累加数列错位相减取大差法案例详细讲解
- 格式:docx
- 大小:14.19 KB
- 文档页数:5
专题07 数列求和-错位相减、裂项相消◆错位相减法错位相减法是求解由等差数列{}n a 和等比数列{}n b 对应项之积组成的数列{}n c (即n n n c a b =)的前n 项和的方法.这种方法运算量较大,要重视解题过程的训练.在讲等比数列的时候, 我们推导过等比数列的求和公式,其过程正是利用错位相减的原理, 等比数列的通项n b 其实可以看成等差数列通项()1n n a a =与等比数列通项n b 的积.公式秒杀:()n n S A n B q B =⋅+-(错位相减都可化简为这种形式,对于求解参数A 与B ,可以采用将前1项和与前2项和代入式中,建立二元一次方程求解.此方法可以快速求解出结果或者作为检验对错的依据.)【经典例题1】设数列{}n a 的前n 项和为n S ,若111,1n n a S a +==-.(1)求数列{}n a 的通项公式;(2)设1n n n b a +=,求数列{}n b 的前n 项和n T .【经典例题2】已知等差数列{}n a 的前n 项和为n S ,数列{}n b 为等比数列,且111a b ==,32312S b ==.(1)求数列{}n a ,{}n b 的通项公式;(2)若1n n n c a b +=,求数列{}n c 的前n 项和n T .【经典例题3】已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且26S =,314S =.(1)求数列{}n a 的通项公式;(2)若21n nn b a -=,求数列{}n b 的前n 项和n T .【练习1】已知数列{}n a 满足11a =,()121n n a a n *+=+∈N . (1)求数列{}n a 的通项公式;(2)求数列(){}1n n a +的前n 项和n S .【练习2】已知数列{}n a 的前n 项和为n S ,且21n n S a =-.(1)求{}n a 的通项公式;(2)设n n b na =,求数列{}n b 的前n 项和n T .【练习3】已知数列{}n a 的前n 项和为n S ,且342n n S a =-.(1)求{}n a 的通项公式;(2)设12log n n n b a a +=⋅,求数列{}n b 的前n 项和n T .【练习4】已知数列{}n a 满足11a =,1122n n n nn a a a ++=+(n +∈N ). (1)求证数列2n n a ⎧⎫⎨⎬⎩⎭为等差数列; (2)设()1n n b n n a =+,求数列{}n b 的前n 项和n S .◆裂项相消法把数列的通项拆成相邻两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.在消项时要注意前面保留第几项,最后也要保留相对应的倒数几项.例如消项时保留第一项和第3项,相应的也要保留最后一项和倒数第三项.常见的裂项形式: (1) 1111()n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2) 1111(21)(21)22121n n n n ⎛⎫=- ⎪-+-+⎝⎭; (3) 1()n k n kn k n =+++; (4)22222111(1)(1)n n n n n +=-++; (5) ()()1121121212121n n n n n ++=-----; (6) 12(41)22(1)1n n nn n n n n+-=-++; (7) 12111(21)(21)2(21)2(21)2n n n n n n n n +++=--+-+; (8) 1(1)(1)1(1)(1)(21)(23)42123n n n n n n n n +⎛⎫-+--=- ⎪++++⎝⎭(9) (1)1)(1)(1)11nn n n n n n n n -⎡⎤=--=---⎣⎦-- (10) 1111(1)(2)2(1)(1)(2)n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦. (11) ()!1!!n n n n ⋅=+- (12) ()()111!!1!k k k k =-++【经典例题1】已知正项数列{}n a 中,11a =,2211n n a a +-=,则数列11n n a a +⎧⎫⎨⎬+⎩⎭的前99项和为( ) A .4950 B .10 C .9 D .14950 【经典例题2】数列{}n a 的通项公式为()()*22211n n a n n n +=∈+N ,该数列的前8项和为__________.【经典例题3】已知数列{}n a 的前n 项和为2n S n =,若11n n n b a a +=,则数列{}n b 的前n 项和为________. 【练习1】数列2121n n ⎨++-⎩的前2022项和为( ) A 40431- B 40451-C 40431 D 40451【练习2】数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意的*N n ∈,总有n a ,n S ,2n a 成等差数列,又记21231n n n b a a ++=⋅,数列{}n b 的前n 项和n T =______. 【练习3】()1232!3!4!1!n n +++⋅⋅⋅+=+_______.【练习4】设数列{}n a 满足124(32)3n a a n a n +++-=.(1)求{}n a 的通项公式;(2)求数列31n a n ⎧⎫⎨⎬+⎩⎭的前n 项和n T .【练习5】已知数列{}n a 的前n 项和为n S ,且()21n n S a n *=-∈N . (1)求数列{}n a 的通项公式;(2)设13log n n b a =,11n n n n n C b b ++-={}n C 的前n 项和n T .【练习6】已知数列{}n a 中,1122222n n n n a a a n -+++=⋅.(1)证明:{}n a 为等比数列,并求{}n a 的通项公式;(2)设(1)(1)n n n a b n n -=+,求数列{}n b 的前n 项和n S .【练习7】记n S 是公差不为零的等差数列{}n a 的前n 项和,若36S =,3a 是1a 和9a 的等比中项.(1)求数列{}n a 的通项公式;(2)记121n n n n b a a a ++=⋅⋅,求数列{}n b 的前20项和.【练习8】已知等差数列{}n a 满足37a =,5726a a +=,211=-n n b a (n +∈N ). (1)求数列{}n a ,{}n b 的通项公式;(2)数列{}n b 的前n 项和为n S ,求n S .【练习9】已知正项数列{}n a 的前n 项和为n S ,且4、1n a +、n S 成等比数列,其中n *∈N .(1)求数列{}n a 的通项公式;(2)设14n n n n S b a a +=,求数列{}n b 的前n 项和n T .【练习10】已知n S 是数列{}n a 的前n 项和,11a =,___________.①n *∀∈N ,14n n a a n ++=;②数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,且n S n ⎧⎫⎨⎬⎩⎭的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求n a ;(2)设()121n n n n n a a b a a +++=⋅,求数列{}n b 的前n 项和n T .。
专题07 数列求和(错位相减法)(典型例题+题型归类练)一、必备秘籍错位相减法求和:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求.q 倍错位相减法:若数列{}n c 的通项公式n n n c a b =⋅,其中{}n a 、{}n b 中一个是等差数列,另一个是等比数列,求和时一般可在已知和式的两边都乘以组成这个数列的等比数列的公比,然后再将所得新和式与原和式相减,转化为同倍数的等比数列求和.这种方法叫q 倍错位相减法. 温馨提示:1.两个特殊数列等差与等比的乘积或商的组合.2.关注相减的项数及没有参与相减的项的保留.类型一:乘型n n n c a b =⋅(其中n a 是等差数列,n b 是等比数列)类型二:除型二、典型例题类型一:乘型n n n c a b =⋅(其中n a 是等差数列,n b 是等比数列)例题1.(2022·重庆巴蜀中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且231n n S a =-. (1)求数列{}n a 的通项公式;(2)若数列{}n b 的通项公式为21n b n =+,求1122n n n T a b a b a b =+++的值.感悟升华(核心秘籍) 错位相减法的两个陷阱(易错点):(特别说明,错位相减其中一种理解就是通过错位,使得齐次对齐,然后再相减) 第(2)问思路点拨:由(1)知:根据题意,令,则求解目标,属于典型的错位相减求和的模型.相减:(注意此处标识“”为错位相减法第一易错点,特别注意前面的“”号)化简求和:(注意此处等比数列求和只有项的和,所以求和时“”此处是“”而不是“”)【答案】(1)3=n a (2)3n T n =⋅ (1)当1n =时,1112321S a a =-⇒=, 又231n n S a =-,①当2n ≥时11231n n S a --=-,② ①−②得:1233n n n a a a -=-,即13n n a a -=, ∴数列{}n a 是以1为首项,3为公比的等比数列, ∴ 13-=n n a . (2)01-13353(21)3n n T n =⨯+⨯+++,③12-133353+(21)?3(21)?3n n n T n n =⨯+⨯+-++,④③−④得:121232(333)(21)3n n n T n --=++++-+13(13)32(21)313n n n --=+⨯-+-(2)3n n =-,所以3n n T n =.例题2.(2022·黑龙江·哈尔滨三中模拟预测(理))已知数列{}n a ,13a =,点()1,n n a a +在曲线5823x y x -=-上,且12n n b a =-. (1)求证:数列{}n b 是等差数列; (2)已知数列{}n c 满足122n b n n c b +=⋅,记n S 为数列{}n c 的前n 项和,求n S .【答案】(1)证明见解析(2)16(23)2n n S n +=+-⋅;证明见解析(特别说明,错位相减其中一种理解就是通过错位,使得齐次对齐,然后再相减) 第(2)问思路点拨:由(1)知:根据题意,求的前项和,属于典型的错位相减求和的模型.相减:(注意此处标识“”为错位相减法第一易错点,特别注意前面的“”号)化简求和:(注意此处等比数列求和只有项的和,所以求和时“”此处是“”而不是“”)解答过程:(1)因为点()1,n n a a +在曲线5823x y x -=-上,所以15823n n n a a a +-=-,因为13a =,所以11111232b a ===--, 因为11111158222223n n n n n n n b b a a a a a ++-=-=-------231222n n n a a a -=-=--, 所以数列{}n b 是首项为1,公差为2的等差数列. (2)由(1)得1(1)221n b b n n =+-⋅=-, 所以1221)22(n n b n nc b n +=⋅=-⋅,所以123123252(212)n n n S =⨯+⨯+⨯++-⋅,3124123252(21)22n n S n +=⨯+⨯+⨯++-⋅,所以231222(222)(21)2n n n n S S n +-=++++--⋅,所以114(12)22(21)212n n n S n -+--=+⨯--⋅-16(32)2n n +=-+-⋅,所以16(23)2n n S n +=+-⋅.类型二:除型nn na cb =(其中n a 是等差数列,n b 是等比数列) 例题3.(2022·湖南·模拟预测)设数列{}n a 的前n 项和为n S ,已知12a =,122n n a S +=+. (1)求{}n a 的通项公式;(2)若23n n a b n =,求数列{}n b 的前n 项和n T .【答案】(1)123n n a -=⨯(2)323443n nn T +=-⨯第(2)问思路点拨:由(1)知:根据题意,求的前项和,属于典型的错位相减求和的模型.但,求和前,最好化简通项为“乘型”,即:相减,化简,求和:(注意此处等比数列求和有项的和,所以求和时“”此处是“”而不是“”)解答过程:(1)122n n a S +=+,① 当2n ≥时,122n n a S -=+,②①-②得()1122n n n n n a a S S a +--=-=,∴13(2)n n a a n +=≥,∴13n na a +=, ∵12a =,∴21226a S =+=,∴21632a a ==也满足上式, ∴{}n a 为等比数列且首项为2,公比为3,∴111323n n n a a --=⋅=⋅. 即{}n a 的通项公式为123n n a -=⨯.(2)由(1)知123n n a -=⨯,所以233n n n n nb a ==, 令211213333n n n n nT --=++++,① 得231112133333n n n n nT +-=++++,② ①-②得23121111333333n n n n T +=++++-11111113311323313n n n n n n++⎛⎫- ⎪⎛⎫⎝⎭=-=-- ⎪⎝⎭-, 所以323443n nn T +=-⨯.例题4.(2022·河南·灵宝市第一高级中学模拟预测(文))已知数列{}n a 满足()()*1111n n a a n n n n n +-=∈++N ,且11a =.(1)求数列{}n a 的通项公式; (2)若数列{}n b 满足13nn n a b -=,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-(2)1133n n n S -+=-第(2)问思路点拨:由(1)知:根据题意,得,求的前项和,属于典型的错位相减求和的模型.但,求和前,最好化简通项为“乘型”,即:相减:化简求和:解答过程:(1)因为()1111111n n a a n n n n n n +-==-+++, 所以()111211n n a a n n n n n--=-≥--, 12111221n n a a n n n n ---=-----, …2111122a a -=-, 所以()1112n a a n n n-=-≥. 又11a =,所以21n a n n n-=,所以()212n a n n =-≥. 又11a =,也符合上式, 所以21n a n =-. (2)结合(1)得1213n n n b --=,所以 01231135********n n n S --=++++⋅⋅⋅+,① 2311352133333n n n S -=+++⋅⋅⋅+,② ①-②,得212111211233333n n n n S --⎛⎫=+++⋅⋅⋅+- ⎪⎝⎭111213321221213313n n nn n -⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭-+⎢⎥⎣⎦=+-=--,所以1133n n n S -+=-. 三、题型归类练1.(2022·辽宁·沈阳市外国语学校高二期中)设数列{}n a 的前n 项和为n S ,且满足4n n S a =-,数列{}n b 满足13b =,且1n n n b b a +=+. (1)求数列{}n b 的通项公式;(2)设n n c na =,数列{}n c 的前n 项和为n T ,求n T . 【答案】(1)3172n n b -⎛⎫=- ⎪⎝⎭(2)()18482nn T n ⎛⎫=-+⋅ ⎪⎝⎭(1)解:∵4n n S a =-,当2n ≥时114n n S a --=-, 两式作差得()12n n n a a a n -=-+≥, 即()1122n n a a n -=≥.当1n =时1114a S a ==-,∴12a =, ∴{}n a 为首项为2,公比为12的等比数列,∴1122n n a -⎛⎫=⋅ ⎪⎝⎭,∴11122n n n b b -+⎛⎫=+⋅ ⎪⎝⎭,即11122n n n b b -+⎛⎫-=⋅ ⎪⎝⎭,又13b =,∴当2n ≥时,()()()121321n n n b b b b b b b b -=+-+-+⋅⋅⋅+-0121113222222n -⎛⎫⎛⎫⎛⎫=+⋅+⋅+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111232112n -⎛⎫- ⎪⎝⎭=+⨯-3172n -⎛⎫=- ⎪⎝⎭,当1n =时,1311372b -⎛⎫==- ⎪⎝⎭,∴3172n n b -⎛⎫=- ⎪⎝⎭;(2)解:由题意1122n n c n -⎛⎫=⋅ ⎪⎝⎭则011111242222n n T n -⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①则()121111112*********n nn T n n -⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,②①-②得012111111122222222222n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⨯+⋅⋅⋅+⨯-⋅ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1112221212nnn ⎛⎫- ⎪⎛⎫⎝⎭=⨯-⋅ ⎪⎝⎭-()14222n n ⎛⎫=-+⋅ ⎪⎝⎭,∴()18482nn T n ⎛⎫=-+⋅ ⎪⎝⎭,2.(2022·广东·模拟预测)已知各项均为正数的数列{}n a 满足()22*11230n n n n a a a a n ++--=∈N ,且13a =.(1)求{}n a 的通项公式;(2)若31log n n n b a a +=,求{}n b 的前n 项和n T .【答案】(1)3n n a =(2)1133244n n n T +⎛⎫=+- ⎪⎝⎭(1)解:因为()22*11230n n n n a a a a n ++--=∈N , 所以()()1130n n n n a a a a +++-=,又因0n a >,所以130n n a a +-=, 即13n na a +=, 所以数列{}n a 是以3为等比的等比数列,是以3n n a =;(2)解:()3131log l 313g 3o n n n n n n b a n a ++=+==⋅,则()2323334313n n T n =⨯+⨯+⨯+++,()23413233343313n n n T n n +=⨯+⨯+⨯++⋅++, 两式相减得()2312633313n n n T n +-=++++-+()()131331313n n n +⨯-=+-+-113322n n +⎛⎫=-++ ⎪⎝⎭, 所以1133244n n n T +⎛⎫=+- ⎪⎝⎭. 3.(2022·河南郑州·三模(理))已知数列{}n a 的前n 项和为n S ,122n n n a S -=. (1)证明数列2nn a ⎧⎫⎨⎬⎩⎭为等差数列; (2)求数列{}n S 的前n 项和n T .【答案】(1)证明见解析;(2)()2124n n T n +=-⋅+.(1)N n *∈,122n n n a S -=,当2n ≥时,111122n n n a S ----=,两式相减得:111222n n n n n a a a ----=-, 即11122n n n a a ---=,则有11122n n n n a a ---=,而11122a S -=,解得14a =, 所以数列2n n a ⎧⎫⎨⎬⎩⎭是以2为首项,1为公差的等差数列. (2)由(1)知,()21112n n a n n =+-⨯=+,即()12n n a n =+⋅,于是得12n n S n +=⋅, ()2341122232122n n n T n n +=⨯+⨯+⨯++-⨯+⨯,因此()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯=,两式相减得:22341222(22222222(112))214n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅--, 所以()2124n n T n +=-⋅+. 4.(2022·全国·模拟预测)已知公差为整数的等差数列{}n a 满足23a =,5810a <<.(1)求数列{}n a 的通项公式;(2)设()2nn n b a =-⋅,求数列{}n b 的前n 项和n S . 【答案】(1)21n a n =-;(2)()12212939n n S n +⎛⎫=--⋅- ⎪⎝⎭. (1)解:设等差数列{}n a 的公差为d ,因为23a =,5810a <<,所以83310d <+<,解得5733d <<, 又d ∈Z ,所以2d =, 所以()()2232221n a a n d n n =+-=+-=-.(2)解:因为()2n n n b a =-⋅,所以()()212n n b n =-⋅-, 所以()()()()()()()231123252232212n n n S n n -=⨯-+⨯-+⨯-++-⋅-+-⋅-,① ()()()()()()23121232232212n n n S n n +-=⨯-+⨯-++-⋅-+-⋅-,②①-②得,()()()()()231322222212n n n S n +⎡⎤=-+⨯-+-+⋅⋅⋅+---⋅-⎣⎦()()()()()()2111222122223221321n n n n n +++---⎛⎫-=--⋅- ⎪-=⎝⎭-+⨯--⋅-, 所以()12212939n n S n +⎛⎫=--⋅- ⎪⎝⎭. 5.(2022·江西南昌·三模(理))已知数列{}n a 为等比数列,且11a =,2112n n n a a -+=-.(1)求{}n a 的通项公式; (2)设(1)n n nn b a -⋅=,求数列{}n b 的前n 项和n S . 【答案】(1)1(2)n n a -=-(2)1242n n n S -+=- 【解析】(1)因为2112n n n a a -+=-,所以21122n n n a a +++=-, 两式相除可得24n na a +=,即24q =, 因为21n n n a a a q +=,所以22120n n a q +=-<,可得0q <,所以2q =-,所以111(2)n n n a a q --==-. (2)11(1)(2)2n n n n n n b ---⋅==--, 则01221123122222n n n n n S ---⎛⎫=-+++⋅⋅⋅++ ⎪⎝⎭ ① 12311231222222n n n S n n --⎛⎫=-+++⋅⋅⋅++ ⎪⎝⎭ ② ①-②可得:1211111122121222222212nn n n n n S n n n -⎛⎫- ⎪+⎛⎫⎝⎭=-+++⋅⋅⋅+-=-=- ⎪⎝⎭-, 故1242n n n S -+=-. 6.(2022·全国·模拟预测)已知数列{}n a 满足11a =,121n n a a n +=+-.(1)证明:{}n a n +为等比数列;(2)求数列{}2nn a的前n 项和n S . 【答案】(1)证明见解析(2)222n nn S n +=-+ (1)由已知得()()112n n a n a n +++=+.又因为111120a +=+=≠,所以{}n a n +是首项为2,公比为2的等比数列;(2)由(1)可知1222n n n a n -+=⨯=.所以122n n n a n =-. 记2n n ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则n n S n T =-,且有 231232222n n n T =+++⋅⋅⋅+, ① 12⨯①得 2341112322222n n n T +=+++⋅⋅⋅+, ② -①②得23411111112222222n n n n T +=++++⋅⋅⋅+- 1111221212n n n +⎛⎫- ⎪⎝⎭=--所以222n nn T +=- 所以222n n n n S n T n +=-=-+. 7.(2022·河南河南·三模(理))已知等差数列{}n a 的前n 项和为n S ,13a =-,612S =,数列{}n b 的前n 项和为122n n G .(1)求数列{}n a 和{}n b 的通项公式;(2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .【答案】(1)25,2n n n a n b =-=(2)127214n n T n .(1)设等差数列{}n a 的公差为d ,则1615181512,2a d d d +=-+==,所以25n a n =-. 由122n n G ,令1n =得21222b ,当2n ≥时,112222n n n n G G +-⎧=-⎨=-⎩,两式相减得()22n n b n =≥,12b =也符合上式, 所以2n n b =.(2)252n n c n ,()()()123212252n n T n =-⋅+-⋅++-⋅①, ()()()23123212252n n T n +=-⋅+-⋅++-⋅②,①-②得:()34116222252n n n T n ++-=-++++--⋅ ()()()311121262521472212n n n n n -++-=-+--⋅=-+-⋅-, 所以127214n n T n .8.(2022·全国·模拟预测(理))设数列{}n a 满足12a =,()122*n n a a n n --=-∈N .(1)求证:{}n a n -为等比数列,并求{}n a 的通项公式;(2)若()n n b a n n =-⋅,求数列{}n b 的前n 项和n T .【答案】(1)证明见解析,12n n a n -=+(2)()121n n T n =-⨯+(1)解:因为12a =,()122*n n a a n n --=-∈N , 所以122n n a a n -=+-,即()121n n a n a n -⎡⎤-=--⎣⎦ 又11211a -=-=,所以{}n a n -是以1为首项,2为公比的等比数列,所以112n n a n --=⨯,所以12n n a n -=+(2)解:由(1)可得()12n n n b a n n n -=-⋅=⨯,所以01211222322n n T n -=⨯+⨯+⨯++⨯①,所以12321222322n n T n =⨯+⨯+⨯++⨯②,①-②得12311121212122n n n T n --=+⨯+⨯+⨯++⨯-⨯ 即12212n n n T n --=-⨯-,所以()121n n T n =-⨯+; 9.(2022·江西·二模(理))已知正项数列{}n a 的前n 项和为n S ,212S =,且()*,m n m n a a a m n +=∈N . (1)求{}n a 的通项公式;(2)若n nn b a =,求数列{}n b 的前n 项和n T . 【答案】(1)3n n a =(2)323443n n n T +=-⨯ (1)令m =n =1,得221a a =,又21212S a a =+=,解得:13a =或14a =-(负值舍去), 令m =1,得11n n a a a +=,所以13n na a +=, 所以{}n a 是以3为首项,3为公比的等比数列,所以3n n a =.(2)由(1)可得,3n n n n n b a ==, 所以231233333n nn T =++++, 所以2341112333333n n n T +=++++, 两式相减得,23412111113333333n n n n T +=+++++- 11111123331322313n n n n n ++⎛⎫- ⎪+⎝⎭=-=-⋅-, 所以323443n nn T +=-⨯. 10.(2022·江西萍乡·二模(文))已知数列{}n a 中,111,2n n n a a a +==,令2n n b a =.(1)计算123,,b b b 的值,并求数列{}n b 的通项公式;(2)若()31n n c n b =+,求数列{}n c 的前n 项和n T .【答案】(1)1232,4,8b b b ===;2n n b =(2)1(32)24n n T n +=-⋅+(1)由12nn n a a +=得12nn n a a +=,又11a =,423562,2,4,84,a a a a a ∴=====,4612232,4,8b a b a b a ∴======,由 12n n n a a +=得1122n n n a a +++=,两式相除可得 22n na a +=, 则 12222n n n nb a b a ++==, {}n b ∴ 是以2 为首项,2 为公比的等比数列,故 2n n b =;(2)由 (1) 知 (31)2n n c n =+,则 ()2314272102322(31)2n n n T n n -=⨯+⨯+⨯++-++,()234124272102322(31)2n n n T n n +=⨯+⨯+⨯++-++, 两式相减得()2123112283222(31)283(31)212n n n n n T n n +++--=+⨯+++-+=+⨯-+- 1(23)24n n +=-⋅-,故1(32)24n n T n +=-⋅+。
错位相减法的运用错位相减法是一种常用的数列求和方法, 形如{}n n b a 的数列,其中{n a }为等差数列,{}n b 为等比数列;分别列出n S ,再把所有式子同时乘以等比数列的公比q ,即n qS ;然后错一位,两式相减即可。
适用于一个等差数列和一个等比数列对应项相乘构成的数列求和。
典型例题:例 1. (2012年四川省文12分)已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立。
(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设10a >,100λ=,当n 为何值时,数列1{lg}na 的前n 项和最大? 【解析】(I )由题意,n=1时,由已知可知11(2)0a a λ-=,分类讨论:由1a =0及1a 0≠,结合数列的和与项的递推公式可求。
(II )由10a >且100λ=时,令1lg n n b a =,则2lg 2n b n =-,结合数列的单调性可求和的最大项 。
【答案】解:(Ⅰ)取n=1,得21112=2a S a λ=,∴11(2)0a a λ-=。
若1a =0,则1S =0, 当n 2≥时,1=0n nn a S S --=。
若1a 0≠,则12a λ=,当n 2≥时,22n n a S λ=+,1122n n a S λ--=+,两个相减得:12n n a a -=,∴n 2na λ=。
∴数列{}n a 公比是2的等比数列。
综上所述,若1a =0, 则 n 0a =;若1a 0≠,则n 2na λ=。
(Ⅱ)当10a >且100λ=时,令1lgn nb a =,则2lg 2n b n =-。
∴{}n b 是单调递减的等差数列(公差为-lg2)则 b 1>b 2>b 3>…>b 6=01lg 64100lg 2100lg6=>=; 当n≥7时,b n ≤b 7=01lg 128100lg 2100lg 7=<=。
第七节异节奏流水施工一、异步距流水施工的特点④各个专业工作队在施工段上能够连续作业,施工段之间可能空闲时间。
二、等步距流水施工方式的特点大的施工过程,可按其倍数增加相应专业工作队数目;④各个专业工作队在施工段上能够连续作业,施工段之间没有空闲时间。
⑤式中n’——专业工作队数目,其余符号如前所述。
三、异节奏流水施工示例【例题1·案例题】某建设工程由四幢大板结构楼房组成,每幢楼房为一个施工段,施工过程划分为基础工程、结构安装、室内装修和室外工程4项,其流水节拍分别为:5周、10周、10周、5周。
【问题】等步距流水施工如何安排?画出横道图并计算工期。
【分析】异步距流水施工流水施工进度计划如下图所示。
总工期为:T0=(5+10+25)+4×5=60周(注:计算方法此处未介绍,可按下一节“非节奏流水”计算。
)【参考答案】(1)计算流水步距流水步距等于流水节拍的最大公约数:K=min[5,10,10,5]=5(周)(2)确定专业工作队数目【做法分析:每个施工过程成立的专业工作队数目可按下式计算:b j=t j/K式中b j——第j个施工过程的专业工作队数目;t j——第/个施工过程的流水节拍;K——流水步距。
】本题目各施工过程的专业工作队数目分别为:I——基础工程:bⅠ= 5/5=1 (个)Ⅱ——结构安装:bⅡ=10/5=2 (个)Ⅲ——室内装修:bⅢ=10/5=2 (个)Ⅳ——室外工程:bⅣ= 5/5=1 (个)专业工作队总数:n’=(1+2+2+1)=6 (个)(3) 等步距流水施工进度计划如下图所示。
(4) 流水施工工期流水施工工期为:T=(m + n’-1)K=(4+6-1)×5=45(周)【分析:与异步距流水施工进度计划比较,等步距流水施工使总工期缩短了15周。
请分析,这15周和上面的60周关系?】第八节非节奏流水施工(掌握)一、非节奏流水施工的特点二、流水步距的确定(1)对每一个施工过程在各施工段上的流水节拍依次累加,求得各施工过程流水节拍的累加数列;(2)(3)在差数列中取最大值,即为这两个相邻施工过程的流水步距。
数列求和错位相减数列求和错位相减随着数学技能的不断提高,我们经常会遇到各种数列问题。
其中,求和问题是最基本的一种问题,而本文将介绍的是一种特殊的求和方法——数列求和错位相减。
一、什么是数列求和错位相减数列求和错位相减是一种求解数列问题的方法。
它的具体方法是将数列按照一定的规律错位相减,然后将差值加起来得到求和结果。
这一方法通常适用于一些存在周期性变化的数列问题。
例如,对于一个等差数列:1, 3, 5, 7, 9…如果采用传统的求和方法,其公式为:Sn = n(2a+(n-1)d)/2其中,Sn为前n项和,a为首项,d为公差。
则该序列前5项之和为:S5 = 5(2*1+(5-1)*2)/2=25而采用数列求和错位相减的方法,则可以按照如下步骤进行:1. 将数列分成两部分,如下所示:1, 5, 9…3, 7, 11…2. 对两部分数列进行相减:(5-1) + (9-5) + … = 4 + 4 + … = 2n-1(7-3) + (11-7) + … = 4 + 4 + … = 2n+13. 将两部分差值相加:(2n-1) + (2n+1) = 4n得出的结果为求和结果的n倍,因此需要除以n得到真正的结果:Sn = 4n/n = 4二、数列求和错位相减的应用数列求和错位相减在实际问题中常常会被应用。
比如,我们常常会遇到以下类型的问题:1. 求一个周期性变化的数列的前n项和。
2. 求某个阶段内两个连续数相邻的差值之和。
3. 求某个阶段内两个连续数相邻的比值之和。
这些问题都可以通过数列求和错位相减来解决。
下面我们以一个例子来说明其应用:假设有以下数列:1, 5, 9, 13, 17, 21, 25, 29, 33现在需要求出该数列中,连续两项之间的差值之和。
按照数列求和错位相减的方法,我们可以将数列分成两部分:1, 9, 17, 25, 335, 13, 21, 29对两部分进行相减:8 + 8 + 8 + 8 = 324 + 4 + 4 = 12将两部分相加:32 + 12 = 44得到的结果即为连续两项之间的差值之和。
第二章流水施工原理本章重要知识点与典型题型一、掌握流水施工参数的概念知识点:流水施工的参数为了说明组织流水施工时,各施工过程在时间和空间上的开展情况及相互依存关系,这里引入一些描述工艺流程、空间布置和时间安排等方面的状态参数——流水施工参数,包括工艺参数、空间参数和时间参数。
(一)工艺参数工艺参数是指组织流水施工时,用以表达流水施工在施工工艺方面进展状态的参数,通常包括施工过程和流水强度两上参数。
1.施工过程组织建设工程流水施工时,根据施工组织及计划安排需要而将计划任务划分成的子项称为施工过程。
施工过程的数目一般用小写n来表示,它是流水施工的确要参数之一。
根据性质和特点不同,施工过程一般分为三类,即建造类施工过程、运输类施工过程和制备类施工过程。
(1)建造类施工过程,是指在施工对象的空间上直接进行砌筑、安装与加工,最终形成建筑产品的施工过程。
(2)运输因施工过程,是指将建筑材料、各类构配件、成品、制品和设备等运到工地仓库或施工现场使用地点的施工过程。
(3)制备类施工过程,是指为了提高建筑产品生产的工厂化、机械化程度和生产能力而形成的施工过程。
如砂浆、混凝土、各类制品、门窗等的制备过程和混凝土构件的预制过程。
由于建造类施工过程占有施工对象的空间,直接影响工期的长短,因此必须列入施工进度计划,并在其中大多作为主导施工过程或关键的工作。
运输类与制备类施工过程一般不占有施工对象的工作面,不影响工期,故不需要列入流水施工进度计划之中,只有当其占有施工对象的工作面,影响工期时,才列入施工进度计划中。
2.流水强度流水强度是指流水施工的某施工过程(专业工作队)在单位时间内完成的工程量,也称为流水能力或生产能力。
流水强度通常用大写V来表示。
表示:V——某施过程(队)的流水强度Ri——投入该施工过程的第i 种资源量(施工机械台数或工人数)Si——投入该施工过程的第i 种资源的产量定额X——投入该过程的资源种类数(二)空间参数空间参数是指在组织流水施工时,用以表达流水施工在空间布置上开展状态的参数。
(2)固定节拍流水施工工期。
1)有间歇时间的固定节拍流水施工。
详见【例4.4.1】。
2)有提前插入时间的固定节拍流水施工。
所谓提前插入时间,是指相邻两个专业工作队在同一施工段上共同作业的时间。
详见【例3.4.2】。
2.异节奏流水施工异节奏流水施工是指在有节奏流水施工中,各施工过程的流水节拍各自相等而不同施工过程之间的流水节拍不尽相等的流水施工。
在组织异节奏流水施工时,又可以采用异步距和等步距两种方式。
(1)异步距异节奏流水施工。
异步距异节奏流水施工是指在组织异节奏流水施工时,每个施工过程成立一个专业工作队,由其完成各施工段任务的流水施工。
异步距异节奏流水施工的特点如下:①同一施工过程在各个施工段上的流水节拍均相等;不同施工过程之间的流水节拍不尽相等;②相邻施工过程之间的流水步距不尽相等;③专业工作队数等于施工过程数;④各个专业工作队在施工段上能够连续作业,施工段之间没有空闲时间。
【例3.4.3】某工程项目由四幢大板结构楼房组成,每幢楼房为一个施工段,施工过程划分为基础工程、结构安装、室内装修和室外工程4项,其流水施工进度计划如图3.4.5所示。
图3.4.5大板结构楼房流水施工进度计划由图4.4.5可知,如果按4个施工过程成立4个专业工作队组织流水施工,其总工期为:T=(5+10+25)+4×5=60(周)(2)等步距异节奏流水施工。
等步距异节奏流水施工是指在组织异节奏流水施工时,按每个施工过程流水节拍之间的比例关系,成立相应数量的专业工作队而进行的流水施工,也称为成倍节拍流水施工。
成倍节拍流水施工的特点如下:①同一施工过程在其各个施工段上的流水节拍均相等;不同施工过程的流水节拍不等,但其值为倍数关系;②相邻施工过程的流水步距相等,且等于流水节拍的最大公约数(K );③专业工作队数大于施工过程数,即有的施工过程只成立一个专业工作队,而对于流水节拍大的施工过程,可按其倍数增加相应专业工作队数目;④各个专业工作队在施工段上能够连续作业,施工段之间没有空闲时间。
错位相减法的运用错位相减法是一种常用的数列求和方法, 形如{}n n b a 的数列,其中{n a }为等差数列,{}n b 为等比数列;分别列出n S ,再把所有式子同时乘以等比数列的公比q ,即n qS ;然后错一位,两式相减即可。
适用于一个等差数列和一个等比数列对应项相乘构成的数列求和。
典型例题:例 1. (2012年四川省文12分)已知数列{}n a 的前n 项和为n S ,常数0λ>,且11n n a a S S λ=+对一切正整数n 都成立。
(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设10a >,100λ=,当n 为何值时,数列1{lg}na 的前n 项和最大? 【答案】解:(Ⅰ)取n =1,得21112=2a S a λ=,∴11(2)0a a λ-=。
若1a =0,则1S =0, 当n 2≥时,1=0n n n a S S --=。
若1a 0≠,则12a λ=,有当n 2≥时,22n n a S λ=+,1122n n a S λ--=+,两个相减得:12n n a a -=,∴n 2na λ=。
∴数列{}n a 公比是2的等比数列。
综上所述,若1a =0, 则 n 0a =;若1a 0≠,则n 2na λ=。
(Ⅱ)当10a >且100λ=时,令1lgn nb a =,则2lg 2n b n =-。
∴{}n b 是单调递减的等差数列(公差为-lg2)则 b 1>b 2>b 3>…>b 6=01lg 64100lg 2100lg6=>=;当n ≥7时,b n ≤b 7=01lg 128100lg 2100lg7=<=。
∴数列{lgn a 1}的前6项的和最大,即当n =6时,数列1{lg }na 的前n 项和最大。
【考点】等差数列、等比数列、对数等基础知识,分类与整合、化归与转化等数学思想的应用。
【解析】(I )由题意,n =1时,由已知可知11(2)0a a λ-=,分类讨论:由1a =0及1a 0≠,结合数列的和与项的递推公式可求。
累加数列错位相减取大差法
在非节奏流水施工中,通常采用累加数列错位相减取大差法计算流水步距
由于这种方法是由潘特考夫斯基首先提出的,故又称为潘特考夫斯基法。
基本步骤:
1•每一个施工过程在各施工段上的流水节拍依次累加,求得各施工过程流水节拍的累加数列;
2•将相邻施工过程流水节拍累加数列中的后者错后一位,相减后求得一个差数列;
3.在差数列中取最大值即为这两个相邻施工过程的流水步距。
例题1 :
某工程由3个施工过程组成,分为4个施工段进行流水施工,其流水节拍见表,试确定流水步距。
解:(1)求各施工过程流水节拍的累加数列(从第一个施工段开始累加至最后一个施工段):
施工过程I: 2 5 7 8 施工过程II: 3 5 9 11 施工过程IH: 3
7
9
11
(2)错位相减求得差数列:
(3)在求得的数列中取最大值求得流水步距: K1= max{2,2,2,-1,-11}=2 K2=max{3,2,2,2,-11}=3
表示:工序I 与工序I 之间的流水步距为2天,工序I 与工序川之间的流水 步距为3天。
例题2:
某工程有5座通道,每座通道工序流水节拍如下:挖基2D ,清基2D ,浇基 4D ,台身8D ,盖板4D ,回填6D 。
浇基后等4D 才能施工台身,台身完成后要
施工过程I: 2 施工过程I: 相减得:2
施工过程I: 3 施工过程IH:
相减得:3
5 7 8 3 5
9
11 2
2 -1
-11
5 9 11 3 7 9
11
2
2
2 -11
等2天才能进行盖板施工
问题:
(1)计算不窝工的流水工期;
(2)计算无多余间歇流水工期;
(3)有窝工且有多余间歇流水时的工期是多少?
解答:
(1)本题中,5道相同的涵洞,说明有5个施工段,各施工段的施工工艺都一样,均为挖基、清基、浇基、台身、盖板、回填。
列入如例题1题干中的表格为:
求各施工过程流水节拍的累加数列,为:
挖基246810
清基246810
浇基48121620
台身816243240
盖板48121620
回填612182430
按照例题1的计算方法,错位相减求得差数列,得各工序之间的流水步距,
为:
K仁m ax{2,2,2,2,2,-10}=2
K2=max{2,0,-2,-4,-6,-20}=2
K3=max{4,0,-4,-8,-12,-40}=4
K4=max{8,12,16,20,24,-20}=24
K5=max{4,2,0,-2,-4,-30}=4
接着计算不窝工的流水工期:
不窝工的无节拍流水工期=流水步距和+最后一道工序流水节拍的和+技术间歇之和,即:
T= 2K+ 另+ N=(2+2+4+24+4)+5 X6+(4+2)=72(天)
注:题中告诉浇基后等4D才能施工台身,台身完成后要等2天才能进行盖板施工”,说明技术间歇为4+2=6天。
最后一道工序为回填,需要6天,一共5 道相同的涵洞,则最后一道工序流水节拍的和为5X6=30天。
(2)计算无多余间歇流水工期
各施工段之间的时间间隔计算,同段节拍累加错位相减取大差就等于流水节拍的最大值8。
具体计算方法如下:
先进行各段上工序节拍累加,这里并不同于第(1)步中那样将同一工序在
各工段上累加(即表中横向数据累加),而是在一个工段上各工序节拍的累加
(即表中竖向数据累加),由于5道涵洞的施工工序及持续时间都一致,因此,
每段上节拍的累加都一样,即:
第①道涵洞248162026
第②道涵洞248162026
第③道涵洞248162026
第④道涵洞248162026
第⑤道涵洞248162026
错位相减求得差数列,取最大差,得各工段之间的时间间隔为8天。
接着计算无多余间歇的流水工期:
无多余间歇的无节拍流水工期=施工段间间隔和+最后一个施工段流水节拍的和+技术间歇和,即:
T=(5-1) X8+26+(4+2)=64(天)
注:5个施工段,之间有4个时间间隔。
(3)计算有窝工且有多余间歇流水时的流水工期
有窝工且有多余间歇流水时的流水工期,是第(1)、(2)两问中最短的工期,即无多余间歇流水工期,为64天。
思考:
根据例题2的计算方法,试着计算一下例题1中的不窝工的流水工期”、无
多余间歇流水工期”以及有窝工且有多余间歇流水时的流水工期”。