).【点评】 利用差值比较法比较大小的关键是对作差后的式子进行变形,途径主要有:(1)因式分解;(2)化平方和的形式;(3)如果涉及分式,则利用通分;(4)如果涉及根式,则利用分子或分母有理化.【题4】(1)由121n n a a +=-得到112(1)n n a a +-=-,即1121n n a a +-=-……2分【点评】关于数列求和与不等式相结合的问题,常结合裂项相消或错位相减法放缩求和.【题5】(1)1122111124,41124n n n n nn n na a a a a a +++++⎛⎫ ⎪⎝⎭=∴=⎛⎫ ⎪⎝⎭, 又11221111,,2244a a a a ==⋅∴= , {}n a ∴是公比为12的等比数列,12nn a ⎛⎫∴= ⎪⎝⎭(2)21n b n =-,231135232122222n n n n n T ---=++++ ……①, 234111352321222222n n n n n T +--=+++++ ②, ①-②得: 2311112222132322222222n n n n n n T ++-+=++++-=- , 2332n n n T +∴=- 3n T ∴<【题6】⑴1)12(1)12(2tan 1tan 22tan 22=---=-=ααα 又∵α为锐角 ∴42πα=∴1)42sin(=+πα x x x f +=2)(⑵ n n n a a a +=+21 ∵211=a ∴n a a a ,,32都大于0 ∴02>n a ∴n n a a >+1 ⑶nn n n n n n a a a a a a a +-=+=+=+111)1(11121∴11111+-=+n n n a a a ∴1322121111111111111+-++-+-=++++++n n n a a a a a a a a a 1111211++-=-=n n a a a ∵4321)21(22=+=a , 143)43(23>+=a , 又∵n n a a n >≥+12 ∴131>≥+a a n ∴21211<-<+n a∴2111111121<++++++<na a a【题7】(1)121+=+n n a a ,)1(211+=+∴+n n a a ……………………2分 故数列}1{+n a 是首项为2,公比为2的等比数列。
数列中的不等式数列中的不等式是高考中的一个重要内容。
本文介绍用“放缩法”证明数列中的不等式的几种常用策略,解题的关键在于根据问题的特征选择恰当的方法,有时还需要几种方法融为一体。
在证明过程中,适当地进行放缩,可以化繁为简、化难为易,达到事半功倍的效果。
1. 裂项放缩(即先放缩后裂项或先裂项再放缩)若欲证不等式含有与自然数n 有关的n 项和,可采用数列中裂项求和等方法来解题。
例1已知n ∈N*,求n 2n131211<…++++。
证明:因为122121nn nn n n n =++-=--<(),则11213+++…<()()…()<++-+-++--=-1122123221212nn n n n 所以原不等式成立。
例2 已知*N n ∈且)1n (n 3221a n +++⨯+⨯= ,求证:2)1(2)1(2+<<+n a n n n 对所有正整数n 都成立。
证明:因为n n n n =>+2)1(,所以2)1n (n n 21a n +=+++> , 又2)1()1(+<+n n n n , 所以2)1n (21n 225232)1n (n 232221a 2n +=++++=++++++< , 综合知结论成立。
2. 公式放缩(利用基本不等式、二项式定理放缩)利用已知的公式或恒不等式,把欲证不等式变形后再放缩,可获简解。
例3已知函数1212)(+-=x x x f ,证明:对于*N n ∈且3≥n 都有1)(+>n nn f 。
证明:由题意知)12)(1()12(212211)111()1221(112121)(+++-=+-+=+--+-=+-+-=+-n n n n n n n n n n n n n n n f 又因为*N n ∈且3≥n ,所以只须证122+>n n,又因为,1n 21n 2)1n (n n 1C C C C C )11(2nn 1n n2n 1n 0n n n +>+++-++=+++++=+=- 所以1)(+>n nn f 。
斐波那契数列的不等式
令{fn}(n≥1)斐波那契数列满足下列递归关系;f1=f2=1,fn+2=fn+f n+1(n≥1)几个月前,我发现了一个有趣的不平等现象。
∀N∈N;N∑n =1fnfn+1>−1+√52N⋯(1)
事实证明,这非常简单。
让SN=N∑n=1fnfn+1和TN=N∑n=1fn+1fn。
由柯西-舒瓦兹不等式得出SNTN>N2。
使用给定的递归关系,我们可以轻松地证明这一点TN< SN+N。
结合两个结果(N+SN)SN>TNSN>N2,因此S2N+NSN−N2>0。
解决这个二次不等式,我们得到SN>−1+√52N。
证明(1)之后,我尝试使用类似的方法求和的上限。
我终于发现,∀N∈N;N∑n=1fn+1fn<1+√52N+N∑n=11n⋯(2)但是,我对(2)的证明比我预期的要漫长而复杂。
是否有任何方法可以通过使用简单的方法(如(1)的证明)来获得(更好的)上限?让我们分享一些想法。
提示实际上,有一个更强有力的说法是正确的。
fn+1fn<1+5–√2+1n
和
fnfn+1<5–√−12+1n+1
我实际上曾经fn+1fn<1+5–√2+1n证明过(2)。
为了证明这种不等式,我使用了Binet公式。
fn=(1+5–√)n−(1−5–√)n2n5–√。
龙源期刊网
数列中的不等式问题
作者:李芳芳
来源:《文理导航》2014年第05期
数列是自变量为正整数的函数,是反映自然规律的基本数学模型。
数列问题中蕴涵着丰富的数学思想方法,例如函数与方程、数形结合、分类讨论、等价转换等等,是高考考查考生数学综合素养的良好素材。
数列的渗透力很强,它和函数、方程、三角形、不等式等知识相互联系,优化组合。
其中数列与不等式的综合问题是考查的热点内容,该类问题具有命题操作过程简单,构造技巧强的特点。
考查方式主要有以下三种:
一是判断数列问题中的一些不等关系
典例1:设等差数列{an}的前n项的和为Sn,若a1
(1)求Sn的最小差及此时n的值;
(2)求n的取值集合,是an≥Sn.。
数列中的不等式有关问题
数列与不等式的知识交汇为高中数学的重点难点,大多数学生对于此类型无从下手,常出现再压轴题中,具有极高的思想性和技巧性,体现了在核心素养下的综合能力,未来高考数学命题的一个新的亮点,在课标卷中以客观题出的可能性较大。
本文总结了数列与不等式交汇的常见类型,所涉及到数列的单调性,基本不等式,二次函数,比较大小,数列常见的求和方式等问题
类型一:数列中不等式的证明问题
(1)利用错位相减法求和证明不等式
1、在数列中,, .
(1)设,证明:是等比数列,并求的通项公式;
(2)设为数列的前项和,证明: .
(1)因为,,所以 .
又,所以是首项为,公比为的等比数列.
于是,故 .
(2) .
两边同乘以得 .
以上两式相减得 .
故 .
(2)利用裂项相消法求和证明不等式
2、已知是公差为2的等差数列.数列满足,,且
(I)求数列和的通项公式;
(Ⅱ)设 ,数列的前项和为 ,证明:
(Ⅰ)由题意可知,时,又公差为2,故 .从而有,故数列是公比为的等比数列又,所以;
(Ⅱ)由(Ⅰ)知 .
故
.
(3)左边不能直接求和,将通项放缩为等比数列再求和
3、已知数列的前n项和为,对任意正整数n,点都在函数
的图象上,且在点处的切线的斜率为 .
(1)求数列的通项公式;
(2)若,求证: .
(1)解:依题意可知,当时,
,
当时,也符合上式,∴;
(2)证明:∵,∴,,∴
,
∴,
∴原不等式成立.
.
类型二:数列不等式中的恒成立求参数的取值范围或最值
(1)裂项相消求和后齐一次函数或直接能判断数列单调性
4.已知在递增等差数列中,,是和的等比中项.
(1)求数列的通项公式;
(2)若,为数列的前项和,当对于任意的
恒成立时,求实数的取值范围.
【详解】(1)由题意可得,,化简可得.因为数列递增,,.
.
(2)因为,
而,要对于任意的恒成立,.
(2)对恒成立的式子参变分离,后结合基本不等式判断数列的单调性求最
值
5、已知等差数列中,公差,,且,,成等比数列.
求数列的通项公式;
若为数列的前项和,且存在,使得成立,
求实数的取值范围.
(1)由题意可得即
又因为,所以所以 .
(2)因为,所以
.
因为存在,使得成立,所以存在,使得
成立,即存在,使得成立.
又(当且仅当时取等号).
所以,即实数的取值范围是 .
(3)参变分离后,用做商法判断函数的单调性,求最最值
6、已知数列中,,.
(1)求数列的通项公式;
(2)若对任意的,都有成立,求实数的取值范围.
(1)数列{a
}中,,.
n
可得时,,即,
时,,
又,
两式相减可得,化为,
可得,即,
综上可得;
(2)对任意的,都有成立,
即为的最小值,由可得,
,
可得时,递增,当或2时,取得最小值,则.
变式1、已知数列的前n项和满足.,
(1)证明数列为等差数列,并求出数列的通项公式.
(2)若不等式,对任意恒成立,求的取值范围.
【答案】(1);(2) .
(4)参变分离后,不等号右侧式二次函数,利用二次函数单调型判断函数
的单调性
7、设数列前项和为 , 满足.
(1)令求数列的前项和;
(2)若不等式对任意的恒成立,求实数的取值范围.解:(1)
①
②
得故
(2)由题意,再结合(2),知
即 .从而,设,
.
(5)参变分离后,用做差法判断函数的单调性,求函数的最值
8、已知数列的前项和为,且.
(1)求数列的通项公式;
(2)设,若恒成立,求实数的取值范围;
(1)由,得 .
所以是以,为首项,为公比的等比数列.,
所以,其中
(2)由(1)知所以
相减得,,因此,
,
,
所以是最大项,,所以 .
变式2、已知正项数列的前n项和满足
(1)求数列的通项公式;
(2)若(n∈N*),求数列的前n项和 ;
(3)是否存在实数使得对恒成立,若存在,求实数的取值范围,若不存在说明理由.
【答案】(1)(2)(3)存在,
类型三、数列与不等式结合求参数的最值
9、已知f(x)=3x2-2x,数列{a
n }的前n项和为S
n
,点(n,S
n
)(n∈N*)
均在函数y=f(x)的图象上.
(1)求数列{a
n
}的通项公式;
(2)设b
n =,T
n
是数列{b
n
}的前n项和,求使得T
n
<对所有n∈N*都
成立的最小正整数m.
解(1)由点(n,S
n )(n∈N*)均在函数y=f(x)的图象上得S
n
=3n2-2n.
当n≥2时,a
n =S
n
-S
n-1
=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5;
当n=1时,a
1=S
1
=3×12-2×1=1,满足上式,所以a
n
=6n-5(n∈N*).
(2)由(1)得b
n
= = =,
T
n =b
1
+b
2
+b
3
+…+b
n
= [1-+-+-+…+-
]=(1-).
因此,使得(n∈N*)成立的m必须且仅须满足,即m≥10,故满足要求的最小整数m=10.
类型四、数列与不等式结合奇偶讨论
10、已知正项数列的前项和为,数列满足.
(1)求数列的通项公式;
(2)数列满足,它的前项和为,
(ⅰ)求;
(ⅱ)若存在正整数,使不等式成立,求实数的取值范围.
解、(1),
当时,,∴或(舍去)
当时,由,得,
两式相减得:,∴,
即,∴.
又∵数列为正项数列,故,也即,
∴数列是以1为首项,1为公差的等差数列,
∴,.
(2)(ⅰ),则
①,
②,
可得:,故.
(ⅱ)即不等式成立,
若为偶数,则,所以,设,则在单调递减,
故当时,,所以;
若为奇数,则,所以
设,则在单调递增,
故当时,,所以,
综上所述,的取值范围或.
试卷第3页,总9页。