振动台试验(终极版)
- 格式:doc
- 大小:62.00 KB
- 文档页数:7
了解振动试验的目的和必要性现今世界经济潮流,已从过去地域性的经济模式而走向全球性的经济贸易。
无论是地域性市场或进军全球市场,高质量的表现是不容讳言的。
而振动测试更是协助您产品跃入高质量行列中不可缺乏的利器。
产品达到用户手中,在此过程中将有不同状态之振动产生,造成产品不同程度的损坏。
而对于产品有任何损坏都不是厂商及客户所愿意见到的,然而运送过程所发生的振动却是难以避免,若一味的提高包装成本,必将带来严重而不必要的浪费,反之脆弱的包装却造成产品的高成本,并丧失了产品形象及市场,这些都不是我们所愿见到的。
振动测试约在四、五十年前开始萌芽,理论建立时,并无助于人们相信它的重要性,直到二次大战时,许多的飞行器、舰艇、车辆及器材在使用后,意外的发现机件失零的比例相当高,经研究的结果发现,大都由于其结构无法承受其本身所产生的长时间共振,或搭载物品承受运送共振所引起之,组件松脱、崩裂,而致机件失零甚而造成巨大损失。
当这项结果公布后,振动测试才受到各界重视,纷纷投入大笔经费、人力去研究。
尔后,对于振动量测分析以至模拟分析的近代理论建立后,对振动测试的方法及逻辑亦不断改进。
尤其现今货物的流通频繁,使振动测试更显重要。
然而振动测试的目的,是在于实验中作一连串可控制的振动模拟,测试产品在寿命周期中,是否能承受运送或振动环境因素的考验,也能确定产品设计及功能的要求标准。
据统计的数据显示提升3%的设计水平,将增加20%的回收及减少18%的各项不必要支出。
振动模拟依据不同的目的也有不同的方法如共振搜寻、共振驻留、循环扫描、随机振动及应力筛检等,而振动的效应计有:一、结构的强度。
二、结合物的松脱。
三、保护材料的磨损。
四、零组件的破损。
五、电子组件之接触不良。
六、电路短路及断续不稳。
七、各件之标准值偏移。
八、提早将不良件筛检出。
九、找寻零件、结构、包装与运送过程间之共振关系,改良其共振因素。
而振动测试的程序,须评估订定试验规格,夹具设计之真实性,测试过程中之功能检查及最后试件之评估、检讨和建议。
地震模拟振动台及模型试验研究进展1. 本文概述随着城市化进程的加快和建筑工程技术的不断发展,地震灾害对人类社会的威胁日益凸显。
为了提高建筑结构的抗震能力,减少地震灾害造成的人员伤亡和经济损失,地震模拟振动台及模型试验研究成为了工程抗震领域的重要研究方向。
本文旨在综述地震模拟振动台及模型试验的研究进展,分析现有技术的优缺点,探讨未来发展趋势,为相关领域的研究和实践提供参考。
地震模拟振动台作为一种重要的试验设备,可以模拟地震波对建筑物的影响,为研究者提供一种可控、可重复的实验手段。
模型试验则是将实际建筑结构按比例缩小,通过模拟地震作用下的响应,来研究结构的抗震性能。
这两者的结合为抗震研究提供了强有力的技术支持。
本文首先介绍了地震模拟振动台的工作原理和技术特点,然后对近年来国内外在模型试验方面的研究进行了梳理,包括试验方法、试验对象和试验结果等方面的内容。
接着,本文分析了当前研究中存在的问题和挑战,如模型与原型之间的相似性、试验数据的准确性等。
本文探讨了地震模拟振动台及模型试验的未来发展趋势,包括技术革新、数据分析方法的改进以及与其他抗震技术的结合等方面。
2. 地震模拟振动台技术概述定义:地震模拟振动台是一种用于模拟地震作用的实验设备,通过在实验模型上施加特定的振动,来模拟地震时的地面运动。
原理:振动台通过驱动系统产生可控的振动波形,这些波形可以模拟实际的地震波形或特定的地震动参数。
综合模拟环境:结合温度、湿度等环境因素,进行更全面的地震模拟。
3. 地震模拟振动台的发展历程地震模拟振动台的发展可以追溯到20世纪初。
最初,地震模拟振动台主要用于建筑结构的抗震性能研究。
早期的振动台设备简单,只能模拟一维地震波,且模拟的地震波频率范围有限。
这些早期的尝试为后来的研究奠定了基础。
20世纪50年代,随着电子技术和材料科学的发展,地震模拟振动台进入了快速发展阶段。
这一时期的振动台设备开始能够模拟多维地震波,频率范围也得到扩大。
随机振动试验研究摘要:随机振动试验中存在许多“失控”现象,随机振动控制理论通常把试验“失控”的原因归于:(1)共振激励太大,超出了控制仪的动态范围;(2)台面、工装、试验件三者产生共振,造成试验中过大的冲击。
本文主要针对随机振动试验中的“失控”现象,从工装角度分析其现象形成的原因,并提出解决问题的方法。
关键词:随机振动试验失控现象工装振动试验是军用设备环境试验项目之一,是产品可靠性试验的重要组成部分。
振动试验是在实验室条件下产生一个人工可控的振动环境,该环境模拟产品生命周期内的使用振动环境,使产品经受与实际使用过程的振动环境相同或相似的振动激励作用,考核产品在预期使用过程的振动环境作用下,能否达到设计所规定的各项技术要求,同时也是考核产品结构强度和可靠性的一个主要试验方法。
1、基本概念1.1 随机振动的定义严格来说一切振动都是随机的,当随机因素可以忽略时,可看做是确定性振动,这时,可以用简单函数或这些函数的组合来描述。
另一种不能用确定函数而只能用概率和统计方法描述振动规律的运动称为随机振动。
1.2 振动的分类振动按其时域波形的特征可分为确定性振动和非确定性振动。
确定性振动是指振动物理盈随时间的变化规律可用确定的数学关系式来表达的一类振动。
非确定性振动是指振动物理量随时间的变化规律无法用确定的数学关系式来表达,而只能用概率论和统计学的方法来描述的一类振动。
随机振动属非确定性振动。
2、随机振动试验中的失控现象及解决方法2.1 随机振动设备组成及功用在试验室振动试验中,试件一般通过适当的试验工装安装在振动台,试验工装与振动台的组合用于模拟预期使用过程中平台产生的振动环境,如图1所示。
大多数情况下,振动使用条件所对应的振动控制点选择在试件与试验工装的连接界面上,其代表了预期使用过程中平台对装备的振动环境激励。
在理想状态情况下,即试件相对与振动台和试验工装可以近似作为刚体处理,如果在试件与试验工装连接界面的振动响应将与预期使用过程一致,可以认为试件经受了符合预期使用过程的振动环境考核。
振动试验台操作使用说明说
1、物品放置:将振动试验的物品放入试验台上的夹具中,用扳手将固定螺丝拧紧,防止振动中物品脱落损坏;
2、开机:打开启动按钮,此时听到“嗒”的一声,表示振动台电源接通,如果没有声音,则先按停止按钮再重新按启动按钮;
3、振动频率调节:根据实际情况,把频率调节旋钮旋到合适位置,在调整频率过程中,需缓慢调节,以防瞬间频率过高,将物品振坏;
4、关机:振动实验结束后.先把频率按钮调至0Hz,然后按下停止按钮,取下试验物品,关闭振动台电源;
5、振动台要固定位置,防止滑动;
6、振动台所放物品一定要保持平衡,以防物品不平衡而在振动过程中损坏;
7、插拔电源插头时,要小心操作,以防被电击伤;
8、振动过程中,切忌用手触摸被振物品,以防振动中的物品将手击伤;
9、试验台经常保持清洁,长期不用应套好塑料防尘罩,放置在干燥的环境内。
编制:质量管理部审核:批准:。
振动测试物体或质点相对于平衡位置所作的往复运动叫振动。
振动又分为正弦振动、随机振动、复合振动、扫描振动、定频振动。
描述振动的主要参数有:振幅、速度、加速度。
目录1概念2简介3响应测量4参量测定5测定方法6导纳方法7时域识别8载荷识别9环境试验10试验设备11意义使用12随机试验13安全防范14测15试验环境16试验程序概念vibration test振动试验是指评定产品在预期的使用环境中抗振能力而对受振动的实物或模型进行的试验。
根据施加的振动载荷的类型把振动试验分为正弦振动试验和随机振动试验两种。
正弦振动试验包括定额振动试验和扫描正弦振动试验。
扫描振动试验要求振动频率按一定规律变化,如线性变化或指数规律变化。
振动试验设备分为加载设备和控制设备两部分。
加载设备有机械式振动台、电磁式振动台和电液式振动台。
电磁式振动台是目前使用最广泛的一种加载设备。
振动控制试验用来产生振动信号和控制振动量级的大小。
振动控制设备应具备正弦振动控制功能和随机振动控制功能。
振动试验主要是环境模拟,试验参数为频率范围、振动幅值和试验持续时间。
振动对产品的影响有:结构损坏,如结构变形、产品裂纹或断裂;产品功能失效或性能超差,如接触不良、继电器误动作等,这种破坏不属于永久性破坏,因为一旦振动减小或停止,工作就能恢复正常;工艺性破坏,如螺钉或连接件松动、脱焊。
从振动试验技术发展趋势看,将采用多点控制技术、多台联合激动技术。
图为飞机振动试验情况。
简介振动试验是仿真产品在运输(Transportation)、安装(Installation)及使用(Use)环境中所遭遇到的各种振动环境影响,本试验是模拟产品在运输、安装及使用环境下所遭遇到的各种振动环境影响,用来确定产品是否能承受各种环境振动的能力。
振动试验是评定元器件、零部件及整机在预期的运输及使用环境中的抵抗能力.一通检测认为最常使用振动方式可分为正弦振动及随机振动两种。
正弦振动是实验室中经常采用的试验方法,以模拟旋转、脉动、震荡(在船舶、飞机、车辆、空间飞行器上所出现的)所产生的振动以及产品结构共振频率分析和共振点驻留验证为主,其又分为扫频振动和定频振动两种,其严苛程度取决于频率范围、振幅值、试验持续时间。
如何解决振动台测试中出现的小故障?做为一款精密仪器,设备在使用中偶尔会出现一些故障让我们措手不及,那么,遇到问题该如何解决呢,小编在这为大家整理了一些振动台在测试过程中可能会遇到的故障解决方法。
振动台参数:正弦波模拟车速25-40KM/H、最大振幅1”(25.4MM)误差≤5%、台面尺寸2×2(M)、台体尺寸2000*2000*1000mm(护栏高度)(L*W*H)频率调节无极调节方式输出频率100-300(转/分)可调(误差≤10%)时间控制护栏高度1000mm下面我们一起跟着小编一起来看看一些小故障归纳:1、意外程序中断1)由于计算机内外部的原因,会出现一些工作不正常或按错键引起的程序中断出现死机,但设备仍在试验,需记下试验时间,将增益旋到零,停止振动台试验,重新起动。
2)随机振动试验对于夹具设计的要求和安装的要求与正弦试验是一样的。
夹具共振频率点也可能引起局部的超差。
3)如果超过极限公差带的谱线数小于总谱线数的10%时系统显示超差线数由试验者决定是否允许,因为有些规范只允许5%的超差。
经验表明,碰到超差谱线数较多的情况,往往采用多点平均值控制方式, 问题能减轻。
用户不妨一试。
3、点击“项目”中的“退出”(试验进行时变灰)或点击右上角的X(试验进行时无效)可退出随机试验程序。
请千万不要在试验停止之前退出程序,因为这样将使振动试验失控和丢失试验数据!如不需要试验了,应先关闭增益旋钮,关闭振动试验机功放,退出WINDOWS,最后关闭微机。
4、警告与极限容差1)当有5%谱线误差超过预先设置的警告容差,或有1条以上谱线超过极限容差时,则屏幕上则显示报警信息,并以16进制数显示超差线数,超过极限容差1条线显示100,同时响铃警告,如下次不超差时则警告信息消失,铃不再响。
2)当均衡容差超过预先设置的极限容差的谱线数超过10%谱线数时,则试验自动停止,屏幕上显示试验起止时间,并保存有最后一帧数据。
随机振动控制系统使用说明书(WINDOWS界面)2002年10月随机振动控制系统使用说明书(WINDOWS界面)1. 引言本振动控制系统主要是用作振动和冲击试验控制。
从振动试验的历史来看,试验是从定频正弦→正弦扫频→随机振动发展的。
正弦定频试验可以对选定的一个或数个频率(通常选为试件的共振频率)下对试件进行振动试验,由于不可能测出试件所有的共振频率,再由于非线性因素和结构损伤的影响,共振频率本身在试验过程中也是变化的,于是就发展了正弦扫频试验,试验过程中对试件所有的共振频率都能考核到。
为什么又要进行(宽带)随机振动试验呢?一是实际飞机、火箭、船舶、车辆上测得的振动环境接近于宽带随机,二是计算机技术飞速发展和快速数字谱分析算法(FFT)的发明使得技术上有了实现的可能;从对试件损伤和工作可靠性的影响来看,正弦扫频与宽带随机也有很大的差别,举例来说,正弦扫频时试件各共振频率依次发生共振,而宽带随机试验时,试件各共振频率同时发生共振,若有一继电器常开触点的两弹簧片有不同的共振频率,可能它们依次共振时不相碰,但同时共振时就相碰,而造成仪器工作的不正常。
这个例子可以形象地说明正弦扫频与随机振动试验的差别。
一句话,随机振动试验更接近于实际振动环境,对试件的考核也较严格,从而更容易保证您的产品的质量。
美军标MIL-STD-810F更推荐随机试验时频率分辨率采用800谱线,本系统能满足此要求。
对于涡轮螺桨式飞机,直升机,和机载炮击振动,主要振动环境为宽带随机加窄带随机或宽带随机加多频正弦振动,美军标MIL-STD-810D~F规定要作这两种模拟,窄带及正弦频率一般不变。
本系统能完成宽带加窄带随机和正弦加随机试验,窄带及正弦频率可以扫频。
关于冲击试验,早先多半采用跌落式,凸轮式等机械冲击试验装置,这些装置结构简单,但对冲击参数(冲击加速度、波形、冲击时间等)的调整较麻烦,波形不准确。
在实际冲击环境中有两种理想的加速度冲击波形:半正弦波模拟了完全弹性碰撞;后峰锯齿波模拟了完全塑性碰撞,冲击时间常取11ms和6ms。
一、前言模拟地震振动台可以很好地再现地震过程和进行人工地震波的试验,它是在试验室中研究结构地震反应和破坏机理的最直接方法,这种设备还可用于研究结构动力特性、设备抗震性能以及检验结构抗震措施等内容。
另外它在原子能反应堆、海洋结构工程、水工结构、桥梁工程等方面也都发挥了重要的作用,而且其应用的领域仍在不断地扩大。
模拟地震振动台试验方法是目前抗震研究中的重要手段之一。
20世纪70年代以来,为进行结构的地震模拟试验,国内外先后建立起了一些大型的模拟地震振动台。
模拟地震振动台与先进的测试仪器及数据采集分析系统配合,使结构动力试验的水平得到了很大的发展与提高,并极大地促进了结构抗震研究的发展。
二、常用振动台及特点振动台可产生交变的位移,其频率与振幅均可在一定范围内调节。
振动台是传递运动的激振设备。
振动台一般包括振动台台体、监控系统和辅助设备等。
常见的振动台分为三类,每类特点如下:1、机械式振动台。
所使用的频率范围为1~100Hz,最大振幅±20mm,最大推力100kN,价格比较便宜,振动波形为正弦,操作程序简单。
2、电磁式振动台。
使用的频率范围较宽,从直流到近10000Hz,最大振幅±50mm,最大推力200kN,几乎能对全部功能进行高精度控制,振动波形为正弦、三角、矩形、随机,只有极低的失真和噪声,尺寸相对较大。
3、电液式振动台。
使用的频率范围为直流到近2000Hz,最大振幅±500mm,最大推力6000kN,振动波形为正弦、三角、矩形、随机,可做大冲程试验,与输出力(功率)相比,尺寸相对较小。
4、电动式振动台。
是目前使用最广泛的一种振动设备。
它的频率范围宽,小型振动台频率范围为0~10kHz,大型振动台频率范围为0~2kHz,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。
原理:是根据电磁感应原理设置的,当通电导体处的恒定磁场中将受到力的作用,半导体中通以交变电流时将产生振动。
振动台的驱动线圈正式处在一个高磁感应强度的空隙中,当需要的振动信号从信号发生器或振动控制仪产生并经功率放大器放大后通到驱动线圈上,这时振动台就会产生需要的振动波形。
组成部分:基本上由驱动线圈及运动部件、运动部件悬挂及导向装置、励磁及消磁单元、台体及支承装置。
三、组成及工作原理地震模拟振动台的组成和工作原理1.振动台台体结构振动台台面是有一定尺寸的平板结构,其尺寸的规模由结构模型的最大尺寸来决定。
台体自重和台身结构是与承载试件的重量及使用频率范围有关。
一般振动台都采用钢结构,控制方便、经济而又能满足频率范围要求,模型重量和台身重量之比以不大于2为宜。
振动台必须安装在质量很大的基础上,基础的重量一般为可动部分重量或激振力的10~20倍以上,这样可以改善系统的高频特性,并可以减小对周围建筑和其他设备的影响。
2.液压驱动和动力系统液压驱动系统给振动台以巨大的推力,按照振动台是单向(水平或垂直)、双向〔水平一水平或水平一垂直)或三向(二向水平一垂直)运动,并在满足产生运动各项参数的要求下,各向加载器的推力取决于可动质量的大小和最大加速度的要求;自前世界上已经建成的大中型的地震模拟振动台,基本是采用电液伺服系统来驱动。
它在低频时能产生大推力,故被广泛应用。
3.控制系统在目前运行的地震模拟振动台中有两种控制方法:一种是纯属于模拟控制;另一种是用数字计算机控制。
模拟控制方法有位移反馈控制和加速度信号输入控制两种。
在单纯的位移反馈控制中,由于系统的阻尼小,很容易产生不稳定现象,为此在系统中加入加速度反馈,增大系统阻尼从而保证系统稳定。
与此同时,还可以加入速度反馈,以提高系统的反应性能,由此可以减小加速度波形的畸变。
为了能使直接得到的强地震加速度记录推动振动台,在输入端可以通过二次积分,同时输入位移、速度和加速度三种信号进行控制。
为了提高振动台控制精度,采用计算机进行数字迭代的补偿技术,实现台面地震波的再现。
试验时,由振动台台面输出的波形是期望再现的某个地震记录或是模拟设计的人工地震波。
由于包括台面、试件在内的系统的非线性影响,在计算机给台面的输入信号激励下所得到的反应与输出的期望之间必然存在误差。
这时,可由计算机将台面输出信号与系统本身的传递函数(频率响应)求得下一次驱动台面所需的补偿量和修正后的输入信号。
经过多次迭代,直至台面输出反应信号与原始输人信号之间的误姜小与预先给定的量值,完成佚代补偿并得到满意的期望地震波形。
4.测试和分析系统测试系统除了对台身运动进行控制而测量其位移、加速度等外,还可对被测试模型进行多点测量,一般是测量位移、加速度和应变等,根据需要来了解整个模型的反应。
位移测量多数采用差动变压器式和电位计式的位移计,可测量模型相对于台面的位移或相对于基础的位移;加速度测量多采用应变式加速度计、压电式加速度计,近年来也有采用差容式或伺服式加速度计。
电液式激振器的优点是重量轻、体积小,但却能产生很大的激振力,这种电液式激振器又称为动力千斤顶、电液伺服千斤顶、加振器、作动器等。
电液式振动台推力可达几十kN~几百kN,主要用于大型结构物的振动试验,诸如汽车的行驶模拟试验、工程结构的抗震试验、飞行器的动力试验以及电工、电子产品的整机环境试验、筛选试验等。
四、加载设计1、地震模拟振动台试验的加载设计地震模拟振动台试验的加载设计是非常重要的,荷载选取过大,试件可能很快进人塑性阶段甚至破坏倒塌,难以完整地量测和观察到结构的弹性和弹塑性反应的全过程,甚至可能发生安全事故。
荷载选取太小,不能达到预期日的。
产生不必要的重复。
影响试验进展,而且多次加载能对试件产生损伤积累。
因此,为获得系统的试验资料,必须周密地考虑试验加载程序的设计。
进行结构抗震动力试验,振动台台面的输人一般选用地面运动的加速度。
常用的地震波谱有天然地霞记录和拟合反应谱的人工地震波。
振动台是一个非线性系统,直接用地震波信号通过D/A转换和模拟控制系统放大后驱动振动台,在台面上无法得到所要求的地震波。
在实际试验时,地展模拟振动台的计算机系统将根据振动台的频谱特性。
对输入的地震波进行分析、计算,经处理后再进行D/转换和模拟放大,使振动台能够再现的地震波。
2、在选择和设计台面的输人运动时,需要考虑下列有关因素:(1)试验结构的周期如果模拟长周期结构并研究它的破坏机理,就要选择长周期分量占主导地位的地震记录或人工地震波,以便使结构能产生多次瞬时共振而得到清晰的变化和破坏形式(2)结构所在的场地条件如果要评价建立在某一场地土上的结构的抗震能力,就应选择与这类场地土相适应的地震记录,即要求选择地震记录的频谱特性尽可能与场地的频谱特性相一致,并需要考虑地震烈度和震中距离的影响。
在进行实际工程地震模拟振动台试验时,这个条件尤其重要。
(3)考虑振动台台面的输出能力主要考虑振动台台面的输出的频率范围、最大位移、速度和加速度、台面承载能力等性能,在试验前应认真核查振动台台面特性曲线是否满足试验要求。
3、地震模拟振动台试验的加载过程和试验方法地震模拟振动台试验的加载过程包括:结构动力特性试验、地震动力反应试验和量测结构不同工作阶段(开裂、屈服、破坏阶段)自振特性变化等试骏内容。
结构动力特性试验,是在结构模型安装在振动台以前,采用自由振动法或脉动法进行试验量测。
试验时应将模型基础底板或底梁固定。
模型安装在振动台上以后则可采用小振幅的白噪声输人振动台台面,进行激振试验,量侧台面和结构的加速度反应。
通过传递函数、功率谱等频谱分析,求得结构模型的自振频率、阻尼比和振型等参数。
也可采用正弦波输人连续扫频,通过共振法测得模型的动力特性。
当采用正弦波扫频试验时,应特别注意由于共振作用对结构模型强度所造成的影响,避免结构开裂或破坏。
根据试脸目的的不同,在选择和设计振动台台面输人加速度时程曲线后,试验的加截过程可以是一次性加载或多次加载的不同方案。
五、加载过程及试验方法1、一次性加载一次性加载试验的特点是:结构从弹性阶段、弹性阶段直至破坏阶段的全过程是在一次加载过程中全部完成的。
试验加载时要选择一个适当的地震记录,在它的激励下能使试验结构产生全部要求的反应。
在试验过程中,连续记录结构的位移、速度、加速度和应变等输出信号,观察记录结构的裂缝形成和发展过程,以研究结构在弹性、弹塑性以及破坏阶段的各种性能,如刚度变化、能量吸收能力等,并且还可以从结构反应确定结构各个阶段的周期和阻尼比。
这种加载过程的主要特点是:可以较好地连续模拟结构在一次强烈地震中的整个表现与反应。
但是因为是在振动台台面运动的情况下进行观测,所以对试验过程中的量测和观察设备要求较高,在初裂阶段,往往很难观攀到结构各个邵位上的细微裂缝。
破坏阶段的观测更具危险,这时只能采用高速摄影或摄像的方法记录试验过程,因此在没有足够经验的情况下很少采用这种加载方法。
2、多次性加载目前,在地震模拟振动台试验中,大多数的研究者都采用多次性加载的方案进行试验研究。
一般情况下可以分为以下几个阶段:(1)动力特性试验。
测定结构在各试验阶段的各种不同动力特性。
(2)振动台台面输入振动信号,使结构产生中的程度的开裂。
例如结构底层墙、柱微裂缝或结构薄弱部位的微裂缝。
(3)加大台面输入的振动信号,使结构产生中等程度的开裂。
例如剪力墙、梁柱节点等部位产生明显的裂缝,停止加载后裂缝不能完全闭合。
(4)加大台面输入的加速度幅值,使结构变为机动机构,若稍加荷载就会发生破坏,受拉、受压钢筋屈服,裂缝进一步发展并贯穿整个截面,但结构还具有一定的承载能力。
(5)继续加大振动台台面的振动幅值,使结构变为机动机构,若稍加荷载就会发生破坏倒塌。
在各个试验阶段,被试验结构各种反应的测量和记录与一次性加载时相同,可以明确地得到结构在每个试验阶段的周期、阻尼、振动变形、刚度退化、能量吸收能力和滞回特性等。
但由于采用多次加载,对结构将产生变形积累的影响。
六、观测及测量反应1、地震模拟振动台试验的观测设计和反应量测地震模拟振动台试验,一般需观测结构的位移、加速度、应变反应,结构的开裂部位、裂缝的发展、结构的破坏部位和破坏形式等。
在试验中位移和加速度测点一般布置在产生最大位移或加速度的部位,对于整体结构的房屋模型试验,则在主要楼面和顶层高度的位置上布置位移和加速度传感器(要求传感器的频响范围为。
0~100 Hz)。
当需要测量层间位移时,应在相邻两楼层布置位移或加速度传感器,将加速度传感器测到的信号,通过二次积分即可转化为位移信号。
在结构构件的主要受力部位和截面,应测量钢筋和混凝土的应变、钢筋和棍凝土的粘结滑移等参数。
测得的位移、加速度和应变传感器的所有信号被连续输人计算机或专用数据采集系统进行数据采集和处理,试验结果可由计算机终端显示或利用绘图仪、打印机等外围设备输出。