2019-2020年中考数学复习:数轴、相反数和绝对值
- 格式:doc
- 大小:1.22 MB
- 文档页数:18
2020中考数学总复习模块一实数与代数式知识点1:有理数真题/典题/热点/重点/易错点掌握1.(2019•呼和浩特)如图,检测排球,其中质量超过标准的克数记为正数,不足的克数记为负数,下面检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.【分析】根据题意可知:质量最接近标准的排球就是检测结果的绝对值最小的.【解析】由题意得:四个排球质量偏差的绝对值分别为:0.6,0.7,2.5,3.5,绝对值最小的为0.6,最接近标准.故选:A.2.﹣a一定是()A.正数B.负数C.0 D.以上选项都不正确【分析】利用正数与负数定义分析得出答案.【解析】﹣a中a的符号无法确定,故﹣a的符号无法确定.故选:D.3.(2014•凉山州)在实数,,0,,,﹣1.414,有理数有()A.1个B.2个C.3个D.4个【分析】根据有理数是有限小数或无限循环小数,可得答案.【解析】,0,,﹣1.414,是有理数,故选:D.4.(2019•大庆)实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.﹣n>|m| C.﹣m>|n| D.|m|<|n|【分析】从数轴上可以看出m、n都是负数,且m<n,由此逐项分析得出结论即可.【解析】因为m、n都是负数,且m<n,|m|>|n|,A、m>n是错误的;B、﹣n>|m|是错误的;C、﹣m>|n|是正确的;D、|m|<|n|是错误的.故选:C.5.(2019•贵阳)数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,则a的值是()A.3 B.4.5 C.6 D.18【分析】根据题意列方程即可得到结论.【解析】∵数轴上点A,B,M表示的数分别是a,2a,9,点M为线段AB的中点,∴9﹣a=2a﹣9,解得:a=6,故选:C.6.(2012•连云港)某药品说明书上标明药品保存的温度是(20±2)℃,该药品在18~22℃范围内保存才合适.【分析】此题比较简单,根据正数和负数的定义便可解答.【解析】温度是20℃±2℃,表示最低温度是20℃﹣2℃=18℃,最高温度是20℃+2℃=22℃,即18℃~22℃之间是合适温度.故答案为:18℃~22℃.7.(2019•宝应县一模)如图,数轴上有O、A、B三点,点O对应原点,点A对应的数为﹣1,若OB=3OA,则点B对应的数为3.【分析】根据OB=3OA,求出OB的长度,因为B在数轴上表示正数,从而得解;【解析】∵点A对应的数为﹣1,OB=3OA,∴OA=1,OB=3,∴B点对应的数是3.故答案为3.8.(2015秋•钦南区期中)﹣|﹣43|的相反数是43.【分析】根据绝对值和相反数的定义回答即可.【解析】﹣|﹣43|=﹣43,﹣43的相反数是43.故答案为:43.9.(2015秋•夏津县月考)﹣a的相反数是a.﹣a的相反数是﹣5,则a=﹣5.【分析】根据只有符号不同的两个数叫做互为相反数解答.【解析】﹣a的相反数是a,﹣a的相反数是﹣5,则﹣(﹣a)=﹣5,所以,a=﹣5.故答案为:a;﹣5.10.(2015•河北)若|a|=20150,则a=±1.【分析】先根据0次幂,得到|a|=1,再根据互为相反数的绝对值相等,即可解答.【解析】∵|a|=20150,∴|a|=1,∴a=±1,故答案为:±1.11.(2019秋•诸暨市校级月考)若|x+(﹣3.2)|+|y+5|+|z+3|=0,则x+y+z的值为﹣5.【分析】本题可根据非负数的性质求出x、y、z的值,再代入代数式即可.【解析】∵|x+(﹣3.2)|+|y+5|+|z+3|=0,∴x=3.2,y=﹣5,z=﹣3,∴x+y+z=3.2﹣5﹣3.2=﹣5.故答案为:﹣5.12.(2019秋•南川区期末)若a、b互为倒数,则﹣8ab的值为﹣8.【分析】根据倒数的定义得出ab=1,再代入求出即可.【解析】因为a、b互为倒数,所以ab=1,所以﹣8ab=﹣8×1=﹣8.故答案为:﹣8.13.(2019秋•高台县期末)已知a2+|b+1|=0,那么(a+b)2018的值为1.【分析】根据非负数的性质列式求出a、b的值,然后代入代数式进行计算即可得解.【解析】由题意得,a=0,b+1=0,解得b=﹣1,所以(a+b)2018=(0﹣1)2018=1.故答案为:1.14.(2019秋•黄梅县期中)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)=0.【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(﹣1)即可.【解析】4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.故答案为:0.15.(2018•张家界)目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为 1.6×10﹣8米.【分析】由1纳米=10﹣9米,可得出16纳米=1.6×10﹣8米,此题得解.【解析】∵1纳米=10﹣9米,∴16纳米=1.6×10﹣8米.故答案为:1.6×10﹣8.知识点2:无理数与实数真题/典题/热点/重点/易错点掌握1.(2019•滨州)若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为()A.4 B.8 C.±4 D.±8【分析】根据单项式的和是单项式,可得同类项,根据同类项是字母项相同且相同字母的指数也相同,可得m、n的值,再代入计算可得答案.【解析】由8x m y与6x3y n的和是单项式,得m=3,n=1.(m+n)3=(3+1)3=64,64的平方根为±8.故选:D.2.(2019•黄石)下列四个数:﹣3,﹣0.5,,中,绝对值最大的数是()A.﹣3 B.﹣0.5 C.D.【分析】根据绝对值的性质以及正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小判断即可.【解析】∵|﹣3|=3,|﹣0.5|=0.5,||=,||=且0.5<<<3,∴所给的几个数中,绝对值最大的数是﹣3.故选:A.3.(2019•泰安)在实数|﹣3.14|,﹣3,﹣,π中,最小的数是()A.﹣B.﹣3 C.|﹣3.14| D.π【分析】根据绝对值的大小进行比较即可,两负数比较大小,绝对值大的反而小.【解析】∵||=<|﹣3|=3∴﹣>(﹣3)C、D项为正数,A、B项为负数,正数大于负数,故选:B.4.(2019•南通)小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O,在数轴上找到表示数2的点A,然后过点A作AB⊥OA,使AB=3(如图).以O为圆心,OB长为半径作弧,交数轴正半轴于点P,则点P所表示的数介于()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【分析】利用勾股定理列式求出OB,再根据无理数的大小判断即可.【解析】由勾股定理得,OB==,∵9<13<16,∴3<<4,∴该点位置大致在数轴上3和4之间.故选:C.5.(2019•包头)计算|﹣|+()﹣1的结果是()A.0 B.C.D.6【分析】先根据二次根式的性质,绝对值的秘技,负指数幂的法则进行计算,然后进行有理数的加法运算.【解析】原式=3+3=6.故选:D.6.(2019•舟山)如图是一个2×2的方阵,其中每行、每列的两数和相等,则a可以是()A.tan60°B.﹣1 C.0 D.12019【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【解析】由题意可得:a+|﹣2|=+20,则a+2=3,解得:a=1,故a可以是12019.故选:D.7.(2018•东莞市)一个正数的平方根分别是x+1和x﹣5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解析】根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.8.(2015•凉山州)的平方根为±3.【分析】根据平方根的定义即可得出答案.【解析】∵=9∴的平方根为±3.故答案为:±3.9.(2015•资阳)已知:(a+6)2+=0,则2b2﹣4b﹣a的值为12.【分析】首先根据非负数的性质可求出a的值,和2b2﹣2b=6,进而可求出2b2﹣4b﹣a的值.【解析】∵(a+6)2+=0,∴a+6=0,b2﹣2b﹣3=0,解得,a=﹣6,b2﹣2b=3,可得2b2﹣4b=6,则2b2﹣4b﹣a=6﹣(﹣6)=12,故答案为:12.10.(2018•资阳)已知a、b满足(a﹣1)2+=0,则a+b=﹣1.【分析】直接利用非负数的性质得出a,b的值,进而得出答案.【解析】∵(a﹣1)2+=0,∴a=1,b=﹣2,∴a+b=﹣1.故答案为:﹣1.11.(2018•黔西南州)如图为洪涛同学的小测卷,他的得分应是100分.【分析】根据相反数的定义、倒数、绝对值性质及立方根的定义逐一判断即可得.【解析】①2的相反数是﹣2,此题正确;②倒数等于它本身的数是1和﹣1,此题正确;③﹣1的绝对值是1,此题正确;④8的立方根是2,此题正确;则洪涛同学的得分是4×25=100,故答案为:100.12.(2019秋•萧山区期末)小明设计了一个如下图所示的电脑运算程序:(1)当输入x的值是64时,输出的y值是.(2)分析发现,当实数x取0或负数时,该程序无法输出y值.【分析】(1)把x=64代入按程序计算即可求出值;(2)因为第一步是取算术平方根,所以负数不可以,0的算术平方根和立方根都是0,不可以是无理数,不能输出y值.【解析】(1)当x=64时,=8,=2,当x=2时,y=;故答案为:;(2)当x为负数时,不能计算,因为负数没有算术平方根;当x=0时,=0,=0,一直计算,0的算术平方根和立方根都是0,不可以是无理数,不能输出y值,∴当实数x取0或负数时,该程序无法输出y值,故答案为:0或负数.13.(2019秋•莲湖区期末)将一块体积为1000cm3的正方体木块锯成8块同样大小的小正方体木块,则每个小正方体木块的棱长为5cm.【分析】利用正方体的体积为棱长的立方得到小正方体木块的棱长为,然后求125的立方根即可.【解析】∵大正方体的体积为1000cm3,∴小正方体的体积为×1000cm3=125cm3,∴小正方体木块的棱长为=5(cm).故答案为5.14.(2011•淄博)写出一个大于3且小于4的无理数π(答案不唯一).【分析】根据无理数是无限不循环小数进行解答,由于π≈3.14…,故π符合题意.【解析】∵π≈3.14…,∴3<π<4,故答案为:π(答案不唯一).15.(2018•襄阳)计算:|1﹣|=﹣1.【分析】根据负数的绝对值等于它的相反数解答.【解析】|﹣|=﹣1.故答案为:﹣1.16.(2018秋•常德期末)的平方根是±3,﹣2的相反数是2﹣,|﹣3|=3﹣.【分析】根据算术平方根和平方根的定义计算即可;根据相反数的意义计算即可,根据绝对值的定义求出即可.【解析】=9,则的平方根是±3,﹣2的相反数是2﹣,|﹣3|=3﹣;故答案为:±3,2﹣,3﹣.17.(2019秋•东坡区校级月考)与互为相反数,则的算术平方根为.【分析】根据立方根的定义和相反数的定义可得x+4﹣2y﹣4=0,依此可求,再根据算术平方根的定义即可求解.【解析】依题意有x+4﹣2y﹣4=0,x﹣2y=0,=2,2的算术平方根为.故答案为:.18.(2019秋•大东区期末)如图,数轴上的点A表示的数是1,OB⊥OA,垂足为O,且BO=1,以点A 为圆心.AB为半径画弧交数轴于点C,则C点表示的数为1﹣.【分析】利用勾股定理求出AB的长,可得AB=AC=,推出OC=﹣1即可解决问题.【解析】在Rt△AOB中,AB==,∴AB=AC=,∴OC=AC﹣OA=﹣1,∴点C表示的数为1﹣.故答案为:1﹣.19.(2011•宁夏)数轴上A、B两点对应的实数分别是和2,若点A关于点B的对称点为点C,则点C 所对应的实数为4﹣.【分析】设点A关于点B的对称点为点C为x,再根据A、C两点到B点的距离相等即可求解.【解析】设点A关于点B的对称点为点C为x,则=2,解得x=4﹣.故答案为:4﹣.20.(2017•成都)如图,数轴上点A表示的实数是﹣1.【分析】直接利用勾股定理得出三角形斜边长即可得出A点对应的实数.【解析】由图形可得:﹣1到A的距离为=,则数轴上点A表示的实数是:﹣1.故答案为:﹣1.21.(2019•辽阳)6﹣的整数部分是4.【分析】由于1<<2,所以6﹣的整数部分是6﹣2,依此即可求解.【解析】∵1<<2,∴6﹣的整数部分是6﹣2=4.故答案为:4.22.(2018•铁岭)若x<﹣1<y且x,y是两个连续的整数,则x+y的值是3.【分析】估算得出的范围,进而求出x与y的值,即可求出所求.【解析】∵4<6<9,∴2<<3,即1<﹣1<2,∴x=1,y=2,则x+y=1+2=3,故答案为:323.(2014•辽阳)5﹣的小数部分是2﹣.【分析】根据1<<2,不等式的性质3,可得﹣的取值范围,再根据不等式的性质1,可得答案.【解析】由1<<2,得﹣2<﹣<﹣1.不等式的两边都加5,得5﹣2<5﹣<5﹣1,即3<5﹣<4,5﹣的小数部分是(5﹣)﹣3=2﹣,故答案为:2﹣.24.(2014•新疆)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=2.【分析】先求出(﹣1)的范围,再根据范围求出即可.【解析】∵9<13<16,∴3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案是:2.25.(2019•青海)根据如图所示的程序,计算y的值,若输入x的值是1时,则输出的y值等于﹣2.【分析】由题意输入x=1然后平方得x2,然后再﹣小于0,乘以(1+),可得y的值.【解析】当x=1时,x2﹣=1﹣<0,∴y=(1﹣)(1+)=1﹣3=﹣2,故答案为:﹣2.知识点3:代数式真题/典题/热点/重点/易错点掌握1.(2019秋•大东区期末)下列去括号或括号的变形中,正确的是()A.2a﹣(5b﹣c)=2a﹣5b﹣c B.3a+5(2b﹣1)=3a+10b﹣1C.4a+3b﹣2c=4a+(3b﹣2c)D.m﹣n+a﹣2b=m﹣(n+a﹣2b)【分析】根据去括号和添括号法则逐个判断即可.【解析】A、2a﹣(5b﹣c)=2a﹣5b+c,故本选项不符合题意;B、3a+5(2b﹣1)=3a+10b﹣5,故本选项不符合题意;C、4a+3b﹣2c=4a+(3b﹣2c),故本选项符合题意;D、m﹣n+a﹣2b=m﹣(n﹣a+2b),故本选项不符合题意;故选:C.2.(1999•烟台)下列代数式,x2+x﹣,,,其中整式有()A.1个B.2个C.3个D.4个【分析】解决本题关键是搞清整式的概念,紧扣概念作出判断.【解析】整式有x2+x﹣,共2个.故选:B.3.(2018•金华)对于两个非零实数x,y,定义一种新的运算:x*y=+.若1*(﹣1)=2,则(﹣2)*2的值是﹣1.【分析】根据新定义的运算法则即可求出答案.【解析】∵1*(﹣1)=2,∴=2即a﹣b=2∴原式==(a﹣b)=﹣1故答案为:﹣14.(2017•山西)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为1.08a元.【分析】根据题意可以得到最后打折后的零售价,从而可以解答本题.【解析】由题意可得,该型号洗衣机的零售价为:a(1+20%)×0.9=1.08a(元),故答案为:1.08a.5.(2019•河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7则(1)用含x的式子表示m=3x;(2)当y=﹣2时,n的值为1.【分析】(1)根据约定的方法即可求出m;(2)根据约定的方法即可求出n.【解析】(1)根据约定的方法可得:m=x+2x=3x;故答案为:3x;(2)根据约定的方法即可求出nx+2x+2x+3=m+n=y.当y=﹣2时,5x+3=﹣2.解得x=﹣1.∴n=2x+3=﹣2+3=1.故答案为:1.6.(2018•荆州)如图所示,是一个运算程序示意图.若第一次输入k的值为125,则第2018次输出的结果是5.【分析】根据运算程序可找出前几次输出的结果,根据输出结果的变化找出变化规律“第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数)”,依此规律即可得出结论.【解析】∵第1次输出的结果是25,第2次输出的结果是5,第3次输出的结果是1,第4次输出的结果是5,第5次输出的结果是1,…,∴第2n次输出的结果是5,第2n+1次输出的结果是1(n为正整数),∴第2018次输出的结果是5.故答案为:5.7.(2018•菏泽)一组“数值转换机”按下面的程序计算,如果输入的数是36,则输出的结果为106,要使输出的结果为127,则输入的最小正整数是15.【分析】根据输出的结果确定出x的所有可能值即可.【解析】当3x﹣2=127时,x=43,当3x﹣2=43时,x=15,当3x﹣2=15时,x=,不是整数;所以输入的最小正整数为15,故答案为:15.8.(2019•绵阳)单项式x﹣|a﹣1|y与2x y是同类项,则a b=1.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,结合二次根式的性质可求出a,b的值,再代入代数式计算即可.【解析】由题意知﹣|a﹣1|=≥0,∴a=1,b=1,则a b=(1)1=1,故答案为:1.9.(2018秋•雁塔区校级期末)如果多项式4x3+2x2﹣(kx2+17x﹣6)中不含x2的项,则k的值为2.【分析】先把多项式合并,然后把二次项系数等于0,再解方程即可.【解析】合并得4x3+2x2﹣(kx2+17x﹣6)=4x3+(2﹣k)x2﹣17x+6,根据题意得2﹣k=0,解得k=2.故答案是:2.10.(2019•恩施州)观察下列一组数的排列规律:,,,,,,,,,,,,,,,…那么,这一组数的第2019个数是.【分析】根据题目数字的特点,可以发现数字的变化规律,从而可以求得这一组数的第2019个数,本题得以解决.【解析】一列数为:,,,,,,,,,,,,,,,,…则这列数也可变为:,,,,,,,,,,,,,,,…由上列数字可知,第一个数的分母是1+21=3,这样的数有1个;第二个数的分母是1+22=5,这样的数有2个;第三个数的分母是1+23=9,这样的数有3个;…,∵1+2+3+…+63=2016<2019,∴这一组数的第2019个数是:,故答案为:.11.(2019•咸宁)有一列数,按一定规律排列成1,﹣2,4,﹣8,16,﹣32,…,其中某三个相邻数的积是412,则这三个数的和是﹣384.【分析】根据题目中的数字,可以发现它们的变化规律,再根据其中某三个相邻数的积是412,可以求得这三个数,从而可以求得这三个数的和.【解析】∵一列数为1,﹣2,4,﹣8,16,﹣32,…,∴这列数的第n个数可以表示为(﹣2)n﹣1,∵其中某三个相邻数的积是412,∴设这三个相邻的数为(﹣2)n﹣1、(﹣2)n、(﹣2)n+1,则(﹣2)n﹣1•(﹣2)n•(﹣2)n+1=412,即(﹣2)3n=(22)12,∴(﹣2)3n=224,∴3n=24,解得,n=8,∴这三个数的和是:(﹣2)7+(﹣2)8+(﹣2)9=(﹣2)7×(1﹣2+4)=(﹣128)×3=﹣384,故答案为:﹣384.12.(2019•铜仁市)按一定规律排列的一列数依次为:﹣,,﹣,,…(a≠0),按此规律排列下去,这列数中的第n个数是(﹣1)n•.(n为正整数)【分析】先确定正负号与序号数的关系,再确定分母与序号数的关系,然后确定a的指数与序号数的关系.【解析】第1个数为(﹣1)1•,第2个数为(﹣1)2•,第3个数为(﹣1)3•,第4个数为(﹣1)4•,…,所以这列数中的第n个数是(﹣1)n•.故答案为(﹣1)n•.13.(2019•安顺)如图,将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第7列的数是2019.【分析】观察图表可知:第n行第一个数是n2,可得第45行第一个数是2025,推出第45行、第7列的数是2025﹣6=2019【解析】观察图表可知:第n行第一个数是n2,∴第45行第一个数是2025,∴第45行、第7列的数是2025﹣6=2019,故答案为201914.(2019•青海)如图,将图1中的菱形剪开得到图2,图中共有4个菱形;将图2中的一个菱形剪开得到图3,图中共有7个菱形;如此剪下去,第5图中共有13个菱形……,第n个图中共有3n﹣2个菱形.【分析】观察图形可知,每剪开一次多出3个菱形,然后写出前4个图形中菱形的个数,根据这一规律写出第n个图形中的菱形的个数的表达式;【解析】(1)第1个图形有菱形1个,第2个图形有菱形4=1+3个,第3个图形有菱形7=1+3×2个,第4个图形有菱形10=1+3×3个,…,第n个图形有菱形1+3(n﹣1)=(3n﹣2)个,当n=5时,3n﹣2=13,故答案为:13,(3n﹣2).15.(2018•绥化)将一些圆按照如图方式摆放,从上向下有无数行,其中第一行有2个圆,第二行有4个圆,第三行有6个圆…按此规律排列下去,则前50行共有圆2550个.【分析】先找出规律,确定出第n行圆的个数为2n个,即:第50行为100个,进而求2+4+6+8+…+100即可得出结论.【解析】∵第一行有2个圆,第二行有4个圆,第三行有6个圆,…∴第n行有2n个圆,∴前50行共有圆:2+4+6+8+…+2×50=2+4+6+8+…+100=2550个,故答案为:255016.(2017•鄂尔多斯)如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是n2+2n.【分析】由第1个图形是2×3﹣3、第2个图形是3×4﹣4、第3个图形是4×5﹣5,据此可得答案.【解析】第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要云子的个数是(n+1)(n+2)﹣(n+2)=n2+2n,故答案为:n2+2n.知识点4:整式真题/典题/热点/重点/易错点掌握1.(2019•广州)下列运算正确的是()A.﹣3﹣2=﹣1 B.3×(﹣)2=﹣C.x3•x5=x15D.•=a【分析】直接利用有理数混合运算法则、同底数幂的乘除运算法则分别化简得出答案.【解析】A、﹣3﹣2=﹣5,故此选项错误;B、3×(﹣)2=,故此选项错误;C、x3•x5=x8,故此选项错误;D、•=a,正确.故选:D.2.(2018•乐山)已知实数a、b满足a+b=2,ab=,则a﹣b=()A.1 B.﹣C.±1 D.±【分析】利用完全平方公式解答即可.【解析】∵a+b=2,ab=,∴(a+b)2=4=a2+2ab+b2,∴a2+b2=,∴(a﹣b)2=a2﹣2ab+b2=1,∴a﹣b=±1,故选:C.3.(2010•乌鲁木齐)有若干张面积分别为a2、b2、ab的正方形和长方形纸片,阳阳从中抽取了1张面积为a2的正方形纸片,4张面积为ab的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为b2的正方形纸片()A.2张B.4张C.6张D.8张【分析】由题意知拼成一个大正方形长为a+2b,宽也为a+2b,面积应该等于所有小卡片的面积.【解析】∵正方形和长方形的面积为a2、b2、ab,∴正方形的边长分别为边长为a,b,长方形的长宽分别为a,b.∴它的边长为(a+2b)的正方形的面积为:(a+2b)(a+2b)=a2+4ab+4b2,∴还需面积为b2的正方形纸片4张.故选:B.4.(2013•枣庄)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.【解析】中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.5.(2008•黔南州)加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解析】A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选:D.6.(2017•宁夏)如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分沿虚线剪开,拼成右边的矩形.根据图形的变化过程写出的一个正确的等式是()A.(a﹣b)2=a2﹣2ab+b2B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣b2D.a2﹣b2=(a+b)(a﹣b)【分析】利用正方形的面积公式和矩形的面积公式分别表示出阴影部分的面积,然后根据面积相等列出等式即可.【解析】第一个图形阴影部分的面积是a2﹣b2,第二个图形的面积是(a+b)(a﹣b).则a2﹣b2=(a+b)(a﹣b).故选:D.7.(2014•枣庄)如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()A.a2+4 B.2a2+4a C.3a2﹣4a﹣4 D.4a2﹣a﹣2【分析】根据拼成的平行四边形的面积等于大正方形的面积减去小正方形的面积,列式整理即可得解.【解析】(2a)2﹣(a+2)2=4a2﹣a2﹣4a﹣4=3a2﹣4a﹣4,故选:C.8.(2018•达州)已知a m=3,a n=2,则a2m﹣n的值为 4.5.【分析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的运算方法,求出a2m ﹣n的值为多少即可.【解析】∵a m=3,∴a2m=32=9,∴a2m﹣n===4.5.故答案为:4.5.9.(2018•黄冈)若a﹣=,则a2+值为8.【分析】根据分式的运算法则即可求出答案.【解析】∵a﹣=∴(a﹣)2=6∴a2﹣2+=6∴a2+=8故答案为:810.(2018•安顺)若x2+2(m﹣3)x+16是关于x的完全平方式,则m=﹣1或7.【分析】直接利用完全平方公式的定义得出2(m﹣3)=±8,进而求出答案.【解析】∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.11.(2017•深圳)阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=2.【分析】根据定义即可求出答案.【解析】由题意可知:原式=1﹣i2=1﹣(﹣1)=2故答案为:212.(2016•西宁)已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为2.【分析】先利用乘法公式展开,再合并得到原式=x2+x﹣3,然后利用整体代入的方法计算.【解析】原式=x2﹣2x+1﹣x2+3x+x2﹣4=x2+x﹣3,因为x2+x﹣5=0,所以x2+x=5,所以原式=5﹣3=2.故答案为2.知识点5:因式分解真题/典题/热点/重点/易错点掌握1.(2014•海南)下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣25【分析】利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.【解答】解;A、a2+4a﹣21=a(a+4)﹣21,不是因式分解,故A选项错误;B、a2+4a﹣21=(a﹣3)(a+7),是因式分解,故B选项正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故C选项错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故D选项错误;故选:B.2.(2019春•玉田县期末)下列代数式中,没有公因式的是()A.ab与b B.a+b与a2+b2C.a+b与a2﹣b2D.x与6x2【分析】分别分析各选项中的代数式,能因式分解的先进行因式分解,再确定没有公因式的选项即可.【解析】A.ab与b的公因式为b,不符合题意;B.a+b与a2+b2没有公因式,符合题意;C.a+b与a2﹣b2的公因式为a+b,不符合题意;D.x与6x2的公因式为x,不符合题意;故选:B.3.(2019•台湾)若多项式5x2+17x﹣12可因式分解成(x+a)(bx+c),其中a、b、c均为整数,则a+c 之值为何?()A.1 B.7 C.11 D.13【分析】首先利用十字交乘法将5x2+17x﹣12因式分解,继而求得a,c的值.【解析】利用十字交乘法将5x2+17x﹣12因式分解,可得:5x2+17x﹣12=(x+4)(5x﹣3).∴a=4,c=﹣3,∴a+c=4﹣3=1.故选:A.4.(2018•吉林)若a+b=4,ab=1,则a2b+ab2=4.【分析】直接利用提取公因式法分解因式,再把已知代入求出答案.【解析】∵a+b=4,ab=1,∴a2b+ab2=ab(a+b)=1×4=4.故答案为:4.5.(2019•沈阳)因式分解:﹣x2﹣4y2+4xy=﹣(x﹣2y)2.【分析】先提取公因式﹣1,再套用公式完全平方公式进行二次因式分解.【解析】﹣x2﹣4y2+4xy,=﹣(x2+4y2﹣4xy),=﹣(x﹣2y)2.6.(2018•苏州)若a+b=4,a﹣b=1,则(a+1)2﹣(b﹣1)2的值为12.【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【解析】∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.7.(2019•大庆)分解因式:a2b+ab2﹣a﹣b=(ab﹣1)(a+b).【分析】先分组,再利用提公因式法分解因式即可.【解析】a2b+ab2﹣a﹣b=ab(a+b)﹣(a+b)=(ab﹣1)(a+b)故答案为:(ab﹣1)(a+b)8.(2011•遂宁)阅读下列文字与例题将一个多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:(1)am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(a+b)(m+n)(2)x2﹣y2﹣2y﹣1=x2﹣(y2+2y+1)=x2﹣(y+1)2=(x+y+1)(x﹣y﹣1)试用上述方法分解因式a2+2ab+ac+bc+b2=(a+b)(a+b+c).【分析】首先进行合理分组,然后运用提公因式法和公式法进行因式分解.【解析】原式=(a2+2ab+b2)+(ac+bc)=(a+b)2+c(a+b)=(a+b)(a+b+c).故答案为(a+b)(a+b+c).9.(2017•枣庄)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F (12)=.(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得“吉祥数”中,求F(t)的最大值.【分析】(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解,确定出F(m)的值即可;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,根据“吉祥数”的定义确定出x与y的关系式,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.【解析】(1)证明:对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上数与十位上的数得到的新数为t′,则t′=10y+x,∵t是“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=36,∴y=x+4,∵1≤x≤y≤9,x,y为自然数,∴满足“吉祥数”的有:15,26,37,48,59;(3)F(15)=,F(26)=,F(37)=,F(48)==,F(59)=,∵>>>>,∴所有“吉祥数”中,F(t)的最大值为.10.(2015•重庆)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”,再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.【分析】(1)根据“和谐数”的定义(把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同)写出四个“和谐数”,设任意四位“和谐数”形式为:,根据和谐数的定义得到a=d,b=c,则===91a+10b为正整数,易证得任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:,则===9x+y+为正整数.故y=2x(1≤x≤4,x为自然数).【解析】(1)四位“和谐数”:1221,1331,1111,6666…(答案不唯一)任意一个四位“和谐数”都能被11整除,理由如下:设任意四位“和谐数”形式为:,则满足:最高位到个位排列:a,b,c,d.个位到最高位排列:d,c,b,a.由题意,可得两组数据相同,则:a=d,b=c,则===91a+10b为正整数.∴四位“和谐数”能被11整数,又∵a,b,c,d为任意自然数,∴任意四位“和谐数”都可以被11整除;(2)设能被11整除的三位“和谐数”为:,则满足:个位到最高位排列:z,y,x.最高位到个位排列:x,y,z.由题意,两组数据相同,则:x=z,故==101x+10y,故===9x+y+为正整数.。
专题14 数轴和平面直角坐标系问题一、基础知识1.数轴的概念在数学中,可以用一条直线上的点表示数,这条直线叫做数轴。
数轴要满足以下要求:(1)在直线上任取一个点表示数0,这个点叫做原点;(2)通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;(3)选取适当的长度为单位长度,直线上从原点向右,每隔一个长度取一个点,依次表示1,2,3,4...;从原点向左,每隔一个长度取一个点,依次表示-1,-2,-3,-4...。
分数或者小数也可以用数轴上的点表示。
2.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)3.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
4.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
5.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
6.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
二、本专题典型问题考法及解析【例题1】实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣2 B.a<﹣3 C.a>﹣b D.a<﹣b【答案】D【解析】利用数轴上a,b所在的位置,进而得出a以及﹣b的取值范围,进而比较得出答案.A.如图所示:﹣3<a<﹣2,故此选项错误;B.如图所示:﹣3<a<﹣2,故此选项错误;C.如图所示:1<b<2,则﹣2<﹣b<﹣1,故a<﹣b,故此选项错误;D.由选项C可得,此选项正确.【例题2】在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)【答案】C【解析】本题考查的是关于原点的对称的点的坐标,平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数.根据关于原点对称的点的坐标特点解答.点P(﹣3,﹣5)关于原点对称的点的坐标是(3,5)三、数轴与平面直角坐标系问题训练题及其答案和解析1.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0 B.a+b<0 C.|a|<|b| D.a﹣b>0【答案】D【解析】实数与数轴.根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0.2.如图,点A所表示的数的绝对值是()A.3 B.﹣3 C. D.【答案】A【解析】根据负数的绝对值是其相反数解答即可.|﹣3|=33.实数a,b在数轴上的位置如图所示,则﹣|a﹣b|= .【答案】﹣b.【解析】首先根据数轴即可确定a,b的符号,然后根据算术平方根的定义、绝对值的性质即可化简.根据数轴可得:b>0,a<0,且|a|>|b|,∴a﹣b<0,则﹣|a﹣b|=﹣a﹣(b﹣a)=﹣a﹣b+a=﹣b4.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b -a <0; 乙:a +b >0;丙:|a |<|b |;丁:0b a. 其中正确的是( )A .甲乙B .丙丁C .甲丙D .乙丁 【答案】C.【解析】观察数轴可得,甲:b -a <0正确; 丙:|a |<|b |正确。
数与式一.实数和代数式的有关概念1.实数分类:实数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数2.数轴:规定了原点、正方向和单位长度的直线。
数轴上所有的点与全体实数是一一对应关系,即每个实数都可以用数轴上的一个点表示;反过来,数轴上的每一个点都表示一个实数。
3.相反数:只有符号不同的两个数叫做互为相反数。
0的相反数是0。
数轴上,表示互为相反数的两个点位于原点的两边(0除外),并且与原点的距离相等。
4.倒数:1除以一个数的商,叫做这个数的倒数。
一般地,实数a 的倒数为a1。
0没有倒数。
两个互为倒数的数之积为1.反之,若两个数之积为1,则这两个数必互为倒数。
5.绝对值:一个正实数的绝对值等于它本身,零的绝对值等于零,负实数的绝对值等于它的相反数。
a =()()()⎪⎩⎪⎨⎧<-=>0000a a a a a ,绝对值的几何意义:数轴上表示一个数到原点的距离。
6.实数大小的比较:在数轴上表示的两个数,右边的数总比左边的数大。
(1)正数大于零,零大于负数。
(2)两正数相比较绝对值大的数大,绝对值小的数小。
(3)两负数相比较绝对值大的数反而小,绝对值大小的数反而大。
(4)对于任意两个实数a 和b ,①a>b,②a=b,③a<b,这三种情况必有一种成立,而且只能有一种成立。
7.代数式:用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子,叫代数式。
单独的一个数或字母也是代数式。
8.整式:单项式与多项式统称为整式。
单项式:只含有数与字母乘积形式的代数式叫做单项式。
一个数或一个字母也是单项式。
单项式中数字因数叫做这个单项式的系数。
一个单项式中所有字母的指数的和叫做这个单项式的次数。
多项式:几个单项式的代数和多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
2019年中考数学知识点顺口溜有理数的加法运算:同号相加一边倒;异号相加“大”减“小”,符号跟着大的跑;绝对值相等“零”正好。
【注】“大”减“小”是指绝对值的大小。
合并同类项:合并同类项,法则不能忘,只求系数和,字母、指数不变样。
去、添括号法则:去括号、添括号,关键看符号,括号前面是正号,去、添括号不变号,括号前面是负号,去、添括号都变号。
恒等变换:两个数字来相减,互换位置最常见,正负只看其指数,奇数变号偶不变。
(a-b)2n+1=-(b-a)2n+1(a-b)2n=(b-a)2n平方差公式:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。
完全平方:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。
因式分解:一提(公因式)二套(公式)三分组,细看几项不离谱,两项只用平方差,三项十字相乘法,阵法熟练不马虎,四项仔细看清楚,若有三个平方数(项),就用一三来分组,否则二二去分组,五项、六项更多项,二三、三三试分组,以上若都行不通,拆项、添项看清楚。
“代入”口决:挖去字母换上数(式),数字、字母都保留;换上分数或负数,给它带上小括弧,原括弧内出(现)括弧,逐级向下变括弧(小—中—大)单项式运算:加、减、乘、除、乘(开)方,三级运算分得清,系数实行同级(运)算,指数运算降级(进)行。
一元一次不等式解题的一般步骤:去分母、去括号,移项时候要变号,同类项、合并好,再把系数来除掉,两边除(以)负数时,不等号改向别忘了。
一元一次不等式组的解集:大大取较大,小小取较小,小大,大小取中间,大小,小大无处找。
一元二次不等式、一元一次绝对值不等式的解集:大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。
分式混合运算法则:分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);乘法实行化简,因式分解在先,分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难;变号必须两处,结果要求最简。
学生做题前请先回答以下问题问题1:有理数有几种分类,分别是什么?问题2:数轴的定义是什么?数轴的作用有哪些?问题3:什么是相反数,怎么找一个数或一个式子的相反数?问题4:什么是绝对值,绝对值法则是什么?问题5:(1)如果数a的绝对值等于a,那么a可能是正数吗?可能是0吗?可能是负数吗?(2)如果数a的绝对值大于a,那么a可能是正数吗?可能是0吗?可能是负数吗?(3)一个数的绝对值可能小于它本身吗?数轴、相反数、绝对值(人教版)一、单选题(共18道,每道5分)1.如果收入50元记作+50元,那么支出30元记作( )A.+30元B.-30元C.+80元D.-80元答案:B解题思路:正数和负数表示相反意义的量,收入和支出是相反意义的量,所以如果收入50元记作+50元,那么支出30元记作-30元.故选B.试题难度:三颗星知识点:正数和负数的意义2.有如下一些数:-3,-3.14,-(-20),0,+6.8,,,其中负数有( )A.2个B.3个C.4个D.5个答案:B解题思路:试题难度:三颗星知识点:负数3.下列说法正确的是( )A.正有理数和负有理数统称为有理数B.正分数、0、负分数统称为分数C.小数3.14不是分数D.整数和分数统称为有理数答案:D解题思路:选项A:正有理数、负有理数和0统称为有理数,0既不是正有理数也不是负有理数,错误;选项B:正分数、负分数统称为分数,0是整数不是分数,错误;选项C:3.14是有限小数,可以写成分数的形式,错误;选项D:整数和分数统称为有理数,正确.故选D.试题难度:三颗星知识点:有理数及其分类4.下列说法正确的是( )A.正整数和负整数统称整数B.0既不是正数,也不是负数C.0是最小的有理数D.有理数就是正有理数和负有理数答案:B解题思路:选项A:正整数、0和负整数统称为整数,A选项错误;选项B:0既不是正数,也不是负数,正确选项C:所有的负有理数都比0小,所以0不是最小的有理数,错误;选项D:有理数包括正有理数、0和负有理数,错误.故选B.试题难度:三颗星知识点:有理数及其分类5.5的相反数是( )A. B.C.+5D.-5答案:D解题思路:只有符号不同的两个数互为相反数,因此5的相反数是-5.故选D.试题难度:三颗星知识点:相反数6.下列各数中,是正数的是( )A. B.-3的相反数C. D.-3的相反数的相反数答案:B解题思路:试题难度:三颗星知识点:相反数7.如图,在数轴上点A表示的数可能是( )A.1.5B.-1.5C.-2.4D.2.4答案:C解题思路:试题难度:三颗星知识点:数轴的作用——表示数8.已知有理数a,b在数轴上的位置如图所示,则下列选项错误的是( )A.a<0<bB.b>-aC.-a>0D.-b>a答案:D解题思路:试题难度:三颗星知识点:利用数轴比较大小9.已知有理数a,b在数轴上的位置如图所示,则a,-b,,从大到小的顺序为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:利用数轴比较大小10.如图,如果数轴上A,B两点之间的距离是8,那么点B表示的数是( )A.5B.-5C.3D.-3答案:D解题思路:试题难度:三颗星知识点:数轴的作用——表示距离11.下列各对数中,互为相反数的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:绝对值法则12.若,则( )A.2mB.0C.-2mD.m答案:B解题思路:试题难度:三颗星知识点:绝对值法则13.数轴上的点A到原点的距离是6,则点A表示的数为( )A.6或-6B.6C.-6D.3或-3答案:A解题思路:试题难度:三颗星知识点:数轴的作用——表示距离14.若,则a=( )A.4B.-4C.±4D.±2答案:C解题思路:试题难度:三颗星知识点:绝对值的定义15.若,则( )A.0B.xC.-xD.以上答案都不对答案:C解题思路:试题难度:三颗星知识点:绝对值法则16.是一个( )A.正数B.非正数C.非负数D.负数答案:B解题思路:试题难度:三颗星知识点:绝对值法则17.若,则a的取值范围是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:绝对值法则18.已知学校、图书馆和小明家依次坐落在一条东西走向的大街上,学校在图书馆西边20米处,小明家位于图书馆东边70米处,小明从图书馆沿街向东走了30米,接着又向东走了-40米,此时小明的位置在( )A.图书馆B.小明家C.学校西10米处D.学校东10米处答案:D解题思路:试题难度:三颗星知识点:数轴的作用——表示数2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短2.如图,AB ∥CD ,CD ⊥EF ,若∠1=125°,则∠2=( )A .25° B.35° C.55° D.65° 3.下列说法中,不正确的个数是( )①将一根细木条固定在墙上至少需要两个钉子,这是因为:两点确定一条直线 ②角的两边越长,角的度数越大 ③多项式5ab -是一次二项式 ④232a b π的系数是32A.1B.2C.3D.44.如图,钟面上的时间是8:30,再经过t 分钟,时针、分针第一次重合,则t 为( )A .756B .15011C .15013D .180115.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-16.如图,两个三角形的面积分别是 7 和 3,对应阴影部分的面积分别是 m 、n , 则 m ﹣n 等于( )A .4B .3C .2D .不能确定7.如图,是用形状、大小完全相同的小菱形组成的图案,第1个图形中有1个小菱形,第2个图形中有4个小菱形,第3个图形中有7个小菱形,……,按照此规律,第n 个图形中小菱形的个数用含有n 的式子表示为( )A .21n +B .32n -C .31n +D .4n8.请通过计算推测32018的个位数是( ) A .1B .3C .7D .99.下列结论不正确的是( )A .若a >0,b >0,则ab >0B .若a <0,b <0,则a ﹣b <0C .若a >0,b <0,且|a|>|b|,则a ﹣b >0D .若a <0,b >0,且|a|>|b|,则a ﹣b <0 10.5-的相反数是( ) A.15B.5C.15-D.5-11.下列运算正确的是( ).A .-(-3)2=-9 B .-|-3|=3 C .(-2)3=-6 D .(-2)3=812.某商贩在一次买卖中,同时卖出两件上衣,售价都是120元,若按成本计,其中一件盈利25%,另一件亏本25%,在这次买卖中他( ).A .赔16元B .不赚不赔C .赚8元D .赚16元 二、填空题13.如图,以图中的A 、B 、C 、D 为端点的线段共有___条.14.如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过点O 作DE//BC ,分别交AB,AC 于点D,E,若AB=4,AC=3,则△ADE 的周长是_______________。
一.实数知识过关1.实数有关的概念1. 有理数:__________________2. 无理数:无限不循环小数叫做无理数.3. 实数:有理数和_______统称为实数.4. 实数的分类:(1) 按定义分: (2)按性质分:5. 数轴:(1)规定了______、_______、_______的直线叫做数轴;(2)______和实数是一一对应的关系.6. 相反数、绝对值、倒数考点分类考点1 相反数、倒数和绝对值 例1:2023-的相反数是( )A.1B.-1C.2023D.20231已知点M 、N 、P 、Q 在数轴上的位置如图所示,则其中对应的绝对值最大的点是( )A. NB.MC.PD.Q考点2 无理数的识别例2 在实数389722,,,π-中,是无理数的是( ) A. 722- B.9 C.π D.38考点3 科学记数法例3 (1) 一天时间为86400秒,用科学记数法表示这一数字是( )A. 210864⨯B. 3104.86⨯C. 41064.8⨯D.510864.0⨯(2) 目前世界上能制造出的最小晶体管的长度只有0.00000004m ,将0.00000004用科学记数法表示为( )A. 8104⨯B. 8104-⨯C.8104.0⨯D.8104⨯-考点4 非负数的性质例4 已知x,y 为实数,且0|2|31=-+-y x 则x -y 的值为( ) A.3 B.-3 C.1 D.-1考点5 绝对值的化简例5 已知有理数a,b 在数轴上如图所示,且||||b a =,则可化简为( )A.a -bB.a+bC.2aD.2b真题演练1.两千多年前,中国人就开始使用负数,如果收入100元记作+100元,那么支出60元应记作( ) A .﹣60元B .﹣40元C .+40元D .+60元2.下列各数不是有理数的是( ) A .1.21B .﹣2C .2πD .123.下列各数:−74,1.010010001,833,0,﹣π,﹣2.626626662…,0.1⋅2⋅,其中有理数的个数是( ) A .2B .3C .4D .54.在−13,227,0,﹣1,0.12,14,﹣2,﹣1.5这些数中,正有理数有m 个,非负整数有n 个,分数有k 个,则m ﹣n +k 的值为( ) A .3B .4C .6D .55.有理数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .a >﹣2B .|a |>bC .a >﹣bD .|b |>|a |6.已知数a ,b ,c 在数轴上的位置如图所示,化简|a +b |﹣|a ﹣b |+|a ﹣c |的结果为( )A .﹣a ﹣2b ﹣cB .﹣a ﹣b ﹣cC .﹣a ﹣cD .﹣a ﹣2b +c7.﹣2022的相反数是( ) A .﹣2022B .2022C .﹣2021D .20218.−43的相反数是( ) A .34B .43C .−34D .−439.新的一年到来了,中考也临近了,你是否准备好了?请选出2023的相反数是( ) A .12023 B .−12023C .2023D .﹣202310.下列各数中,属于分数的是()A.﹣0.2B.π2C.234D.|a|a11.已知:(a﹣2)2+|b+3|+|c+4|=0,请求出:5a﹣b+3c的值是()A.0B.﹣1C.1D.无法确定12.数据2060000000用科学记数法表示为()A.206×107B.2.06×10C.2.06×109D.20.6×108 13.2022年11月27日,宁波舟山港累计完成集装箱吞吐量超过3108万标准箱,提前34天达到去年全年总水平.将3108万用科学记数法表示应为()A.3.108×106B.3.108×107C.31.08×106D.0.3108×108 14.新型冠状病毒是承载在飞沬上传播的,而飞沬的直径是5um(提示:1m=1000000um),只要能够过滤小于5um的颗粒的空气净化器都有用,我们常用的医用口罩等都是有用的,飞沬直径用科学记数法可表示为()A.5×106m B.5×10﹣6m C.50×10﹣6m D.0.5×10﹣5m 15.华为麒麟990芯片采用了最新的0.000000007米的工艺制程,数0.000000007用科学记数法表示为()A.7×10﹣9B.7×10﹣4C.0.7×10﹣9D.0.7×10﹣8课后练习1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.在一部中国古代数学著作中,涉及用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数,这部著作是()A.《几何原本》B.《九章算术》C.《孙子算经》D.《四元玉鉴》2.有理数a、b、c、d在数轴上的对应点如图所示,这四个数中绝对值最小的是()A.a B.b C.c D.d3.下列各数中最小的负整数是()A.﹣2021B.﹣2022C.﹣2023D.﹣14.2022年11月13日,第十四届中国国际航空航天博览会在珠海圆满落幕,本届航展参展规模远超预期、参展展品全领域覆盖、商贸交流活动成效显著.航展6天,共签订总值超过398亿美元的合作协议书,39800000000用科学记数法表示为()A.3.98×1011B.0.398×1010C.3.98×1010D.0.398×1011 5.已知|3a+1|+(b﹣3)2=0,则(ab)2022的值是()A.1B.﹣1C.0D.36.若(a+1)2+|b﹣2|=0,则(b+a)2021的值是()A.1B.﹣2021C.﹣1D.2021填空题(共21小题)7.2022年全国粮食达到13731亿斤,数据13731用四舍五入法精确到1000,并用科学记数法表示是.8.某头非洲大象的体重大约3880千克,则将3880千克精确到100千克用科学记数法表示记为千克.9.观察下面式子:21=2,22=4,23=8,24=16,25=32,26=64…,那么22023的结果的个位上的数字是.10.如图,周长为6个单位长度的圆上的六等分点分别为A,B,C,D,E,F,点A落在2的位置,将圆在数轴上沿负方向滚动,那么落在数轴上﹣2023的点是.11.数轴上,点B在点A的右边,已知点A表示的数是﹣1,且AB=2023,那么点B表示的数是.12.若a的相反数等于它本身,b是最小的正整数,c是最大的负整数,则代数式a﹣b+c =.13.若a.b互为相反数,c的倒数是−35,则a+b﹣6c的值是.冲击A+如图1所示,△ABC是以AB为底的等腰三角形,AC=BC=6,延长CB至P,使得BP=BC,连接AP,AP=4.(1)求证:直线AP为圆O的切线;(2)如图2所示,将△ABC沿着AC翻折至△ACQ处,QC边与圆交于点D,连接AD,求△ACD的面积.。
2019-2020年中考数学复习:数轴、相反数和绝对值
三只钟的故事 一只小钟被主人放在了两只旧钟当中,两只旧钟滴答、滴答的走着。 一只旧钟对小钟说:“来吧,你也该工作了。可是我有点担心,你走完三千两百万次以后,恐怕会吃不消的。” “天哪!三千两百万次。”小钟吃惊不已,“要我做这么大的事?办不到,办不到!”另一支旧钟说:“别听他胡说八道,不用害怕,你只要每秒滴答摆一下就行了。” “天下哪有这么简单的事情?”小钟将信将疑,“如果这样,我就试试吧。”小钟很轻松地每秒滴答摆一下,不知不觉中,一年过去了,它摆了三千两百万次。 成功就是这样,把简单的事做到极致,就能成功。
例1: 若(a-1)2 +||b-2=0,则以a、b为边长的等腰三角形的周长为_________. 例2: 若实数a、b满足04|2|ba,则ba2= . 例3: 若实数x、y满足|4|80xy,则以x、y的值为边长的等腰三角形的周长为 。
例4: 已知8,2,ababba,则ab的值是( ) 1066101010ABCD、、、或、或
A组 1、如图5-1,数轴上点P表示的数可能是 ( )
-2 0 1 P -3 -1 2 3 图5-1 773.210ABCD、、、、
2、如图5-2,数轴上的点A表示的数为a,则1a等于( )
A、 12 B、12 C、-2 D、2 3、如图5-3,若将三个数3,7,11表示在数轴上,其中能被如图所示的阴影覆盖的数是 .
4、如图5-4,在数轴上点A和点B之间表示的整数点有_________个. 5、如图5-5,数轴上两点A、B分别表示实数a、b,则下列四个数中最大的一个数是 ( )
A、a B、C、1a D、1b 6、如图5-6,数轴上表示数3的点是_______________.
7、实数a,在数轴上对应点的位置如图5-7所示, 则a (填“”、“”或“”) .
8、实数a、两数在数轴上的位置如图5-8所示,下列结论正确的是 ( ) 00AabBab、、 00CabDba、、
9、如图5-9,数轴上AB,两点表示的数分别为1和3,点B关于点A的对称点为C,则点C所表示的数
为( ) A、23 B、13 C、23 D、13 10、已知a、两数在数轴上所对应的点如图5-10所示,,,MabNabHabGab,下列各式 正确的是 ( )
图5-2 -2 0 1 -3 -1 2 3
图5-3
图5-4 B A 27
110AB
5-5图
0 -2 1 -3 -1 2 3 5-6图
ABC
5-7图ab0
5-9图CBOAAMNHGBHMGNCHMNGDGHMN、、、、
11、如果上升3米记作+3米,那么下降2米记作 米. 12、把温度计显示的零上5℃用+5℃表示,那么-2℃应表示为________. 13、如果+3吨表示运入仓库的大米吨数,那么运出5吨大 米表示为 ( ) A、-5吨 B、+5吨 C、-3吨 D、+3吨 14、如果+20%表示增加20%,那么-6%表示 ( ) A、增加14% B、增加6% C、减少6% D、减少26% 15、如果向东走80 m记为80 m,那么向西走60 m记为 ( )
A、-60 m B、︱-60︱m C、-(-60)m D、601m 16、点A,B,C,D在数轴上的位置如图5-11所示,其中表示-2的相反数的点是___________.
17、如图5-12,数轴上点M所表示的数的相反数是( ) 2.52.555ABCD、、、、
18、如图5-13,数轴上点A所表示的数与_____互为相反数.
19、如图5-14,数轴上的点A表示的数为a,则1a等于( ) A、12 B、12 C、-2 D、2
20、如图5-15,若A是实数a在数轴上对应的点,则关于a,-a,1的大小关系表示正确的是( ) A、a<1<-a B、a<-a<1 C、1<-a<a D、-a<a<1
21、23的相反数是 ( )
-1 0 -3 -2 A B C D
图5-11
5-10图1a01
b
5-12图M3210123
5-13图A3210123
5-14图A0
1
5-15图A0
122333322ABCD、、、、
22、相反数等于3的数是 ( ) A、3 B、3 C、13 D、13
23、2的相反数是 ( ) 112222ABCD、、、、
24、一个数的相反数是-5的倒数,这个数是 ( ) 115555ABCD、、、、
25、(-2)2-3+5的相反数是 ( ) A、2 B、-2 C、-6 D、6 26、数轴上的点A到原点的距离是6,则点A表示的数 为 ( ) A、或6 B、6 C、6 D、或3 27、在数轴上表示2的点离开原点的距离等于 ( ) A、2 B、2 C、2 D、4 28、和在数轴上表示数-3的点A距离等于2.5的点B所表示的数是_______________. 29、若一个数与它的相反数在数轴上对应点间的距离为8个单位长度,则这个数是 ( ) A、+8和–8 B、+4和–4 C、+8 D、 –4 30、实数a、两数在数轴上的位置如图5-16所示,下列结论正确的是 ( )
AabBabCabDab、、、、
31、-6的绝对值是 ( ) A、6 B、-6 C、6 D、16
32、计算12的结果正确的是 ( ) 3113ABCD、、、、 33、|-5|的倒数是 ( ) A、-5 B、-15 C、5 D、15
34、若3a,则a=______________. 35、如果a与1互为相反数,则│a│等于 ( ) A、2 B、-2 C、1 D、-1 B组 36、若实数a、互为相反数,则下列等式中恒成立的是 ( )
5-16图a0b A、 0ab B、 0ab C、 1ab D、 1ab 37、如图5-17,数轴上A、B两点所表示的两数的( ) A、和为正数 B、和为负数 C、 积为正数 D、 积为负数
38、若3a的倒数与293a互为相反数,则a的值为_____.
39、已知x、y是实数,且2(1)24xyxy与互为相反数,求实数xy的负倒数.
40、已知a、互为相反数,、d互为倒数,x的绝对值等于1,求2abxcdx的值. 41、若22(1)0,xy则yx=__________. 42、若11aa,则a的取值范围是 ( ) 1111AaBaCaDa、、、、
43、已知12x,则231xx等于 ( ) 2222AxBCxD、、、、
44、已知a、为实数,且0a,0b,化简2222aabbba.
O -3
5-17图
AB数轴、相反数和绝对值 例1: 若(a-1)2 +||b-2=0,则以a、b为边长的等腰三角形的周长为_________. 【答案】5 【解析】先根据非负数的性质列式求出a、b再分情况讨论求解即可. 【方法指导】本题考查了等腰三角形的性质,非负数的性质,以及三角形的三边关系,难点在于要讨论求解.
例2: 若实数a、b满足04|2|ba,则ba2= . 【答案】 1. 【解析】因为|2|a和4b都是非负数,所以由04|2|ba可得a=-2,b=4,
把这两个数代入ba2=1,故答案填1. 【方法指导律】两个或多个非负数之和等于0,则每个数非负数都等于0,从而可以求得各个字母的值,进而求得代数式的值.
例3: 若实数x、y满足|4|80xy,则以x、y的值为边长的等腰三角形的周长为 。
【答案】20. 【解析】. 由题意得: 40,80.xy解得4,8.xy所在所求的等腰三角形的两边分别为4和8,所以这个等腰三角形的周长为8+8+4=20. 【方法指导】本题考查几个非负数和的问题及已知等腰三角形的两边求这个三角形的周长.几个几个非负数的和为0,则每一部分都是0,得到方程得到解.当已知等腰三角形的两边时,求三角形的周长时就分情况讨论,看看三边是否满足够成三角形的条件.
例4: 已知8,2,ababba,则ab的值是( ) 1066101010ABCD、、、或、或
【答案】C