冀教版九年级数学上册期末综合检测试题(教师用)-可编辑修改
- 格式:docx
- 大小:216.65 KB
- 文档页数:17
冀教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,AB为O的直径,弦DC垂直AB于点E,∠DCB=30°,EB=3,则弦AC的长度为( )A.3B.4C.5D.62、用配方法解方程x2+4x+2=0,配方后的方程是()A.(x+2)2=0B.(x-2)2=4C.(x-2)2=0D.(x+2)2=23、方程x2﹣5=0的实数解为()A. B. C. D.±54、为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7 h, 7 hB.8 h, 7.5 hC.7 h, 7.5 hD.8 h, 8 h5、如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是()A.BD⊥ACB.AC 2=2AB•AEC.△ADE是等腰三角形D.BC=2AD6、若3是关于方程x2-5x+c=的一个根,则这个方程的另一个根是()A.-2B.2C.-5D.57、如图,AB是⊙O的直径,BC是⊙O的切线.点D、E在⊙O上,若∠CBD=110°,则∠E的度数是()A.90°B.80°C.70°D.60°8、已知、两点在反比例函数的图象上,下列三个命题:①若,则;②若,,则;③过A、B两点的直线与x轴、y轴分别交于C、D两点,连接OA、OB,则.其中真命题个数是()A.0B.1C.2D.39、关于x的一元二次方程ax2+bx=2(a,b是常数,且a≠0),( )A.若a>0,则方程可能有两个相等的实数根B.若a>0,则方程可能没有实数根C.若a<0,则方程可能有两个相等的实数根D.若a<0,则方程没有实数根10、已知反比例函数的图象经过点P(1,-2),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限11、若一元二次方程x2﹣2x﹣m=0无实数根,则反比例函数y=的图象所在的象限是( )A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限12、在某幅地图上,AB两地距离8.5cm,实际距离为170km,则比例尺为()A.1:20B.1:20000C.1:200000D.1:200000013、如图,以点O为位似中心,把△ABC放大为原图形的2倍得到,以下说法错误的是()A.S△ABC ∶S△A’B’C=1∶2 B.AB∶=1∶2 C.点A,O,A’三点在同一条直线上 D.BC∥14、如图,矩形ABCD 中,AB>AD,AB=a,AN 平分∠DAB,DM⊥AN 于点M,CN⊥AN于点N.则DM+CN 的值为(用含a 的代数式表示)( )A. aB. aC.D.15、下列说法正确的是()A.分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,则△ADE是△ABC放大后的图形B.两位似图形的面积之比等于位似比C.位似多边形中对应对角线之比等于位似比 D.位似图形的周长之比等于位似比的平方二、填空题(共10题,共计30分)16、方程-4x+c=0有两个不相等的实数根,则c的取值范围是________.17、如图,△ABC 中,∠C=90°,CA=CB,D 为 AC 上的一点,AD=3CD,AE⊥AB交 BD 延长线于 E,记△EAD,△DBC 的面积分别为 S1, S2,则S 1:S2=________.18、已知关于的一元二次方程有两个相等的实数根,则的值是________.19、若反比例函数的图象过点(3,﹣2),则其函数表达式为________.20、若关于x的一元二次方程有两个不相等的实数根,则点在第________象限.21、如图,某景区门口的柱子上方挂着一块景点宣传牌CD,宣传牌的一侧用绳子AD和BC牵引着两排小风车,经过测量得到如下数据:AM=2米,AB=4米,∠MAD=45°,∠MBC=30°,则CD的长度约为________米.(≈1.73,结果精确到0.1米)22、如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是________.23、如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为________.24、甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;=8,则这两人5次射击命中的环数的方差S甲2________S乙2(填“>”“<”或“=”).25、已知 a+b=-3,a2b+ab2=-30,则 a2-ab+b2+11=________.26、先化简,再求值:,其中a是方程x2+x=6的一个根.27、(1)用配方法解方程:.(2)某商品经过连续两次降价,销售单价由原来的125元降到80元,求平均每次降价的百分率.28、关于x的一元二次方程mx2+(3m-2)x-6=0,当m为何值时,方程总有两个不相等的实数根.29、如图,⊙A、⊙B、⊙C两两不相交,且半径都是2cm,图中的三个扇形(即三个阴影部分)的面积之和是多少?弧长的和为多少?30、汽车正在行驶可车轮突然陷入无盖井,骑车人正在快速前行却因突然出现在面前的凸起井盖被摔伤,夜间出门时被一个没有井盖的窖井吞噬…全国各地因为井盖缺失而造成事故的情形不绝于耳,井盖吞人事件更是频频发生,为了保障市民的人身安全,合肥市政部门开始更换质量更好的井盖(如图所示).小明想知道井盖的半径,在⊙O上,取了三个点A、B、C,测量出AB=AC=50,BC=80,请你帮助小明求出井盖的半径,写出计算过程.参考答案1、D2、D3、C4、C5、D6、B7、C8、D9、C10、C11、C12、D13、A14、C15、C二、填空题(共10题,共计30分)16、18、19、20、21、22、23、24、三、解答题(共5题,共计25分)26、28、29、30、。
冀教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,∠A是⊙O的圆周角,∠A=50°,则∠BOC的度数为()A.40°B.50°C.90°D.100°2、空气是由多种气体混合而成,为了简明扼要地说明空气的组成情况,使用的统计图最好是()A.扇形统计图B.条形统计图C.折线统计图D.频数分布直方图3、如图,点A,B,C在⊙O上.若⊙O的半径为3,∠C=30°,则的长为()A. B. C. D.4、如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是( )A.x<-2或x>2B.x<-2或0<x<2C.-2<x<0或0<x<2 D.-2<x<0或x>25、下列一元二次方程中有两个不相等的实数根的方程是()A.(x﹣1)2=0B.x 2+2x﹣19=0C.x 2+4=0D.x 2+x+l=06、下列函数中,当x>0时,y值随x值增大而减小的是()A.y=x 2B.y=x﹣1C.D.y=7、数据2、4、4、5、5、3、3、4的众数是()A.1B.2C.3D.48、如图,在△ABC中,,,则的值为 ( )A. B. C. D.9、如图,AB是⊙O的直径,弦CD⊥AB于点E,则下列结论正确的是()A.OE=BEB. =C.△BOC是等边三角形D.四边形ODBC 是菱形10、如图,在△ABC中,两条中线BE,CD相交于点O,则S△DOE :S△COB等于()A.1:2B.1:3C.1:4D.2:311、用配方法解一元二次方程x2-8x+3=0,此方程可化为()A.(x-4) 2=13B.(x+4) 2=13C.(x-4) 2=19D.(x+4) 2=1912、如图,正方形ABPC的边长为2,反比例函数过点A,则k的值是()A.2B.-2C.4D.-413、用配方法解方程,下列配方正确的是()A. B. C. D.14、德国数学家高斯在大学二年级时得出了正十七边形是尺规作图法,并给出了可用尺规作图的正多边形的条件.下面是高斯正十七边形作法的一部分:“如图,已知AB是圆O的直径,分别以A,B为圆心、AB长为半径作弧,两弧交于点C,D两点…”.若AB长为2,则图中弧CAD的长为()A. B. C. D.15、如图,AB是⊙O的直径,弦CD⊥AB,垂足为P.若CD=8,OP=3,则⊙O的半径为( )A.10B.8C.5D.3二、填空题(共10题,共计30分)16、若△ABC∽△ACD,AB=1,AD=4,则AC=________17、函数yl=x(x≥0),(x>0)的图象如图所示,则结论:①两函数图象的交点A的坐标为(3,3);②当x>3时,y2>y1;③当x=1时,BC=8;④当x逐渐增大时,yl 随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是________18、反比例函数y=,当x<0时,y随x的增大而增大.那么m的取值范围是________.19、当前,新冠状性肺炎疫情已波及全世界200多个国家和地区,截止5月12日14:00,全球确诊人数累计已达4175216人。
冀教版九年级数学上册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.用配方法将二次函数y=x 2﹣8x ﹣9化为y=a (x ﹣h )2+k 的形式为( )A .y=(x ﹣4)2+7B .y=(x+4)2+7C .y=(x ﹣4)2﹣25D .y=(x+4)2﹣253.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.已知a m =3,a n =4,则a m+n 的值为( )A .7B .12C .D .6.如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体( )A .主视图改变,左视图改变B .俯视图不变,左视图不变C .俯视图改变,左视图改变D .主视图改变,左视图不变7.如图,△ABC 中,∠A=78°,AB=4,AC=6.将△ABC 沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A. B.B.C.D.8.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°10.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算:124503⨯+=_____.2.分解因式:2ab a-=_______.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.把长方形纸片ABCD沿对角线AC折叠,得到如图所示的图形,AD平分∠B′AC,则∠B′CD=__________.5.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD =3,则S△AOC=__________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.3.如图,以D为顶点的抛物线y=﹣x2+bx+c交x轴于A、B两点,交y轴于点C,直线BC的表达式为y=﹣x+3.(1)求抛物线的表达式;(2)在直线BC上有一点P,使PO+PA的值最小,求点P的坐标;(3)在x轴上是否存在一点Q,使得以A、C、Q为顶点的三角形与△BCD相似?若存在,请求出点Q的坐标;若不存在,请说明理由.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、B6、D7、C8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、a(b+1)(b﹣1).3、84、30°5、5.6、4 9三、解答题(本大题共6小题,共72分)1、4x2、(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1.3、(1)y=﹣x2+2x+3;(2)P (97,127);(3)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.4、(1)略;(2)四边形BECD是菱形,理由略;(3)当∠A=45°时,四边形BECD是正方形,理由略5、(1)30;(2)①补图见解析;②120;③70人.6、(1)4元或6元;(2)九折.。
冀教版九年级数学上册期末试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差5.已知正多边形的一个外角为36°,则该正多边形的边数为( ).A .12B .10C .8D .66.关于x 的方程2(1)(2)x x ρ-+=(ρ为常数)根的情况下,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根7.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b 的面积为( )A .8B .9C .10D .11二、填空题(本大题共6小题,每小题3分,共18分)1.计算368⨯-的结果是______________.2.因式分解:a 3-a =_____________.3.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式m ²-m+2019的值为__________.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,点A ,B 是反比例函数y=k x(x >0)图象上的两点,过点A ,B 分别作AC ⊥x 轴于点C ,BD ⊥x 轴于点D ,连接OA ,BC ,已知点C (2,0),BD=2,S△BCD =3,则S△AOC=__________.6.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为___________.三、解答题(本大题共6小题,共72分)1.解方程:33122 xx x-+=--2.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.3.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次一共调查了多少名购买者?(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为度.(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、C4、D5、B6、C7、D8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)12、a(a-1)(a + 1)3、20204、425、5.6、2.5×10-6三、解答题(本大题共6小题,共72分)x1、42、(1)y=﹣x2﹣2x+3;(2)抛物线与y轴的交点为:(0,3);与x轴的交点为:(﹣3,0),(1,0);(3)15.3、(1) 65°;(2) 25°.4、(1)略;(2)4.95、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
最新冀教版九年级数学上册期末考试及答案【A4打印版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若1a ab+有意义,那么直角坐标系中点A(a,b)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( )A .1B .2C .3D .43.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 24.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.已知点A (m ,n )在第二象限,则点B (|m|,﹣n )在( )A .第一象限B .第二象限C .第三象限D .第四象限6.已知x 1,x 2是方程x 2﹣3x ﹣2=0的两根,则x 12+x 22的值为( )A .5B .10C .11D .137.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图,A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是()A.4 B.3 C.2 D.19.如图,已知⊙O的直径AE=10cm,∠B=∠EAC,则AC的长为()A.5cm B.52cm C.53cm D.6cm10.如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4米二、填空题(本大题共6小题,每小题3分,共18分)1.计算618136_____________.2.因式分解:x3﹣4x=_______.3x2x的取值范围是__________.4.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为__________.5.如图,在矩形ABCD 中,AB=3,AD=5,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么cos ∠EFC 的值是__________.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解方程23111x x x -=--2.先化简再求值:(a ﹣22ab b a -)÷22a b a -,其中2b=123.如图,一次函数y=x+4的图象与反比例函数y=k x(k 为常数且k ≠0)的图象交于A (﹣1,a ),B 两点,与x 轴交于点C(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.4.如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点D,点O在AB 上,以点O为圆心,OA为半径的圆恰好经过点D,分别交AC,AB于点E,F.(1)试判断直线BC与⊙O的位置关系,并说明理由;(2)若BD=23,BF=2,求阴影部分的面积(结果保留π).5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.6.东营市某学校2015年在商场购买甲、乙两种不同足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求购买一个甲种足球、一个乙种足球各需多少元;(2)2016年为响应习总书记“足球进校园”的号召,这所学校决定再次购买甲、乙两种足球共50个,恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果此次购买甲、乙两种足球的总费用不超过2900元,那么这所学校最多可购买多少个乙种足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、A3、D4、A5、D6、D7、B8、B9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、26+2、x(x+2)(x﹣2)3、x2≥4、325、.6、24 5三、解答题(本大题共6小题,共72分)1、2x=2、原式=2 a ba b-=+3、(1)y=-3x(2)点P(﹣6,0)或(﹣2,0)4、(1)直线BC与⊙O相切,略;(2)2 23-3π5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)购买一个甲种足球需50元,购买一个乙种足球需70元;(2)这所学校最多可购买18个乙种足球.。
冀教版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列各组中的四条线段成比例的是()A.1 cm、2 cm、20 cm、30 cmB.1 cm、2 cm、3 cm、4 cmC.4 cm、2 cm、1 cm、3 cmD.5 cm、10 cm、10 cm、20 cm2、一个矩形按如图1的方式分割成三个直角三角形,把较大两个直角三角形纸片按图2中①、②两种方式放置,设①中的阴影部分面积为,②中的阴影部分面积为,当时,则矩形的两边之比为()A. B. C. D.3、今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加1600m2.设扩大后的正方形绿地边长为x m,下面所列方程正确的是()A. x(x﹣60)=1600B. x(x+60)=1600C. 60x(x+60)=1600 D.60 x(x﹣60)=16004、用公式法解方程x2﹣2=﹣3x时,a,b,c的值依次是()A.0,﹣2,﹣3B.1,3,﹣2C.1,﹣3,﹣2D.1,﹣2,﹣35、如图,是的直径,是弦,,垂足为点,连接、、,,,那么的长为()A. B. C. D.6、若关于x的一元二次方程ax2+bx+5=0(a≠0)的解是x=1,则2012﹣a﹣b的值是()A.2020B.2018C.2017D.20167、如图,已知⊙O是正方形ABCD的外接圆,点E是弧AD上任意一点,则∠BEC的度数为()A.30°B.45°C.60°D.90°8、已知点在反比例函数的图象上,且,则的大小关系是()A. B. C. D.9、已知如图,△ABC是⊙O的内接正三角形,弦EF经过BC边的中点D,且EF ∥BA,若⊙O的半径为,则DE的长为()A. B. C. D.10、下列有关圆的一些结论:①任意三点确定一个圆;②相等的圆心角所对的弧相等;③平分弦的直径垂直于弦,并且平分弦所对的弧,④三角形的外心到三角形各顶点的距离相等.其中错误的结论有( )A.1个B.2个C.3个D.4个11、如图,在⊙O中,弦AB垂直平分半径OC,垂足为D.若点P是⊙O上异于点A,B的任意一点,则∠APB=()A.30°或60°B.60°或150°C.30°或150°D.60°或120°12、某一段时间,小芳测得连续五天的日最高气温后,整理得出下表(有两个数据丢失).被遮盖的两个数据依次是().A.3℃,2B.3℃,4C.4℃,2D.4℃,413、如图,点C在反比例函数的图象上,过点C的直线与x轴负半轴,y轴分别交于点A,B,且BC=2AB,记△AOB的面积为s,若k+s=5,则k的值为( )A. B. C. D.14、河堤横断面如图所示,斜坡AB的坡度=1:,BC=5米,则AC的长是()米.A. B.5 C.15 D.15、为了测量一个铁球的直径,将该铁球放入工件槽内,测得的有关数据如图所示(单位:cm),则该铁球的直径为()A.12cmB.10cmC.8cmD.6cm二、填空题(共10题,共计30分)16、如图,直线y=x+2与反比例函数y= 的图象在第一象限交于点P,若OP=,则k的值为________.17、若一组数据的平均数为6,众数为5,则这组数据的方差为________.18、已知x2-2 x+1=0,则x- =________。
冀教版九年级数学上册期末测试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( )A .∠BAC=∠DCAB .∠BAC=∠DAC C .∠BAC=∠ABD D .∠BAC=∠ADB6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)123.2.因式分解:a 3-a =_____________.3.函数32y x x =-+x 的取值范围是__________. 4.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为__________.5.如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为________.6.如图是一张矩形纸片,点E在AB边上,把BCE沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=__________.三、解答题(本大题共6小题,共72分)1.解分式方程:24 1x-+1=11xx-+2.先化简,再求值:22122()121x x x xx x x x----÷+++,其中x满足x2-2x-2=0.3.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.4.如图,ABC中,点E在BC边上,AE AB=,将线段AC绕点A旋转到AF 的位置,使得CAF BAE∠=∠,连接EF,EF与AC交于点G=;(1)求证:EF BC(2)若65∠=︒,求FGC∠的度数.ACBABC∠=︒,285.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、C4、C5、C6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1.2、a (a -1)(a + 1)3、23x -<≤4、140°5、6、 1三、解答题(本大题共6小题,共72分)1、无解.2、123、(1)相切,略;(2).4、(1)略;(2)78°.5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。
【易错题解析】冀教版九年级数学上册期末综合检测试题 一、单选题(共10题;共30分) 1.如图,已知圆心角∠BOC=100º,则圆周角∠BAC的大小是( )
A. 50º B. 100º C. 130º D. 200º 【答案】A 【考点】圆周角定理 【解析】 【分析】根据圆周角定理可直接求出答案.
【解答】根据圆周角定理,可得:∠A= ∠BOC=50°. 故选A. 【点评】本题主要考查圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对
的圆心角的一半. 2.某中学举行书法比赛,各年龄组的参赛人数如下表所示,则全体参赛选手年龄的平均数和中位数分别为( )
年龄组 13岁 14岁 15岁 16岁 参赛人数 9 15 3 3 A. 14.5,14.5 B. 14,15 C. 14.5,14 D. 14,14 【答案】D 【考点】平均数及其计算,中位数 【解析】【解答】解:∵( 3×9+ 4× 5+ 5×3+ 6×3)÷(9+15+3+3) =(117+210+45+48)÷30 =4 0÷30 =14 ∴全体参赛选手年龄的平均数是14. ∵ 3岁的有9人,14岁的有15人,15岁的有3人,16岁的有3人,∴把30名参赛选手年龄从小到大排列后,中间两人的年龄分别是14岁、14岁,∴全体参赛选手年龄的中位数是: (14+14)÷ = 8÷ = 4. 综上,可得全体参赛选手年龄的平均数和中位数分别为14、14. 故答案为:D. 【分析】一组数据按从小到大的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数).平均数是指在一组数据中所有数据之和再除以数据的个数. 3.新阜宁大桥某一周的日均车流量分别为13,14,11,10,12,12,15(单位:千辆),则这组数据的中位数与众数分别为( ) A. 10 ,12 B. 12 ,10 C. 12 ,12 D. 13 ,12 【答案】C 【考点】中位数,众数 【解析】【解答】∵从小到大排列为:10,11,12,12,13,14,15,排在中间的数是12, ∴中位数是12; ∵ 出现了2次,出现的次数最多, ∴众数是12. 故答案为:C. 【分析】将这组数据按从小到大排列,排在最中间的数就是中位数;这组数据中,出现次数最多的是12,根据众数概念,即可得出答案。 4.(2016•葫芦岛)九年级两名男同学在体育课上各练习10次立定跳远,平均成绩均为2.20米,要判断哪一名同学的成绩比较稳定,通常需要比较这两名同学立定跳远成绩的( ) A. 方差 B. 众数 C. 平均数 D. 中位数 【答案】A 【考点】常用统计量的选择 【解析】【解答】解:由于方差能反映数据的稳定性,需要比较这2名学生立定跳远成绩的方差. 故选:A. 【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这2名学生立定跳远成绩的方差.本题考查方差的意义.它是反映一组数据波动大小,方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立. 5.已知⊙O是△ABC的外接圆,若AB=AC=5,BC=6,则⊙O的半径为( ) A. 4 B. 3.25 C. 3.125 D. 2.25 【答案】C 【考点】三角形的外接圆与外心 【解析】【解答】解:取BC中点D,连结AD,OB,
设BO=AO=r, ∵AB=AC=5,BC=6, ∴AD⊥BC,BD=3, ∴AD=4, 在Rt△BOD中, ∴BO2=OD2+BD2, 即r2=32+(4-r)2, ∴r=3. 5. 故答案为:C. 【分析】取BC中点D,连结AD,OB,设BO=AO=r,根据等腰三角形性质可知AD=4,AD⊥BC,在Rt△BOD中,根据勾股定理即可求出半径. 6.如图,港口A在观测站O的正东方向,OA=6km,某船从港口A出发,沿北偏东 5°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为( )
A. 3 km B. 3 3 km C. 4 km D. (3 3﹣3)km
【答案】A 【考点】解直角三角形的应用﹣方向角问题 【解析】【解答】解:作AC⊥OB于点C,如图所示,
由已知可得, ∠COA=30°,OA=6km, ∵AC⊥OB, ∴∠OCA=∠BCA=90°, ∴OA= AC,∠OAC=60°, ∴AC=3km,∠CAD=30°, ∵∠DAB= 5°, ∴∠CAB=45°, ∴∠CAB=∠B=45°, ∴BC=AC, ∴AB= 3 3 3 , 故选A. 【分析】根据题意,可以作辅助线AC⊥OB于点C,然后根据题目中的条件,可以求得AC和BC的长度,然后根据勾股定理即可求得AB的长.
7.对于反比例函数y= 3 ,下列说法正确的是( ) A. 图象经过点(1,﹣3) B. 图象在第二、四象限 C. x>0时,y随x的增大而增大 D. x<0时,y随x增大而减小 【答案】D 【考点】反比例函数的图象,反比例函数的性质,反比例函数系数k的几何意义 【解析】【解答】A.当x=1时,y=3,错误,不符合题意;B.k=3>0,图象在第一、三象限,错误,不符合题意; C. k=3>0,在每一个象限内,y随x的增大而减小,错误,不符合题意; D. k=3>0,在每一个象限内,y随x的增大而减小,正确,符合题意. 故答案为:D. 【分析】依据反比例函数的特征,对选项逐个判断,知道得到符合题意的选项. 8.关于x的方程(k+4)x2-2=0是关于x的一元二次方程,则k的取值范围是( ) A. k≠0 B. k≥4 C. k=-4 D. k≠-4 【答案】D 【考点】一元二次方程的定义 【解析】【解答】由题意得:k+4≠0, 解得:k≠-4, 故选:D.【分析】根据一元二次方程的定义可得k+4≠0,再解即可.
9.(2016•湖州)如图1,在等腰三角形ABC中,AB=AC=4,BC=7.如图2,在底边BC上取一点D,连结AD,使得∠DAC=∠ACD.如图3,将△ACD沿着AD所在直线折叠,使得点C落在点E处,连结BE,得到四边形ABED.则BE的长是( )
A. 4 B. 4 C. 3 D. 2 5 【答案】B 【考点】等腰三角形的性质,翻折变换(折叠问题),相似三角形的判定与性质 【解析】【解答】解:∵AB=AC, ∴∠ABC=∠C, ∵∠DAC=∠ACD, ∴∠DAC=∠ABC, ∵∠C=∠C, ∴△CAD∽△CBA, ∴ = , ∴ 4 = 4, ∴CD= 6 ,BD=BC﹣CD= 33 , ∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB, ∴△ADM∽△BDA,
∴ = ,即 6 33 = 6 , ∴DM= 6 33 ,MB=BD﹣DM= 33 - 6 33, ∵∠ABM=∠C=∠MED, ∴A、B、E、D四点共圆, ∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD, ∴△ABD∽△MBE, ∴ = ,
∴BE= = 33 6 33 33 4 = 4. 故选B.
【分析】只要证明△ABD∽△MBE,得 = ,只要求出BM、BD即可解决问题.本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难,属于中考选择题中的压轴题. 10.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为 ,则下面所列方程正确的是( )
A. 3 0 3 0 5 0 B. 3 0 3 0 5 0
C. 3 0 5 0 D. 3 0 5 0 【答案】D 【考点】一元二次方程的应用 【解析】【解答】解:由题意得,( 32 − 2 x ) ( 20 − x ) = 570【分析】将六块草坪拼为一块可得一个矩形,该矩形面积为六块草坪的面积和570m2。由图易得新矩形的长为(32−2x)m,宽为(20-x)m,所以可得方程( 32 − 2 x ) ( 20 − x ) = 570 二、填空题(共10题;共30分) 11.某种植物的主干长出a个支干,每个支干又长出同样数目的小分支,则主干、支干和小分支的总数为________. 【答案】1+a+a2 【考点】一元二次方程的应用 【解析】【解答】解:设主干长出a个支干,每个支干又长出a个小分支, 可得该植物的主干,支干和小分支的总数为:1+a+a2. 故答案为:1+a+a2 【分析】设主干长出a个支干,每个支干又长出a个小分支,则小分支为 ,所以可得总数=主干+支干+小分支。 12.如图,一艘海轮位于灯塔P的北偏东60°方向,距离灯塔为4海里的点A处,如果海轮沿正南方向航行到灯塔的正东位置,海轮航行的距离AB长________海里.
【答案】2 【考点】解直角三角形的应用﹣方向角问题 【解析】【解答】解:如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°. ∵AB∥NP, ∴∠A=∠NPA=60°. 在Rt△ABP中,∵∠ABP=90°,∠A=60°,AP=4海里, ∴AB=AP•cos∠A=4×cos60°=4× =2海里. 故答案为2. 【分析】如图,由题意可知∠NPA=60°,AP=4海里,∠ABP=90°.在Rt△ABP中利用余弦函数的定义,由AB=AP•cos∠A即可得出AB的长, 13.已知圆锥的底面半径长为5,侧面展开后得到一个半圆,则该圆锥的母线长为________. 【答案】10 【考点】圆锥的计算 【解析】【解答】设母线长为x,根据题意得 2πx÷ = π×5, 解得x=10. 【分析】根据圆锥侧面展开后得到一个半圆,半圆的周长=圆锥的母线长,依次建立方程求解即可。
14.已知 3 5,则 3 3 ________
【答案】-4 【考点】比例的性质 【解析】【解答】解:设 3 5 =a, 则可以得出:x=2a,y=3a,z=5a, 代入 3 3 中得, 原式= 3 3 5 3 3 5 4 9 5 9 5 8
4.
故答案为-4. 【分析】根据比例的性质求出代数式的值.