半导体纳米材料的制备方法(精)
- 格式:doc
- 大小:61.50 KB
- 文档页数:8
材料学《第二课堂》课程论文题目:TiO2半导体纳米材料姓名:学号:目录1. 课程设计的目的 (1)2. 课程设计题目描述和要求 (1)3. 课程设计报告内容 (1)3.1 TiO2半导体纳米材料的特性 (1)3.2 TiO2半导体纳米材料的制备方法 (3)3.3 TiO2半导体纳米材料的表征手段 (3)3.4 TiO2半导体纳米材料的发展现状与趋势 (4)4. 结论 (5)1.课程设计的目的本课程论文的主要目的是论述TiO2半导体纳米材料,通过简要概述TiO2半导体纳米材料的特性、制备方法、表征手段及发展现状与趋势等相关方面的内容。
通过这次课设,了解TiO2半导体纳米材料,巩固课堂上所学的有关纳米材料的有关知识,提高自己应用所学知识和技能解决实际问题的能力。
2.课程设计的题目描述及要求课程设计的题目:TiO2半导体纳米材料TiO2半导体纳米材料由于它具有不同于体材料的光学非线性和发光性质,在未来光开关、光存储、光快速转换和超高速处理等方面具有巨大的应用前景。
本文就TiO2半导体纳米材料的主要制备方法与表征手段做一全面总结。
3.课程设计报告内容3.1 TiO2半导体纳米材料的特性1、光学特性TiO2半导体纳米粒子(1~ 100 nm ) [2]由于存在着显著的量子尺寸效应, 因此它们的光物理和光化学性质迅速成为目前最活跃的研究领域之一, 其中TiO2半导体纳米粒子所具有的超快速的光学非线性响应及(室温) 光致发光等特性倍受世人瞩目。
通常当半导体粒子尺寸与其激子玻尔半径相近时, 随着粒子尺寸的减小, 半导体粒子的有效带隙增加, 其相应的吸收光谱和荧光光谱发生蓝移, 从而在能带中形成一系列分立的能级[1]。
2、光电催化特性1)TiO2半导体纳米粒子优异的光电催化活性近年来, 对纳米TiO2半导体粒子研究表明: 纳米粒子的光催化活性均明显优于相应的体相材料。
我们认为这主要由以下原因所致:①TiO2半导体纳米粒子所具有的量子尺寸效应使其导带和价带能级变成分立的能级, 能隙变宽, 导带电位变得更负, 而价带电位变得更正。
纳米材料的制备方法纳米材料的制备方法多种多样,具体选择的方法取决于所需纳米材料的性质、应用需求以及实验条件等因素。
以下是几种常见的纳米材料制备方法:1.化学合成法:-溶液法:将适当的化学物质在溶剂中混合反应,控制反应条件如温度、pH值等,通过溶液中原子、离子或分子的自组装形成纳米结构。
常见的溶液法包括溶胶-凝胶法、共沉淀法、沉积法等。
-气相沉积法:将气态前驱物质通过化学反应沉积到基底表面,形成纳米结构。
气相沉积法包括化学气相沉积(CVD)、物理气相沉积(PVD)等。
2.物理方法:-机械球磨法:通过机械力的作用使粉末颗粒在球磨罐中产生碰撞和摩擦,从而实现颗粒的细化和形态的改变,制备纳米颗粒或纳米结构。
-溅射法:利用高能粒子轰击靶材表面,使靶材表面原子或分子脱落并沉积到基底表面,形成纳米薄膜或纳米结构。
3.生物合成法:-利用生物体内的生物合成过程,通过调控生物体的生理条件或添加适当的试剂,使生物体产生纳米材料。
常见的生物合成法包括植物合成、微生物合成等。
4.模板法:-利用模板的空间排列结构和特定的化学性质,将原料物质定向沉积或填充到模板孔道中,通过模板的模板效应制备纳米结构。
常见的模板法包括硅模板法、自组装模板法等。
5.激光法:-利用激光束对物质进行光照,控制激光的能量和焦点位置,使材料在局部区域发生化学或物理变化,形成纳米结构。
常见的激光法包括激光烧蚀、激光诱导化学气相沉积等。
这些制备方法各有特点,可以根据纳米材料的具体要求选择适合的方法进行制备。
同时,纳米材料的制备过程中需要注意控制反应条件、纯度和结构等关键因素,以确保制备得到高质量的纳米材料。
纳米材料的制备方法1 纳米材料纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体,非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。
纳米材料大致可分为纳米粉末(零维),纳米纤维(一维),纳米膜(二维),纳米块体(三维),纳米复合材料,纳米结构等六类。
[2]纳米材料的物理化学性质不同于微观原子、分子,也不同于宏观物体,纳米介于宏观世界与微观世界之间。
纳米材料的特殊结构使得它具有特殊的力学、磁学、光学等特殊的性能。
这些有益的性能让纳米材料的研究空前火热。
现在,纳米材料已经广泛应用于工业和民用领域。
比如纳米疏水涂料可以用来制成衣服、汽车玻璃膜等,这样衣服不会湿,汽车玻璃也不会在下雨天模糊了;再如纳米吸波材料,可以作为隐身战机的涂层,配合特殊的气动布局能使战机的雷达反射面积减小到几平方厘米。
2纳米材料的制备方法2.1 溶胶凝胶法溶胶-凝胶法是以无机物或金属醇盐做前驱体,在液相将这些原料均匀混合,并进行水解、缩合化学反应,在溶液中形成稳定的透明溶胶体系,溶胶经陈化,胶粒间缓慢聚合,形成三维空间网络结构的凝胶,凝胶网络间充满了失去流动性的溶剂,形成凝胶。
凝胶经过干燥、烧结固化制备出分子乃至纳米亚结构的材料。
可在低温下制备纯度高、粒度尺寸均匀的纳米材料。
在制备过程中无需机械混合,不易掺入杂质,产品纯度高。
由于在溶胶-凝胶过程中,溶胶由溶液制得,化合物在分子级水平混合,因此胶粒内及胶粒间的化学成分完全一致,化学均匀性好;颗粒细,胶粒尺寸小于0.1μm;工艺、设备简单。
余家国等[3]用该法制备了锐钛矿型TiO2纳米粉体,甲基橙水溶液的光催化降解实验表明,TiO2纳米粉体的光催化活性明显高于普通TiO2粉体。
干燥蒸发水解湿凝胶溶胶溶质溶剂热处理干凝胶成品图1 溶胶-凝胶法的过程图2.2 水热合成法水热合成法是通过高温高压在水溶液或蒸汽等流体中合成物质,再经分离和热处理得到纳米微粒。
纳米材料制备方法简介
纳米材料制备方法是指用于生产纳米材料的各种工艺方法,它们可以将原材料加工成纳米尺度的微粒。
根据纳米材料的性质及其用途,纳米材料制备方法大致可分为两大类:物理方法和化学方法。
一、物理方法:
1. 气相沉积法:利用气体中的还原剂及原料释放到真空室内,在真空中经过热力学的反应形成纳米颗粒。
2. 冷冻干燥法:将悬浮液放入冷冻装置中冷冻,然后将液体分子强行脱水,使悬浮液中的物质在固态中凝结而形成纳米粒子。
3. 电火花法:利用电解质在特定的电场作用下,催化产生的等离子体,使原料形成纳米粒子。
4. 光敏剂法:利用光敏剂对激发光进行吸收,使原料进行分散而形成纳米粒子。
二、化学方法:
1. 化学气相沉积法:利用气态原料在真空中经过化学反应而形成纳米粒子。
2. 超声法:利用超声波的震荡,使原料分散而形成纳米粒子。
3. 生物法:利用微生物或植物细胞在特定条件下,形成纳米粒子。
4. 酸-碱法:将原料溶液与混合酸溶液混合,使原料溶解,并形成纳米粒子。
简述纳米材料的制备及其性能表征一、前言纳米技术是在0.1~100nm尺寸空间内研究电子、原子和分子运动规律和特性的科学技术。
纳米微粒是指尺寸介于1~100nm之间的金属或半导体的细小微粒。
纳米微粒所具有的特殊结构层次赋予了它许多特殊的性质和功能,如表面效应,小尺寸效应、量子尺寸效应、宏观量子隧道效应等。
这一系列新颖的物理化学特性使它在众多领域,特别是光、电、磁、催化等方面有着重大的应用价值。
纳米材料是纳米科技的一个分支,它是纳米科技的一个分支,它是纳米技术发展的基础。
科学家们正致力于研究对纳米材料的组成、结构、形态、尺寸、排列等的控制,以制备符合各种预期功能的纳米材料。
纳米材料的制备方法有很多,制备纳米材料中最基本的原则有二:一是将大块固体分裂成纳米微粒;二是由单个基本微粒聚集形成微粒,并控制微粒的生长,使其维持在纳米尺寸。
二、纳米材料制备方法简述(一)传统的物理方法1.粉碎法粉碎法制备纳米材料属于物理方法,主要包括低温粉碎法,超声粉碎法,爆炸法,机械球磨法等,这些方法操作简单成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。
2.凝聚法凝聚法制备纳米材料也是属于一种物理方法,主要包括真空蒸发凝聚和等离子体蒸发凝聚(二)传统的化学法1.气相沉积法该法是利用挥发性金属化合物蒸气的化学反应来合成所需物质的方法,它的优点主要在于:①金属化合物原料具有挥发性,容易提纯,而且生成粉料不需进行粉碎,因而生成物纯度高;②生成颗粒的分散性好;③控制反应条件可以得到颗粒直径分布范围较窄的超微细粉;④容易控制气氛;⑤特别适合制备具有某些特别用途的碳、氮、硼化合物超细微粉。
2.化学沉淀法沉淀法主要包括共沉淀法、均匀沉淀法、直接沉淀法等,这些方法都是利用生成沉淀的液相反应来制取。
3.胶体化学法该法首先采用离子交换法、化学絮凝法、溶胶法制得透明的阳性金属氧化物的水溶胶,以阴离子表面活性剂进行处理,然后用有机溶剂冲洗制得有机溶胶,经脱水和减压蒸馏在低于所有表面活性剂热分解温度的条件下制得无定型球形纳米颗粒。
纳米材料的制备原理
1. 碳纳米管的制备原理,碳纳米管可以通过电弧放电、化学气相沉积和化学气相沉积等技术制备。
其中,电弧放电是通过在高温下蒸发碳源,使其在惰性气体中凝结成碳纳米管;化学气相沉积则是通过在合适的催化剂下,使碳源气体在高温下裂解并在催化剂表面沉积形成碳纳米管。
2. 金属纳米颗粒的制备原理,金属纳米颗粒可以通过溶液法、气相法和固相法等制备。
溶液法是通过还原金属盐溶液中的金属离子得到金属纳米颗粒;气相法是通过将金属蒸气在合适条件下冷凝成纳米颗粒;固相法是通过固态反应在合适条件下生成金属纳米颗粒。
3. 量子点的制备原理,量子点是通过在合适的条件下控制半导体材料的生长,形成具有量子尺寸效应的微小颗粒。
常见的制备方法包括溶液法、气相法和微乳液法等,其中溶液法是最常用的制备方法,通过在溶液中控制反应条件和生长时间来合成所需尺寸和形貌的量子点。
总的来说,纳米材料的制备原理涉及到物理、化学和材料科学
的多个领域,通过合理设计和控制制备条件,可以获得具有特定形貌和性能的纳米材料。
这些原理为纳米材料的制备提供了重要的理论和实践基础,也为纳米材料在能源、电子、医药等领域的应用奠定了基础。
纳米/微米三维结构的制备纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
纳米级结构材料简称为纳米材料(nano material),是指其结构单元的尺寸介于1纳米~100纳米范围之间。
由于它的尺寸已经接近电子的相干长度,它的性质因为强相干所带来的自组织使得性质发生很大变化。
并且,其尺度已接近光的波长,加上其具有大表面的特殊效应,因此其所表现的特性,例如熔点、磁性、光学、导热、导电特性等等,往往不同于该物质在整体状态时所表现的性质。
纳米颗粒材料又称为超微颗粒材料,由纳米粒子(nano particle)组成。
纳米粒子也叫超微颗粒,一般是指尺寸在1~100nm间的粒子,是处在原子簇和宏观物体交界的过渡区域,从通常的关于微观和宏观的观点看,这样的系统既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,它具有表面效应、小尺寸效应和宏观量子隧道效应。
当人们将宏观物体细分成超微颗粒(纳米级)后,它将显示出许多奇异的特性,即它的光学、热学、电学、磁学、力学以及化学方面的性质和大块固体时相比将会有显著的不同。
纳米技术的广义范围可包括纳米材料技术及纳米加工技术、纳米测量技术、纳米应用技术等方面。
其中纳米材料技术着重于纳米功能性材料的生产(超微粉、镀膜、纳米改性材料等),性能检测技术(化学组成、微结构、表面形态、物、化、电、磁、热及光学等性能)。
纳米加工技术包含精密加工技术(能量束加工等)及扫描探针技术。
纳米材料具有一定的独特性,当物质尺度小到一定程度时,则必须改用量子力学取代传统力学的观点来描述它的行为,当粉末粒子尺寸由10微米降至10纳米时,其粒径虽改变为1000倍,但换算成体积时则将有10的9次方倍之巨,所以二者行为上将产生明显的差异。
纳米粒子异于大块物质的理由是在其表面积相对增大,也就是超微粒子的表面布满了阶梯状结构,此结构代表具有高表面能的不安定原子。
贾学伟20085040024本科毕业论文学院物理电子工程学院专业物理学年级2008级姓名贾学伟设计题目纳米材料的主要制备方法指导教师闫海龙职称副教授2012年4月28日目录摘要 (1)Abstract (1)1 引言 (1)1.1纳米材料的定义 (1)1.2纳米材料的研究意义 (2)2纳米材料的主要制备方法 (3)2.1化学气相沉积法 (3)2.2溶胶-凝胶法 (5)2.3分子束外延法 (6)2.4脉冲激光沉积法 (8)2.5静电纺丝法 (9)2.6磁控溅射法 (11)2.7水热法 (12)2.8其他制备纳米材料的方法 (13)3总结 (14)参考文献 (14)致谢 (15)纳米材料的主要制备方法学生姓名:贾学伟学号:20085040024学院:物理电子工程学院专业:物理学指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。
随着纳米科技的发展,纳米材料的制备方法已日趋成熟。
本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。
在此基础上,分析了现代纳米材料制备方法的发展趋势。
纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。
关键词:纳米;纳米材料;纳米科技;制备方法The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century.Key words:nanometer;na nomaterials;nanotechnology;preparation1 引言1.1纳米材料的定义纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。
TiO_2纳米半导体材料的制备及其光探测性能半导体光探测器在军事和国民经济的各个领域均有广泛应用,如光纤通讯系统、成相遥感、环境监测以及光度计量等。
已经商业化的光探测器主要基于Si、GaAs等半导体材料,但是这些材料因具有较窄的禁带宽度,紫外光选择性较差,并需要可见、红外光过滤器。
TiO2纳米半导体材料,因其较宽的禁带宽度,具有良好的紫外光选择性。
同时还具有稳定的化学性质、较强的耐候性、高的电子注入率和传导性能等其它半导体材料所不具备的优点,在光电探测领域发挥越来越重要的作用。
在TiO2紫外光探测器的研究中,一直存在高光响应度和高响应速率难以兼得的问题。
本文采用具有高紫外光吸收能力的聚合物以及纳米颗粒支化纳米棒的结构改性,提高了TiO2紫外光探测器光响应度的同时得到了较快的响应速率。
为了拓展TiO2对可见光的探测应用,又采用有机染料和导电聚合物聚吡咯对TiO2改性,制备出具有单波长可见光选择性的光谱探测器,并验证了这种可见光探测器具有普适性,可以扩展到其它半导体体系。
为提高TiO2紫外光探测器的光响应度,提出采用聚苯乙烯磺酸(PSS)改性TiO2纳米颗粒来增强紫外光吸收和增加光生电子-空穴对。
分别以TiO2纳米颗粒及其PSS改性复合材料构建了三明治结构的光导型紫外光探测器。
TiO2纳米颗粒光探测器的光响应度和光/暗电流比为1.2AW-1和40,响应时间为22.63s(上升时间)和15.93s(衰减时间),紫外/可见抑制比为86,表现出良好的紫外光选择性。
PSS改性后的复合材料紫外光探测器的光响应度随着PSS层数增多而增大,10层PSS/TiO2复合材料的光响应度比5层PSS复合材料高出1个数量级。
10层PSS/TiO2复合材料的光响应度和光/暗电流比分别为602AW-1和1932,与纯TiO2纳米颗粒相比,均提高了3个数量级。
这一高光响应度比大部分报道的TiO2纳米颗粒紫外光探测器高出1-2个数量级。
纳米材料基础知识及制备方法简介
纳米材料是指任意一维的尺度小于l00nm 的晶体、非晶体、准晶
体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面
与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应
使得纳米材料具有很多奇特的性能。
纳米材料的基本单元按空间维数可以分为三类(1)零维纳米材料,指在
空间三维尺度上均在纳米尺度,如:纳米颗粒、原子团簇等;(2) —维纳米材
料,指在空间上有两维处于纳米尺度,如:纳米线、纳米棒等;(3) 二维纳
米材料,指在三维空间中有一维在纳米尺度,如超薄膜、多层膜、超晶格
等。因为这些单元往往具有量子性质,所以对零维、一维和二维的基本单
元分别又有量子点、量子线和量子阱之称。
纳米材料由于具有特异的光、电、磁、催化等性能,可广泛应用于国
防军事和民用工业的各个领域。它不仅在高科技领域有不可替代的作用,
也为传统的产业带来生机和活力。随着纳米材料制备技术的不断开发及应
用范围的拓展,工业化生产纳米材料必将对传统的化学工业和其它产业产
生重大影响。
纳米材料因其尺寸、结构的特殊性导致了以下宏观物质所不具有的基
本物理效应:小尺寸效应、表面效应、量子尺寸效应和宏观量子險道效应。
这四种效应是纳米粒子与纳米固体的基本特性,它使纳米粒子和固体呈现
许多奇异的物理性质和化学性质,如高强度、高韧性、高热膨胀系数、高
比热和低恪点、异常的导电率和磁化率、极强的吸波性、高扩散性等。
小尺寸效应(Small Size Effeet)
纳米材料的制备与应用在当今科技飞速发展的时代,纳米材料以其独特的性能和广泛的应用前景,成为了材料科学领域的研究热点。
纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1 100 纳米)的材料,由于其尺寸极小,纳米材料展现出了与传统宏观材料截然不同的物理、化学和生物学特性。
纳米材料的制备方法多种多样,每种方法都有其特点和适用范围。
物理方法是制备纳米材料的常见途径之一,其中物理气相沉积法(PVD)备受关注。
通过在真空环境中加热原材料,使其蒸发并在基底上沉积,从而形成纳米薄膜或纳米颗粒。
这种方法制备的纳米材料纯度高、结晶性好,但设备成本较高,工艺相对复杂。
机械球磨法是另一种物理制备方法,它通过球磨机中球体的碰撞和摩擦,将大块材料粉碎成纳米级颗粒。
虽然这种方法简单易行,但容易引入杂质,且颗粒的尺寸和形状分布较难控制。
化学方法在纳米材料制备中也发挥着重要作用。
化学沉淀法是一种常用的化学制备手段,通过化学反应使溶液中的离子生成沉淀,经过后续处理得到纳米材料。
该方法成本低、操作简单,但产物的纯度和分散性有时不够理想。
溶胶凝胶法也是化学制备中的重要方法,通过将前驱体在溶液中进行水解和缩合反应,形成溶胶,进而凝胶化,最后经过干燥和热处理得到纳米材料。
此方法可以制备出高纯度、均匀分散的纳米材料,但过程较为繁琐,且需要严格控制反应条件。
水热法和溶剂热法利用高温高压的水溶液或有机溶剂环境,促进化学反应进行,从而合成纳米材料。
这些方法能够制备出结晶度高、形貌良好的纳米材料,但同样对反应条件要求苛刻。
纳米材料的应用几乎涵盖了各个领域,为许多技术的发展带来了新的机遇。
在电子领域,纳米材料的应用推动了电子器件的微型化和高性能化。
例如,碳纳米管具有出色的电学性能,可用于制造纳米级的晶体管和集成电路。
纳米线和量子点等纳米材料在半导体器件中的应用,能够提高器件的速度和存储密度。
在能源领域,纳米材料也展现出了巨大的潜力。
纳米级的催化剂能够提高化学反应的效率,在燃料电池和太阳能电池等能源转换装置中发挥着关键作用。
CdS纳米材料的制备和应用实验室制备方法一:分别配制1mol/LCd(NO3)2、0.5mol/LNa2S、0.5mol/L(NaPO3)6溶液。
按表1比例,将Cd(NO3)2溶液稀释于200mL的超纯水中,加入(NaPO3)6溶液(加入量与Cd(NO3)2的物质的量的比为1∶1),置于磁力搅拌器上密封搅拌均匀,迅速注入Na2S溶液,溶液变为浅黄色,测量其pH值为4.8~5.2,继续搅拌0.5h,放入冰箱中于4℃左右陈化。
所制备的胶体稳定性较好,保存1个月以上未发现有沉淀出现。
实验室制备方法二:用分析天平称取3.087g Cd(NO 3) 24H2O 和1.000g PVP 溶于120mL 蒸馏水中作为溶液A,称取4.506g Na-DDTC 溶于60mL 蒸馏水中作为溶液B,在磁力搅拌作用下,将溶液B缓慢滴加到溶液A 中,产生白色絮状沉淀物,滴加完毕后继续搅拌2h,接着静置4h,真空抽滤,用蒸馏水反复清洗白色絮状沉淀,60℃下干燥10h,得到Cd-DDTC 前驱物。
取0.409g Cd-DDTC于50mL聚四氟乙烯内胆中,加入40mL 乙二醇或乙二胺溶剂中进行搅拌.将装有样品的聚四氟乙烯内胆放入不锈钢反应釜中,密封,于180℃烘箱里反应12h。
将反应釜取出冷却至室温,用蒸馏水与乙醇反复交替洗涤产物,在60℃下干燥10h,得到产。
在溶剂乙二醇中合成的CdS记为CdS-EG,在溶剂乙二胺中合成的CdS记为CdS-En。
CDS纳米材料的应用:由于纳米材料诸多优异的特性,导致其在国防、军事、工业、环境、医药、生物等方方面面均有着广阔与杰出的应用。
CdS纳米半导体及其复合材料能起到非常好的催化效果。
CdS属于典型的Ⅱ-Ⅵ族半导体化合物,禁带宽度为2.4eV,恰位于可见光波段。
由于表面效应的存在,导致颗粒表面存在大量缺陷、悬挂键等,活性非常高,而如今,能源危机已步步临近,环境污染也日趋严重,利用该种物质作为催化剂,在光解水、光催化降解污染物等方面将扮演着极为重要的角色。
摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括
物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点
关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积
引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,
半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。
2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。
随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。
超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。
因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。
2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等以后,其中的电子、空穴和激子等载流子的运动将受到强量子封闭性的限制,同时导致其能量的增加,与此相应的电子结构也从体相的连续能带结构变成类似于分子的准分裂能级,使原来的能隙变宽,即光吸收谱向短波方向移动,这就是量子尺寸效应。当热能、电场能或磁场能比平均的能级间距还小时,超微颗粒就会呈现一系列与宏观物体截然不同的特性,客观表现为光谱线会向短波方向移动,催化活性变化。XuSh-ming等[2]测定其合成的半导体纳米线阵列的紫外可见吸收光谱表明,随着半导体纳米线直径减小,其吸收边相对于体相蓝移的幅度增加,显示了明显的量子尺寸效应。量子尺寸效应是未来微电子、光电子器件的基础,当微电子器件进一步微小化时,必须考虑量子效应。
2.3介电限域效应 当用电容率较小的材料修饰半导体纳米材料表面时,带电的半导体纳米粒子发出的电场线很容易穿过电容率比自己小的包覆层。因此,屏蔽效应减小,带电粒子间的库仑作用力增强,结果增强了激子的结合能和振子强度,引起量子点电子结构变化。量子点中的电子、空穴和激子等载流子受之影响,这种现象称为介电限域效应。对于超微粒子来说,随着粒径减小,和块体相比红移和蓝移同时起作用,一般导致蓝移的电子2空穴空间限域起主导作用,因而主要观察到的为量子尺寸效应。但是当对超微粒表面进行化学修饰后,如果半导体材料和包覆材料的介电常数相差较大,便产生明显的介电限域效应,屏蔽效应减弱,半导体材料和包覆材料的介电常数差值越大,则介电限域效应越强,红移越大。当表面效应引起的能量变化大于由于空间效应所引起的变化时,超微粒的表观带隙减小,反应到吸收光谱上就表现出明显的红移现象。刘成林等人[3]将制得的ZnO/ZnS胶体作为亚相,在亚相表面滴加硬脂酸氯仿溶液,形成ZnO/ZnS超微粒2硬脂酸复合单分子层。ZnO/ZnS超微粒表观带隙为4.04eV,对应的波长为308nm,ZnO/ZnS超微粒2硬脂酸复合的表观带隙为3.14eV,对应的波长为361nm,相对于胶体的紫外2可见吸收光谱出现了“红移”现象,这种现象产生的原因是硬脂酸单分子膜对超微粒子起着表面修饰作用,从而出现了介电限域效应,引起了红移。这种变化对纳米粒子的应用产生重要影响。
3.半导体纳米材料的主要制备技术
3.1物理法制备 3.1.1机械球磨法 用外部机械力的作用,即通过研球,研磨罐和颗粒的频繁碰撞,颗粒在球磨过程中被反复的挤压、变形、断裂、焊合。随着球磨过程的延续,颗粒表面的缺陷密度增加,晶粒逐渐细化。
采用球磨方法,控制适当的条件得到纯元素、合金或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。
总之,随着球研磨制备工艺的日益完善及纳米材料产业化进程,球研磨法作为一种重要的纳米制备方法将进一步发挥其工艺简单,低成本,高效率的优势[1]
3.1.2磁控溅射法
磁控溅射法是在高真空充入适量的氩气,在阴极(柱状靶或平面靶和阳极(镀膜室壁之间施加几百K直流电压,在镀膜室内产生磁控型异常辉光放电,使氩气发生电离。氩离子被阴极加速并轰击阳极靶表面,将靶材表面原子溅射出来沉积在基底表面上形成薄膜。通过更换不同材质的靶和控制不同的溅射时间,便可以获得不同材质和不同厚度的薄膜。磁控溅射法具有镀膜层与基材的结合力强、镀膜层致密、均
匀等优点。 3.1.3静电纺丝法
静电纺丝是一种特殊的纤维制造工艺,聚合物溶液或熔体在强电场中进行喷射纺丝。在电场作用下,针头处的液滴会由球形变为圆锥形(即“泰勒锥”),并从圆锥尖端延展得到纤维细丝。这种方式可以生产出纳米级直径的聚合物细丝。
如利用静电纺丝法制备的PI/TiO2微纳米纤维膜,且工艺过程简单,质量可靠,可重复性高,得到电纺丝直径200nm-300nm。复合PI/TiO2微纳米纤维,犹豫无机纳米纤维具有脆性高,易断裂的特点,以及耐高温的聚酰亚胺,赋予该材料更优异的性能。
通过光催化性能试验发现,通过静电纺丝法制备了一种新型光催化材料。通过经典放司法制备的PI/TiO2由于具有较好的光催化性能。[3]
3.2化学法制备 3.2.1溶胶一凝胶法
在诸多纳米粉体的制备法中,溶胶一凝胶法因有独特的优点而被广泛应用。溶胶是固体颗粒分散于液体中形成的胶体,当移去稳定剂粒子或悬浮液时,溶胶粒子形成连续的三维网络结构。凝胶由固体骨架和连续相组成,除去液相后凝胶收缩为千凝胶,将干凝胶锻烧即成为均匀超细粉体。该方法的操作过程大致如下:先将金属醇盐或无机盐类协调水解得到均相溶胶后,加入溶剂、催化剂和鳌合剂等形成无流动水凝胶,再在一定的条件下转化为均一凝胶,然后除去有机物、水和酸根,最后进行干燥处理得到超细化粉体。
溶胶一凝胶法具有许多优点:由于反应在各组分的混合分子间进行,所以粉体的粒径小且均匀性高;反应过程易于控制,可获得一些其他方法难以得到的粉体;不涉及高温反应,能避免引入杂质,产品纯度高。但是溶胶一凝胶法在制备粉体过程中同样有许多因素影响到粉体的形成和性能。因为醇盐的水解和缩聚反应是均相溶液转变为溶胶的根本原因,故控制醇盐水解缩聚条件是制备高质量溶胶的关键。溶胶一凝胶法的另一主要问题是纳米粒子之间发生自团聚,进而形成较大的粒子。引起团聚的原因很多,国内外已有学者从热力学的角度探讨了溶胶不稳定性,认为高分子及表面活性剂是较好的纳米粒子稳定剂。
总起来说,溶胶一凝胶法制备设备简单、成本低,适宜大面积制膜和批量生产,有望成为开发新型纳米功能薄膜材料的方法。
3.2.2微乳液法 微乳液是由油、水、乳化剂和助化剂组成各相同性、热力学性能稳定的透明或半透明胶体分散体系,其分散相尺寸为纳米级。从微观的角度分析,用表面活性剂界面膜所稳定的微乳液制备超细颗粒,此超细颗粒的特点是:粒子表面包裹一层表面活性剂分子,使粒子间不易聚结;通过选择不同的表面活性剂分子可以对粒子表面进行修饰,并控制微粒的大小。
微乳液法作为一种新的制备纳米材料方法,具有实验装置简单、操作方便、应用范围广和能够控制颗粒的粒度等优点。目前该方法逐渐引起人们的重视,因而有关微乳体系的研究日益增多,但研究尚处于初始阶段。诸如微乳反应器内的反应原理、反应动力学、热力学和化学工程等有关问题还有待解决,对微乳液聚合动力学的研究也缺乏统一的认识,对聚合工程设计和生产控制理论的研究还不够充分,并没有完全解决微乳液聚合中高乳化剂含量、低单体量这一根本问题[4]。
3.2.3模板法 模板法合成纳米材料是20世纪90年代发展起来的一项前沿技术。模板指含有高密度的纳米柱形孔洞、厚度为几十至几百微米厚的薄膜。常用的模板有:有序洞孔阵列氧化铝模板、含有洞孔无序分布的高分子模板、纳米洞孔玻璃模板。表2列举了应用模板法制备纳米材料的实例[5]。
模板法是合成纳米线和纳米管等一维纳米材料的有效技术,具有良好的可控性,利用其空间限制作用和模板剂的调试作用对合成材料的大小、形貌、结构和排列等进行控制;采用孔径为纳米级到微米级的多孔材料作为模板,结合电化学法、淀积法、溶胶一凝胶法和气相淀积等技术使物质原子或离子沉淀于模板孔壁上,形成所需的纳米结构体[6]。模板法制备纳米材料具有下列特点:薄膜易于制备,合成方法简单;能合成直径很小的管状材料;由于膜孔孔径大小一致,制备纳米材料同样具有孔径相同、单分散的结构;在膜孔中形成的纳米管和纳米纤维容易从模板中分离出来。