沉积学的研究与应用
- 格式:docx
- 大小:37.59 KB
- 文档页数:4
图解法与矩法沉积物粒度参数的对比一、本文概述沉积物粒度参数是沉积学研究中的重要内容,其能够提供丰富的沉积环境和沉积过程的信息。
粒度参数的准确获取对于理解沉积物来源、搬运机制、沉积速率、古环境演变等方面具有重要意义。
目前,沉积物粒度参数的获取主要依赖于两种方法:图解法和矩法。
这两种方法各有其特点,但在实际应用中,研究者往往面临选择困难。
因此,本文旨在对比分析图解法与矩法在沉积物粒度参数计算中的应用效果,为沉积学研究者提供更为明确的方法选择依据。
本文将简要介绍图解法与矩法的基本原理及其在沉积物粒度参数计算中的应用流程。
通过对比分析两种方法的计算精度、适用范围、操作便捷性等方面,评估各自的优缺点。
然后,结合具体案例,探讨两种方法在实际应用中的表现差异。
本文将对图解法与矩法的适用性和未来发展进行展望,以期为沉积学领域的研究提供有益的参考。
二、图解法与矩法的基本原理图解法与矩法是沉积物粒度参数分析的两种常用方法,它们各自具有独特的基本原理和应用特点。
图解法主要依赖于粒度分布曲线和概率累积曲线,通过对这些曲线的形态和参数进行分析,从而推断出沉积物的粒度特征。
这种方法直观性强,能够直观地展示粒度分布的频率和累积情况,便于研究人员对沉积物粒度特征进行直观的判断。
然而,图解法的精度和客观性相对较低,容易受到人为因素和主观判断的影响。
矩法则是基于统计学原理,通过对粒度数据进行统计分析,计算出粒度参数,如平均粒径、标准偏差、偏度等。
矩法具有较高的精度和客观性,能够更准确地反映沉积物的粒度特征。
矩法还可以进一步进行多元统计分析,揭示粒度参数之间的关系和影响因素。
然而,矩法需要较为复杂的数学计算和数据处理,对研究人员的统计知识和计算机技能要求较高。
图解法与矩法各有优缺点,应根据具体的研究需求和条件选择合适的方法。
在实际应用中,可以将两种方法相结合,相互补充和验证,以提高沉积物粒度参数分析的准确性和可靠性。
三、图解法与矩法的应用步骤在沉积物粒度参数的分析中,图解法与矩法各自具有独特的应用步骤。
一、沉积微相研究方法沉积微相研究可从以下几个方面入手:1.1.基础地质资料当在一定的区域范围内对某一地层单位进行沉积相或沉积微相或沉积环境分析时:1.1.1应从最基础的地质工作入手,研究岩层本身的性质,诸如成分、颜色、结构、沉积构造、分选性、组成颗粒的特征(圆度、球度、表面微观特征)、层序特征(如向上变细或向上变粗,交互层等),分析其岩相特征。
1.1.2应仔细研究岩层中所含的各种生物化石的特征,尤其是生态特征,它可以更多地反映古生物的生存环境。
这里所讲的生物化石也包括各种遗迹化石,在许多情况下,生物遗迹化石更为常见,其重要性已为大家所共识。
这些工作主要依靠大量的野外露头观察和钻井岩芯描述来进行。
1.1.3 如果条件允许,在进行相分析时应将其与地球物理方法相结合。
1.2利用地球物理测井资料目前,利用地球物理测井资料进行相分析,已成为研究工作中不可缺少的重要手段之一。
1979年,法国地质学家O.Serra首先提出“电相”(即测井相),他定义“电相”是:表征地层特征,并可使该地层与其它地层区分开来的一组测井响应特征。
“电相”分析就是利用各测井响应的定性特征和定量参数来描述地层的沉积相。
能用于沉积相分析的测井资料,如视电阻率、自然伽马、声波时差、感应等近十种测井信息,其中以自然电位、电阻率和自然伽马曲线在相分析中的效果最为理想。
在研究中主要利用曲线的幅度、形态、组合形态,适当参照接触关系和次级关系等参数,并密切与岩芯和岩屑录井资料相结合。
1.3 综合分析的方法除此之外,利用地震资料、地球化学分析资料等也可以对沉积相进行研究。
当然,地质科学是一门综合性很强的科学,对于古代沉积相和沉积体系的研究,需要利用各种手段,也就是综合的方法,而不是单纯依赖某一种方法。
事实上,由于自然环境的复杂性和各种地质作用之间的相互作用与影响,对地层记录的认识很不容易,需要考虑的因素很多,决不能失之于片面、主观。
研究工作要结合研究区目的层的特征,大量搜集野外及室内资料,通过取芯井详细的岩芯描述和室内测井沉积相的划分,并结合岩芯分析测试资料对研究区目的层先建立单井沉积微相柱状剖面,然后通过连井剖面分析,最后作出平面沉积微相展布图。
砂质碎屑流沉积研究进展摘要:国外深水沉积发展了50年,从浊流定义的普遍应用,到今天对鲍马序列、约克扇等经典模式持否定态度,深水沉积研究经历了一个推陈出新的过程。
目前国外流行的砂质碎屑流理论是经典浊流理论的部分否定与新发展。
本问阐述国外砂质碎屑流的概念、鉴别特征、沉积模式等最新认识,以运用砂质碎屑流理论解释鄂尔多斯盆地湖盆中部厚砂岩的成因机制为例,揭示我国陆相湖盆中心坡折带砂体分布特征与形成机制,为开拓陆相勘探领域提供理论支撑。
关键字:深水沉积浊流砂质碎屑流深水块状砂岩鄂尔多斯盆地砂质碎屑流最先由美籍印度人G.Shanmugam博士提出,早在1996年,他就挑战传统浊流观点,在Journal of Sedimentary Research上发表了“High-density turbidity currents : are they sandy debris flows ?”一文[1],提出在深水区发育大规模砂质碎屑流的新认识,此后又陆续发表多篇研究论文[2-3],在全球沉积界引起了广泛关注, 目前砂质碎屑流的研究成果代表了深水重力流最新的研究进展。
1、研究背景浊流的概念在过去60多年的重力流研究中影响深远[3-4],然而,浊流概念体系因只建立在沉积相模型上而存有缺陷,如经典浊流的“鲍马序列”[5]以及高密度浊流或粗粒浊流的“Lowe 序列”[6]。
这些模式没有从现代海洋“砂质浊流”中获得过经验数据,仅通过露头研究了古代岩心,尤其是还没有人能够通过不同沉积物浓度和粒度的实验证实现代海洋中能产生真实的砾石级浊流和砂质浊流[3-4],也无人能通过实验室水槽实验证实浊流能够通过悬浮机制运载砂或砾石,并产生垂相的浊流相模式。
虽然存在上述问题,但由于认识误区的存在,浊流概念还是日渐流行[7]。
其实,自鲍玛序列一提出来就曾受到过批评[17-19],只是没有引起注意。
Shanmugam作为反对派“弱势群体”的一方对鲍玛序列的批判只是敢于站出来的一个代表,诚如Miall[20]所说:“因为我们在潜意识中对鲍玛浊积岩都有一个自认为很好的定义,这样就不难解释为什么许多沉积学描述和解释都偏离了方向,直到像Shanmugam之类的人出现并带来了新看法,说明深海砂岩并不等于浊积岩。
储层沉积学(试用教材)罗静兰主编(博士研究生选修课程,80学时)2003年1月绪论一、储层沉积学基本涵义沉积学(Sedimentology)是本世纪30年代由沃尔德(Wadell,1932)提出的一个术语,它主要是由沉积岩石学(Sedimentary Petrology)中沉积岩的形成作用中的基础理论部分扩大和发展起来的。
而储层沉积学(Reservoir Sedimentology)又是以实用角度从沉积学中派生出来的一个分支,是研究油气储层沉积物(岩)和沉积作用的科学。
第十三届国际沉积学大会(1SA,1990)正式应用该术语并引入文献,表明沉积学与油气勘探和开发的关系十分密切,其在阐明生、储、盖层的形成和分布规律等方面具有重要指导作用。
沉积学和储层沉积学的基本涵义及主要研究内容是:1.沉积学是研究沉积物(岩)和沉积作用的科学。
包括研究未曾成岩和已经成岩的天然沉积物(岩),以及它们在自然环境中沉积作用的过程和机理(Reeding,1978)。
沉积学作为地质科学中的一个分科,它与流体力学和地层古生物学密切相关,与物理学、化学、海洋学、气象学、水文学和土壤学等也有重要联系。
由于有关学科的相互交叉和渗透,以及新技术和新方法的应用,通过对现代沉积物的研究(陆上和水下)和实验模拟,逐渐使沉积学成为一门独立的学科。
随着矿产资源,特别是燃料资源(煤炭、石油、天然气、核能等)勘探开发事业的巨大发展,使沉积学从以理论研究为主,逐渐成为一门具有较强应用基础性质的学科。
2.储层沉积学主要是研究碎屑岩储层和碳酸盐岩储层形成、演化、分布及其基本特征(成分、结构、构造等)的一门科学,是沉积学理论与油气勘探开发实践密切结合的结果。
一般来讲,石油和天然气生于沉积岩中,也主要储集在沉积岩中,从沉积岩石学、沉积学以及岩相古地理学深化对各类油气储层形成机理的研究,可以为油气勘探开发提供更多的科学依据,因此,储层沉积学的形成和发展有着重要的实际意义。
地质矿物风化作用下形成锶同位素在沉积学领域的应用郭耀庚(成都理工大学,四川 成都 610059)摘 要:锶同位素地层学由瑞典地质学家Wickman于1948年提出,其基本原理是:锶在海水中的残留时间(≈106a)远远大于海水的混合时间(≈103a),使得海水87Sr/86Sr值为时间的函数。
海水87Sr/86Sr值主要受壳源锶和幔源锶2个来源锶的影响,壳源锶主要由陆地岩石的风化作用提供,幔源锶主要由洋中脊热液系统提供。
全球性的构造运动、风化速率的变化、洋中脊活动、全球海平面升降以及全球灾变性事件等都会影响到壳源锶与幔源锶的供给,从而影响海水87Sr/86Sr值的变化。
锶同位素曲线87Sr/86Sr值的变化同样也可反映地质历史时期的各类事件。
锶同位素在沉积学领域中多用于海相地层定年、研究海平面变化、分析物质来源等。
关键词:锶同位素;锶同位素地层学;锶同位素应用;海相地层定年;海平面变化;锶同位素曲线中图分类号:P597 文献标识码:A 文章编号:1002-5065(2020)22-0178-2Application of strontium isotope formed by weathering of geological minerals in SedimentologyGUO Yao-geng(Chengdu University of Technology,Chengdu 610059,China)Abstract: The strontium isotope stratigraphy was proposed by Swedish geologist Wickman in 1948. Its basic principle is that the residual time of strontium in seawater (≈ 106a) is much longer than the mixing time of seawater (≈103a), making the value of 87Sr/86Sr in seawater a function of time. The 87Sr/86Sr value of seawater was mainly affected by the two sources of strontium from shell and mantle, which were mainly provided by the weathering of terrestrial rocks and the mantle-derived strontium from the hydrothermal system of mid-oceanic ridge. Global tectonic movement, change of weathering rate, mid-ocean ridge activity, global sea-level rise and fall, and global disaster and degeneration events will affect the supply of shell-derived strontium and mantle derived strontium, thus affecting the change of 87Sr/86Sr value of seawater. The variation of 87Sr/86Sr on the strontium isotope curve can also reflect various events in geological history. Strontium isotopes are widely used in the field of sedimentary science to date Marine strata, study sea level changes, and analyze material sources.Keywords: strontium isotope; Strontium isotope stratigraphy; Strontium isotope application; Marine stratigraphic dating; Sea level change; Strontium isotope curve近几十年来,随着国内外学者们对锶同位素研究的不断深入,其研究方向开始逐渐拓展到沉积岩领域,这种转变得益于前人对显生宙以来海水锶同位素的研究与锶同位素数据的不断积累。
海绿石的成因与应用海绿石作为沉积学领域研究中的一种重要矿物,其成因至今尚无定论。
通过总结前人关于海绿石的形成机理、地质条件以及沉积模式,并结合现代洋底的海绿石,综合归纳探讨可能的成因。
此外,文章简述了海绿石的鉴定特征及其在地学领域的几种应用。
标签:海绿石;鉴定特征;地质条件;成因1 概述海绿石的历史发展至今已有近两百年的历史。
1823年,Brongniart首先使用“la glauconite”一词大致给予命名,五年后,Keferstein正式给予该矿物命名为海绿石。
1882年,Dana细致的研究该矿物,并得出了海绿石的基本物理性质和显微镜下的光学性质(王玉文,1979)。
海绿石是一种生成于海洋环境中的含水的钾、铁、铝硅酸盐矿物,晶体属于单斜晶系的层状结构硅酸盐矿物。
在沉积学领域,它是一种重要的指相矿物,成因复杂,对于探索研究以及在实际工作中的运用具有重大意义。
通常认为形成于水深在15m至大陆架之间,有机质丰富的温暖浅海区(徐宝政,1982),也有学者认为海绿石形成于水深100~300米的浅海环境,并伴随着缓慢的沉积及蒙脱石的存在。
通常后者的观点被普遍接受和运用。
通过研究海绿石可以推测古海洋环境、确定地层层序、提供地层划分和对比的参考依据、确定不整合面及相应的沉积间断,以及测定地层的绝对年龄(K-Ar法和Rb-Sr法);此外,海绿石可以用于评价生油条件,从而在石油地质工作中指导勘探(王玉文,1979)。
除了地质领域的应用,海绿石作为一种极具潜力的资源,应用于其他许多领域。
例如农业方面,海绿石可用于提取钾原料;在工业方面,其可用于生產净水剂以及隔热材料等。
此外,海绿石具有一定的粘土矿物性质,可用于处理放射性废物而应用于环保领域。
2 海绿石的基本鉴定特征根据矿物光性鉴定手册,海绿石的K2O含量为3.7%-7.8%,常混有Mn、Li 等杂质,有时还含有机械混入物形式存在的磷酸钙物质。
它的物理性质包括自形晶少见,常呈细粒状或土状集合体。
沉积学的研究与应用
沉积学是地球科学中一门非常重要的学科,主要研究地球表面
的河流、湖泊、海洋等水体和陆地上的各种沉积物层,以及这些
沉积层所包含的各种化石和其他物质。
在现代地球科学中,沉积
学不仅仅是一个学科,同时也是很多其他学科的研究基础,如古
生物学、古气候学、古地磁学等等。
本文将介绍沉积学的基本概念、研究方法和应用领域。
沉积学的基本概念
沉积学的基本概念主要包括沉积物、沉积相、沉积环境等几个
方面。
沉积物是指地球表面各种物质经过气候、地貌等自然因素的作用、生物的作用以及人类活动的影响所形成的各种新的物质,包
括泥沙、岩屑、有机物等等。
沉积相是指沉积物堆积形态的总体表现,主要包括沉积物厚度、颗粒度、粒度分布等方面。
沉积环境是指沉积物形成时的生物、化学和物理环境,主要包括沉积物的水动力条件、水化学性质、溶解氧含量、温度等环境因素。
不同的沉积环境会产生不同类型的沉积物和岩石,因此研究沉积环境可以为研究岩石的形成和演化提供重要的线索。
沉积学的研究方法
沉积学是一门综合性和实践性很强的学科。
它需要运用多种研究方法来对岩石、岩相和沉积物相进行识别和分析,主要包括野外观察、取岩、实验室分析等方法。
野外观察是沉积学的一种重要研究方法,通过采集和观察不同环境下的沉积物和岩石,揭示不同沉积相和沉积环境的特征。
野外观察需要综合运用地质、物理、化学和生物学等学科来进行。
取岩是沉积学研究中另一种重要方法。
它通过取样和采用相关技术来获得一些比较小的沉积岩样品,进行后续的实验室研究。
岩石的取样需合理设计取样器的样品容积大小,保证取到的样品符合实验分析所需,同时需注意取样方法对沉积物样品质量和地层测序研究的影响。
实验室分析是沉积学中一种包括物理、化学、地球物理和生物学分析等方面都必不可少的方法。
通过实验室分析,可以测定沉积物的矿物组成、有机质含量、颗粒粒度等一系列参数,从而为沉积环境的演化和沉积物相的演变提供了依据。
沉积学的应用领域
沉积学的应用领域非常广泛,特别是在石油勘探和开发、矿产资源勘探、环境污染监测等方面都有很重要的应用。
石油勘探和开发是沉积学应用最广泛的领域之一。
通过研究沉积物相和沉积环境等信息来推断石油成藏条件和石油储层性质是非常重要的。
基于这一方面,沉积学已经成为了石油勘探和开发中不可缺少的重要科学支撑。
矿产资源勘探也是另一个应用领域,通过研究沉积物的成因和分布规律,可以确定矿产资源的富集区和矿床类型,进而指导矿产资源勘探。
环境污染监测是沉积学应用的另一个非常重要的领域。
通过沉积物的分析,可以评估环境质量、检测污染物种类和浓度,为环境保护提供了重要的科学依据。
总之,沉积学学科的研究和应用在地球科学和生态环境保护等领域中发挥着重要的作用。
将沉积学研究成果实际应用到人类活动中,可以为社会的可持续发展和自然资源的合理利用提供更多有效支撑。