二项式定理应用常见类型及其解题方法
- 格式:doc
- 大小:898.50 KB
- 文档页数:16
二项式定理应用常见类型及其解题方法一、知识点回顾: 1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r rn C a b -叫做二项式展开式的通项。
用1r n r rr n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意准确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,按降幂排列。
b 的指数从0逐项减到n ,按升幂排列。
各项的次数和等于n .④系数:注意准确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数,包含符号)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==-0122(1)(1)()n r rn n nn n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。
二项式定理问题的常见题型及其解题策略
二项式定理问题的常见题型及其解题策略
二项式定理是高中数学中最重要的定理之一,它可以用来解决各种概
率问题,常被广泛应用于数学竞赛中。
但是,学习二项式定理的学生
总会遇到困难,因为它的解题方法多变,而且容易出现各种错误。
下
面我们就来讨论一下二项式定理中的常见题型及其解题策略。
一是给定总体的概率计算问题,这类问题的解题策略是先用二项式定
理把概率问题转换成组合问题,再根据组合原理计算出概率。
二是给定概率计算总体的问题,这类问题的解题策略是先把概率转换
成组合数,然后利用组合原理求出总体的元素数量。
三是给定元素的特征计算概率的问题,这类问题的解题策略是先把特
征转换成组合数,然后根据组合原理计算出概率。
以上三类问题是二项式定理中最常见的题型,通过掌握这些解题策略,学生们就可以轻松应对二项式定理中的题目了。
《二项式定理》知识点与常见题型解法一.知识梳理1.二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式.其中的系数C r n (r =0,1,…,n )叫二项式系数. 式中的r rn r n b a C -叫二项展开式的通项,用1r +T 表示,即通项1r +T =r rn rn b aC -.2.二项展开式形式上的特点(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数0n C ,C 1n ,...,C n -1n ,nn C .3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.即(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2nnC 取得最大值;当n 是奇数时,中间两项2121+-=n nn nCC取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n=2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=12-n (奇数项与偶数项的二项式系数和相等).一个防范运用二项式定理一定要牢记通项1r +T =r rn rn b aC -,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负.一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续.两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等.三条性质(1)对称性;(2)增减性;(3)各项二项式系数的和;二.常见题型【题型一】求展开特定项例1:(1+3x)n(其中n∈N*且n≥6)的展开式中x5与x6的系数相等,则n=()A.6B.7C.8D.9例2:(2014·大纲)8⎪⎪⎭⎫⎝⎛-xyyx的展开式中x2y2的系数为________.(用数字作答)【题型二】求展开特定项例3:在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是()A.74 B.121 C.-74 D.-121【题型三】求展开特定项例4:已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4B.-3C.-2D.-1例5:在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.210例6:已知数列是等差数列,且,则在的展开式中,的系数为_______.【题型四】求展开特定项例7:求5212⎪⎭⎫⎝⎛++xx(x>0)的展开式经整理后的常数项.例8:若将展开为多项式,经过合并同类项后它的项数为().A.11B.33C.55D.66 例9:(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【题型五】二项式展开逆向问题例10:若C1n+3C2n+32C3n+…+3n-2C n-1n+3n-1=85,则n的值为()A.3B.4C.5D.6【题型六】赋值法求系数(和)问题例11:已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6; (4)||a 0+||a 1+||a 2+…+||a 7.例12:设nx 222⎪⎪⎭⎫⎝⎛+=a 0+a 1x +a 2x 2+…+a 2n x 2n ,则(a 0+a 2+a 4+…+a 2n )2-(a 1+a 3+a 5+…+a 2n -1)2=_______________________.例13:已知(x +1)2(x +2)2014=a 0+a 1(x +2)+a 2(x +2)2+…+a 2016(x +2)2016,则a 12+a 222+a 323+…+a 201622016的值为______.【题型七】平移后系数问题例14:若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5, 其中a 0,a 1,a 2,…,a 5为实数,则a 3=____________.【题型八】二项式系数、系数最大值问题例15:nx x ⎪⎭⎫ ⎝⎛+21的展开式中第五项和第六项的二项式系数最大,则第四项为________.例16:把(1-x )9的展开式按x 的升幂排列,系数最大的项是第________项A .4B .5C .6D .7例17:(1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.【题型九】两边求导法求特定数列和例18:若(2x -3)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=________.【题型十】整除问题例19:设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( )A .0B .1C .11D .12例20:已知m 是一个给定的正整数,如果两个整数a ,b 除以m 所得的余数相同,则称a 与b 对模m 同余,记作a ≡b (mod m ),例如:5≡13(mod 4).若22015≡r (mod 7),则r 可能等于( )A.2013B.2014C.2015D.2016答案解析例1:解析 由条件得C 5n 35=C 6n 36,∴n !5!(n -5)!=n !6!(n -6)!×3, ∴3(n -5)=6,n =7.故选B.例2:解析 8⎪⎪⎭⎫ ⎝⎛-x y y x 展开式的通项公式为T r +1=C r 8rrx y y x ⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-8=()42323881---r r r r y xC , 令8-32r =2,解得r =4,此时32r -4=2,所以展开式中x 2y 2的系数为(-1)4C 48=70.故填70. 例3:解析 展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 38(-1)3=-121. 例4:解析 (1+ax )(1+x )5的展开式中x 2项为C 25x 2+ax ·C 15x =10x 2+5ax 2=(10+5a )x 2.∵x 2的系数为5, ∴10+5a =5,a =-1.故选D.例5:解析 在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n 4,故f (m ,n )=C m 6·C n 4.从而f (3,0)=C 36=20,f (2,1)=C 26·C 14=60,f (1,2)=C 16·C 24=36,f (0,3)=C 34=4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,故选C. 例6:解析的系数为。
二项式定理题型及解题方法摘要:1.二项式定理的概念及意义2.二项式定理的基本形式3.二项式定理的应用场景4.解题方法的步骤与技巧5.典型例题分析正文:一、二项式定理的概念及意义二项式定理是数学中一个重要的定理,它揭示了二项式展开式的规律。
二项式定理的基本形式如下:(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + C(n, 2)a^(n-2)b^2 + ...+ C(n, n)b^n其中,a、b为实数或复数,n为自然数,C(n, k)表示组合数,即从n个元素中取k个元素的组合数。
二、二项式定理的基本形式我们已经了解了二项式定理的基本形式,接下来看看如何利用这个定理解决问题。
三、二项式定理的应用场景1.求解二项式展开式的特定项或特定项的系数。
2.求解极限问题,如当a、b趋于0时,(a + b)^n的极限值。
3.求解不等式问题,如求(a + b)^n > 1的解集。
4.求解恒成立问题,如证明(a + b)^n = C(n, 0)a^n + C(n, 1)a^(n-1)b + ...+ C(n, n)b^n。
四、解题方法的步骤与技巧1.确定问题类型,判断是否适用于二项式定理。
2.根据问题,选取合适的二项式定理形式。
3.利用组合数公式计算特定项或特定项的系数。
4.化简式子,求解问题。
五、典型例题分析例题1:求(2x - 1)^5的展开式中,x^2的系数。
解:根据二项式定理,展开式为:(2x - 1)^5 = C(5, 0)(2x)^5 - C(5, 1)(2x)^4 + C(5, 2)(2x)^3 - C(5, 3)(2x)^2 + C(5, 4)(2x)^1 - C(5, 5)展开式中,x^2的系数为-C(5, 3) * 2^2 = -40。
例题2:求极限:当x趋于0时,(1 + x)^(1/x)的极限值。
解:根据二项式定理,(1 + x)^(1/x) = (1 + x)^(x/x) = (1 + x)^(1/x) * (1 - 1/x + 1/x^2 - 1/x^3 + ...)当x趋于0时,(1 + x)^(1/x)趋于e(自然对数的底),即极限值为e。
二项式定理的应用与实例解析二项式定理是代数学中的重要概念之一,它在数学推理和实际问题求解中具有广泛的应用。
本文将介绍二项式定理的概念及其应用,并通过具体的实例进行解析,以帮助读者更好地理解和应用该定理。
一、二项式定理的概念二项式定理是指对于任意非负整数n和实数a、b,有以下的公式:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n) * a^0 * b^n其中,C(n, k)表示组合数,表示从n个元素中选取k个元素的组合数,计算公式为:C(n, k) = n! / (k! * (n-k)!)二、二项式定理的应用1. 概率计算二项式定理在概率计算中起到了重要作用。
例如,设有一枚正反面均匀的硬币,进行n次独立的抛掷,求正面出现k次的概率。
根据二项式定理,可以得到概率公式:P(X = k) = C(n, k) * p^k * (1-p)^(n-k)其中,p表示正面出现的概率。
2. 组合数学二项式定理在组合数学中应用广泛,可以用于求解组合数、排列数等问题。
例如,求集合中元素的子集个数,可以通过二项式定理计算:对于一个集合,它的子集个数为2^n个,其中n表示集合中元素的个数。
3. 计算多项式展开式系数二项式定理可以用于计算多项式展开式中各项的系数。
例如,对于多项式(a + b)^n,可以通过二项式定理的应用,直接得到展开式中各项的系数。
这对于计算多项式的展开式提供了效率和便利。
三、应用实例解析1. 概率计算实例假设有一枚硬币,进行10次独立抛掷,求正面出现2次的概率。
根据二项式定理的应用,可以得到:P(X = 2) = C(10, 2) * 0.5^2 * 0.5^8 = 45 * 0.25 * 0.00390625 = 0.04395因此,正面出现2次的概率约为0.044。
二项式定理1.二项式定理:011()()n n n r n r r n nn n n n a b C a C a b C a b C b n N --*+=+++++∈L L ,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n . ④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.rnn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n n n n n n n x C C x C x C x C x n N *+=++++++∈L L 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈L L5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122r n nn n n n n C C C C C ++++++=L L , 变形式1221r n nn n n n C C C C +++++=-L L 。
二项式定理1•二项式定理:(a b)n=C0a n Ca n」b • ||「c n a n=b r•- C;;b n(n・ N ),2. 基本概念:①二项式展开式:右边的多项式叫做(a - b)n的二项展开式。
②二项式系数:展开式中各项的系数c n (r =0,1,2, , n).③项数:共(r 1)项,是关于a与b的齐次多项式④通项:展开式中的第r 1项c n a n-b r叫做二项式展开式的通项。
用丁i =C;a n」b r表示。
3. 注意关键点:①项数:展开式中总共有(n 1)项。
②顺序:注意正确选择a , b ,其顺序不能更改。
(a ■ b)n与(b ■ a)n是不同的。
③指数:a的指数从n逐项减到0,是降幕排列。
b的指数从0逐项减到n,是升幕排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是cnw’c:,…,C;,…,c n.项的系数是a与b的系数(包括二项式系数)。
4. 常用的结论:令a =1,b 二x, (1 - x)n=c0C:x C;x2十| • Qx r Fl C;x n(n N )令a =1,b = -x, (1 -x)n=C° -C:x C;x2-川C:x r ||( (-1)n C:x n(n N )5. 性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即c0 - c n , •••C n^Cn J②二项式系数和:令a=b=1,则二项式系数的和为c0 ■ c1 ■ Cn- C;Jll ■ c;-2n,变形式c n C2-Cn^H c; =2^1。
③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令a =1,b = —1,贝y C0—c n +c2 —Cj+川+(_1)n c n =(1_1)n= 0 ,从而得到:C: +C: +C:…+- = cn +C;+IH+c:r41+ …二丄X2n= 2n_l2④奇数项的系数和与偶数项的系数和:n OnO 小Jn」2n _22[[. nOn 1 2』』L n(a x) C n a x C n a x C*a x . C*a x a。
二项式定理中的应用问题如何利用二项式定理解决组合问题二项式定理是代数学中的一条基本定理,它描述了如何展开二项式的幂。
在解决组合问题时,二项式定理是一种十分有用的工具。
本文将从理论及实际问题两个方面介绍如何利用二项式定理解决组合问题。
一、理论方面:1. 二项式定理的表达形式:在代数中,二项式定理的一般形式如下:(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + ... + C(n, k) * a^(n-k) * b^k + ... + C(n, n) * a^0 * b^n其中,C(n, k)表示从n个不同元素中选择k个元素的组合数,也可以用数学公式表示为:C(n, k) = n! / (k! * (n-k)!)2. 组合问题的处理:利用二项式定理,可以很方便地解决组合问题。
例如,我们要从n个元素中选择k个元素,可以表示为C(n, k)。
这时,通过二项式定理,我们可以将其转化为展开式中的一项。
具体步骤如下:(1)选择展开式中的一项,例如C(n, k) * a^(n-k) * b^k。
(2)代入具体数值,其中a表示一个元素的选择,b表示另一个元素的选择,n表示元素总数,k表示选择的元素数。
(3)将代入后的表达式进行化简,即得到最终的结果。
二、实际问题的应用:1. 将物品分组:假设有n个不同的物品需要分到m个不同的组中,每个组至少包含一个物品。
利用二项式定理,可以轻松解决这类问题。
例如,当n=5,m=3时,可以利用二项式定理将问题表示为(1+x)^5的展开式,其中x表示分组的个数。
(1+x)^5 = C(5, 0) * 1^5 * x^0 + C(5, 1) * 1^4 * x^1 + ... + C(5, 3) * 1^2 * x^3 + C(5, 4) * 1^1 * x^4 + C(5, 5) * 1^0 * x^5得到展开式后,我们可以根据系数找到对应的结果。
二项式定理应用常见类型及其解题方法一、知识点回顾: 1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()n a b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅.③项数:共(1)r +项,是关于a 与b 的齐次多项式④通项:展开式中的第1r +项r n r r n C a b -叫做二项式展开式的通项。
用1r n r r r n T C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,按降幂排列。
b 的指数从0逐项减到n ,按升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r n n n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数,包含符号)。
4.常用的结论:令1,,a b x == 0122(1)()n r rn nn n n n n x C C x C x C x C x n N *+=++++++∈令1,,a b x ==-0122(1)(1)()n r rn n nn n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n nC C -=②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221rnn n n n n C C C C +++++=-。
③奇数项的二项式系数和=偶数项的二项式系数和: 在二项式定理中,令1,1a b ==-,则0123(1)(11)0n nn n n n n n C C C C C -+-++-=-=,从而得到:0242132111222r r nn n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。
如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC -,12n nC+同时取得最大值。
⑥系数的最大项:求()na bx +展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。
二、基本题型示例:(一)、二项式定理的逆用问题例1、12321666 .nn n n n n C C C C -+⋅+⋅++⋅=解:012233(16)6666n nn n n n n n C C C C C +=+⋅+⋅+⋅++⋅与已知的有一些差距,123211221666(666)6nn n n n n n n n n n C C C C C C C -∴+⋅+⋅++⋅=⋅+⋅++⋅ 0122111(6661)[(16)1](71)666nn n n n n n n C C C C =+⋅+⋅++⋅-=+-=-例2、的值等于( ).A .111105B .111111C .12345D .99999 分析 由已知式子的结构,可构造二项式.原式.故选C .练:1231393 .n nn n n n C C C C -++++=解:设1231393n nn n n n nS C C C C -=++++,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+-(13)14133n n n S +--∴==(二)、利用通项公式求n x 的系数问题 例3、(l )若的展开式中,的系数是的系数的7倍,求;(2)已知的展开式中,的系数是的系数与的系数的等差中项,求;(3)已知的展开式中,二项式系数最大的项的值等于1120,求.解:(l )依题意,即,由可整理,得,解得.(2)依题意,整理,得∵∴ ,解得.(3)依题意,整理,得, 两边取对数,得,解得或.∴ ,或.点评 的展开式及其通项公式,是,,,四个基本量的统一体,已知与未知是相对的,运用方程的思想方法,应会求其中居于不同位置,具有不同意义的未知数.练:展开式中,的系数等于 .解:.所求项的系数即为展开式中含项的系数是:例4、在二项式3241()nx x的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知245n nC -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r r rrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。
练:求291()2x x-展开式中9x 的系数? 解:291821831999111()()()()222r r r r r r r r r r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =故9x 的系数为339121()22C -=-。
(三)、利用通项公式求常数项问题 例5、求二项式210(x 的展开式中的常数项?解:5202102110101()()2r rrrrr r T C x C x--+==,令52002r -=,得8r =,所以88910145()2256T C ==练:求二项式61(2)2x x-的展开式中的常数项? 解:666216611(2)(1)()(1)2()22r r r r r r r r rr T C x C x x ---+=-=-,令620r -=,得3r =,所以3346(1)20T C =-=-练:若21()nx x +的二项展开式中第5项为常数项,则____.n = 解:4244421251()()n n n n T C x C x x--==,令2120n -=,得6n =.(四)、利用通项公式,再讨论而确定有理数项问题例6、求二项式9展开式中的有理项? 解:12719362199()()(1)r rrrrr r T C x x C x--+=-=-,令276rZ -∈,(09r ≤≤)得39r r ==或,所以当3r =时,2746r -=,334449(1)84T C x x =-=-, 当9r =时,2736r -=,3933109(1)T C x x =-=-。
(五)、奇数项的二项式系数和与偶数项的二项式系数和的问题例7、若n 展开式中偶数项系数和为256-,求n .解:设n 展开式中各项系数依次设为01,,,n a a a ⋅⋅⋅1x =-令,则有010,n a a a ++⋅⋅⋅=①,1x =令,则有0123(1)2,n n n a a a a a -+-+⋅⋅⋅+-=②将①-②得:1352()2,n a a a +++⋅⋅⋅=-11352,n a a a -∴+++⋅⋅⋅=- 有题意得,1822562n --=-=-,9n ∴=。
练:若n的展开式中,所有的奇数项的系数和为1024,求它的中间项。
解:0242132112r r n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=,121024n -∴=,解得11n =所以中间两个项分别为6,7n n ==,565451462n T C x -+==⋅,611561462T x-+=⋅(六)、最大系数,最大项问题例8、已知1(2)2nx +,若展开式中第5项,第6项与第7项的二项式系数成等差数列,求展开式中二项式系数最大项的系数是多少?解:46522,21980,n n n C C C n n +=∴-+=解出714n n ==或,当7n =时,展开式中二项式系数最大的项是45T T 和34347135()2,22T C ∴==的系数,434571()270,2T C ==的系数当14n =时,展开式中二项式系数最大的项是8T ,7778141C ()234322T ∴==的系数。
练1、在2()n a b +的展开式中,二项式系数最大的项是多少? 解:二项式的幂指数是偶数2n ,则中间一项的二项式系数最大,即2112nn T T ++=,也就是第1n +项。
练2、在(2nx 的展开式中,只有第5项的二项式最大,则展开式中的常数项是多少?解:只有第5项的二项式最大,则152n+=,即8n =,所以展开式中常数项为第七项等于6281()72C = 练3、写出在7()a b -的展开式中,系数最大的项?系数最小的项?解:因为二项式的幂指数7是奇数,所以中间两项(4,5第项)的二项式系数相等,且同时取得最大值,从而有34347T C a b =-的系数最小,43457T C a b =系数最大。
练4、若展开式前三项的二项式系数和等于79,求1(2)2n x +的展开式中系数最大的项?解:由01279,n n n C C C ++=解出12n =,假设1r T +项最大,12121211(2)()(14)22x x +=+ 1111212111212124444r r r r r r r r r r r r A A C C A A C C --+++++⎧≥≥⎧⎪∴=⎨⎨≥≥⎪⎩⎩,化简得到9.410.4r ≤≤,又012r ≤≤,10r ∴=,展开式中系数最大的项为11T ,有121010*********()4168962T C x x ==练5、在10(12)x +的展开式中系数最大的项是多少?解:假设1r T +项最大,1102rr r r T C x +=⋅111010111121010222(11)12(10)22,r r r r r r r r r r r r C C A A r r A A r r C C --+++++⎧≥≥-≥⎧⎧⎪∴=⎨⎨⎨≥+≥-≥⎩⎪⎩⎩解得,化简得到6.37.3k ≤≤,又010r ≤≤,7r ∴=,展开式中系数最大的项为7777810215360.T C x x ==(七)、非二项式结构式问题例9、求当25(32)x x ++的展开式中x 的一次项的系数?解法①:2525(32)[(2)3]x x x x ++=++,2515(2)(3)rr r r T C x x -+=+,当且仅当1r =时,1r T +的展开式中才有x 的一次项,此时124125(2)3r T T C x x +==+,所以x 得一次项为1445423C C x 它的系数为1445423240C C =。