5.3__应用二元一次方程组——鸡兔同笼_北师大版数学八年级上
- 格式:ppt
- 大小:1.26 MB
- 文档页数:16
5.3 应用二元一次方程组--鸡兔同笼一.选择题1.为了响应建设美丽家园的号召,现计划给甲、乙两校各若干株树苗.若甲校得到乙校所有树苗的,则甲校的树苗总数变为50株.若乙校得到甲校所有树苗的,那么乙校的树苗总数也变为50株.设计划分给甲校x株树苗,乙校y株树苗,则可列二元一次方程组为()A.B.C.D.2.古代“绳索量竿”问题:“一条竿子一条索.索比竿子长一托,折回索却量竿,却比竿子短一托.” 其大意为:现有一根竿和一条绳索.用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.则绳索和竿长分别为()A.30尺和15尺B.25尺和20尺C.20尺和15尺D.15尺和10尺3.为了丰富同学们的课余生活,体育委员小强到体育用品商店购买羽毛球拍和乒乓球拍,若购买1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.506()320x yx y+=⎧⎨+=⎩B.50610320x yx y+=⎧⎨+=⎩C.506320x yx y+=⎧⎨+=⎩D.50106320x yx y+=⎧⎨+=⎩4.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x yx y+=⎧⎨+=⎩,类似地,图2所示的算筹图我们可以表述为()A.264327x yx y+=⎧⎨+=⎩B.2114327x yx y+=⎧⎨+=⎩C.3219423x yx y+=⎧⎨+=⎩D.3264327x yx y+=⎧⎨+=⎩5.为了节能减排,某公交公司计划购买A型和B型两种新能源公交车.若购买A型公交车1辆,B型公交车2辆,共需260万元;若购买A型公交车2辆,B型公交车1辆,共需280万元,列出方程组.若对该方程组进行变形可得到方程x﹣y=20,下列对“x﹣y=20”的含义说法正确的是()A.A型车比B型车多购买20辆B.A型车比B型车少购买20辆C.A型车比B型车每辆贵20万元D.A型车比B型车每辆便宜20万元6.大课间,12人跳绳队为尊重每个队员的意愿,准备把队员分成跳大绳组或跳小绳组,大绳组3人一组,小绳组2人一组,在全队同学能同时参加活动且符合小组规定人数的前提下,则不同的分组方法有()A.1种B.2种C.3种D.4种7.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.958220x yx y+=⎧⎨-=⎩B.954220x yx y+=⎧⎨-=⎩C.9516220x yx y+=⎧⎨-=⎩D.9516110x yx y+=⎧⎨-=⎩8.(我国古代问题)有大小两种盛酒的桶,已知5大桶加上1小桶可以盛酒3斛(斛,音hú,是古代的一种容量单位),已知1大桶加上5小桶可以盛酒2斛,1大桶加上1小桶可以各盛酒多少斛?如果设1大桶x斛、1小桶长y斛,则列出正确的方程组是()A.5253x yx y=+⎧⎨+=⎩B.5253x yx y+=⎧⎨=+⎩C.5253x yx y+=⎧⎨+=⎩D.5253x yx y+=⎧⎨+=⎩9.为了丰富同学们的课余生活,体育委员小强到体育用品商店购买羽毛球拍和乒乓球拍,若购买1副羽毛球拍和1副乒乓球拍共需50元,小强一共用320元购买了6副同样的羽毛球拍和10副同样的乒乓球拍,若设每副羽毛球拍为x元,每副乒乓球拍为y元,列二元一次方程组得()A.506()320x yx y+=⎧⎨+=⎩B.50610320x yx y+=⎧⎨+=⎩C.506320x yx y+=⎧⎨+=⎩D.50106320x yx y+=⎧⎨+=⎩10.我国古代数学著作《九章算术》的“方程”一章里,一次方程组是由算筹布置而成的.如图1,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项,把图1所示的算筹图用我们现在所熟悉的方程组的形式表述出来,就是410,61134.x yx y+=⎧⎨+=⎩类似地,表述图2所示的算筹图的方程组是()A.27311x yx y+=⎧⎨+=⎩B.21236x yx y+=⎧⎨+=⎩C.212311x yx y+=⎧⎨+=⎩D.2736x yx y+=⎧⎨+=⎩二.填空题1.桂花村派男女村民共15人到山外采购建房所需的水泥,已知男村民一人挑两包,女村民两人抬一包,共购回15包.求这次采购的男村民人数和女村民人数;若设这次采购的水泥的男村民x人,女村民y人则可列方程组为.2.鸡兔同笼共有10个头,28只脚,则笼中鸡有只,兔有只.3.《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2327214x yx y+=⎧⎨+=⎩.类似地,图2所示的算筹图我们可以表述为.4.《水浒传》中关于神行太保戴宗有这样一段描述:程途八百里,朝去暮还来.某日,戴宗去180里之外的地方打探情报,去时顺风,用了2小时;回来时逆风,用了6小时,则戴宗的速度为里/小时.5.有甲、乙两数,甲数的3倍与乙数的2倍之和等于47,甲数的5倍比乙数的6倍小1,这两个数分别为.三.解答题1.一项调查显示,全世界每天平均有13000人死于与吸烟有关的疾病,我国吸烟者约3.56亿人,占世界吸烟人数的四分之一,比较一年中死于与吸烟有关的疾病的人数占吸烟者总数的百分比,我国比世界其他国家约高0.1%.根据上述资料,试用二元一次方程组解决以下问题:我国及世界其他国家一年(按365天计算)中死于与吸烟有关的疾病的人数分别是多少?(只需设出未知数,列出方程组即可)2.我市某中学组织学生参加夏令营活动,原计划租用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客车,则多出1辆车,且空出30个座位没人座.试问:此次参加夏令营的学生共有多少人?原计划租45座客车多少辆?3.某超市开业十周年举行了店庆活动,对A、B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元.而店庆期间,购买3件A商品和8件B商品仅需72元,求店庆期间超市的折扣是多少?4.某运动员在一场篮球比赛中的技术统计如表所示:根据以上信息,求本场比赛中该运动员投中2分球和3分球各几个.5.某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:名参加的学生人数少于100人.经核算,若两校分别组团共需花费20 800元,若两校联合组团只需花费18 000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?。
5.3 应用二元一次方程组——鸡兔同笼【学习目标】【知识目标】使学生初步掌握列二元一次方程组解应用题【能力目标】通过将实际问题转化成纯数学问题的应用训练,培养学生分析问题、解决问题的能力。
【情感目标】通过对祖国文明史的了解,培养学生爱国主义精神,树立为中华崛起而学习的信心。
【重点】根据等量关系列二元一次方程组解应用题。
【难点】根据题意找出等量关系,列出方程。
【学习过程】一.我们伟大祖国具有五千年的文明史,在历史的长河中,为科学知识的创新和发展作出了巨大的贡献,特别在数学领域有[九章算术]、[孙子算经]等古代名著流传于世,普及趋于民众,许多问题浅显易懂,趣味性强,如[九章算术]下卷第三题目“雉兔同笼”等,漂洋过海传到了日本等国,对中国古代文明史的传播起了很大作用。
“雉兔同笼”题为:“今有雉兔同笼,上有三十五关,下有九十四足,问雉兔各几何?” 问题1、“上有三十五头”指的意思是什么?“下有九十四足”呢?答:“上有三十五头”指的鸡和兔共有三十五个头,“下有九十四足”指的是鸡和兔共有九十四只脚。
问题2、你能根据问题1中的的数量关系列出方程吗?并能解决这个有趣的问题吗? (分小组进行讨论,然后请两个小组的代表到黑板上板演)解:设有鸡x 只,兔y 只,则x+y=35 解之得x=232x+4y=94 y=12答:共有鸡23只,兔12只。
这个古老的数学问题,用今天的方程解决,体现了古为今用的原则,为后人理解了数学的过去和现在,当代的著名的数学家陈省生教授在说起“鸡兔同笼”时,曾另有一番别有风趣的延伸:“全体鸡兔立正,兔子提起前面的两只脚,请问现在共有几只脚?”……二.中国是一个伟大的四大文明古国,像这样浅显有趣的数学题目还有很多,我们的书上就提供了这样的一个例题例1、 以绳测井,若将绳三折测之,绳多五尺,若将绳四折测之,绳多一尺,绳长、井深各几何?接下来老师看一下,那位同学的古文水平好,那位同学能自告奋勇地解释一下,这段古文的意思?(用绳子测量水井的深度,如果将绳子折成三等分,一份绳子长比井深多5尺;如果将绳折成四等份,一份绳子比井深多1尺,绳子、井深各是多少尺?)(分小组进行讨论,然后请两个小组的代表到黑板上板演)解:设绳子长x 尺,井深y 尺,则1453=-=-y x y x解之得x= 48y=11 答:绳子长为48尺,井深11尺。
5.3应用二元一次方程组——鸡兔同笼提升练习-北师大版数学八年级上册学校:___________姓名:___________班级:___________考号:___________一、单选题1.我国古代数学著作《算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子来量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长尺,竿长尺,则符合题意的方程组是()A.B.C.D.2.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.()A.若他买55本笔记本,则会缺少120元B.若他买55支笔,则会缺少120元C.若他买55本笔记本,则会多出120元D.若他买55支笔,则会多出120元3.我国古代数学名著《直指算法统宗》中有问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有个和尚分个馒头,如果大和尚每人分个,小和尚人分一个,正好分完.则小和尚人数为( )A.B.C.D.4.我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”,通过计算,鸡和兔的数量分别为()A.23和12B.12和23C.24和12D.12和24 5.《九章算术》是中国古代数学著作之一,书中有这样一个问题:五只雀、六只燕共重一斤;雀重燕轻,互换其中一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则正确的是()A.依题意B.依题意C.一只雀的重量为斤D.一只燕的重量为斤6.大课间,12人跳绳队为尊重每个队员的意愿,准备把队员分成跳大绳组或跳小绳组,大绳组3人一组,小绳组2人一组,在全队同学能同时参加活动且符合小组规定人数的前提下,则不同的分组方法有()A.1种B.2种C.3种D.4种7.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为( )A.B.C.D.8.(我国古代问题)有大小两种盛酒的桶,已知5大桶加上1小桶可以盛酒3斛(斛,音hú,是古代的一种容量单位),已知1大桶加上5小桶可以盛酒2斛,1大桶加上1小桶可以各盛酒多少斛?如果设1大桶x斛、1小桶长y斛,则列出正确的方程组是( )A.B.C.D.9.《孙子算经》中有“多人共车”问题:“今有三人共车,二车空;二人共车,九人步,问人与车各几何?”若设人数为,车数为,所列方程组正确的是()A.B.C.D.10.用白铁皮做罐头盒,每张铁皮可制盒身个,或制盒底个,一个盒身与两个盒底配成一套罐头盒,现有张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?设用张制盒身,张制盒底.根据题意可列出的方程组是()A.B.C.D.燕的重量各为两,所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,吨给乙库,乙库的存粮数是甲库(斤两)倍与乙数的2倍之和等于甲种票每张元,乙种票每张元.果全班名同学购票用去元,那么甲、乙两种电影票各多少张?.一种蜂王精有大小盒两种包装,小王作了如下统计,参考答案:1.A2.D3.D4.A5.A6.C7.C8.D9.C10.D11.12.3913.14.615.16.17.18.4519.还差二两20.10,21.(1)大货车有8辆,小货车有12辆;(2)9700元.22.甲种票买20张,乙种票买15张23.认同24.鸡有17只,兔有11只.25.(1)前8场比赛中,七(1)班足球队共胜了4场;(2)最高得分得36分;(3)在以后的比赛中这个球队至少要胜3场.。
5.3应用二元一次方程组—鸡兔同笼一.选择题1.一种饮料有两种包装,2大盒、4小盒共装88瓶,3大盒、2小盒共装84瓶,大盒与小盒每盒各装多少瓶?设大盒装x瓶,小盒装y瓶,则可列方程组()A.B.C.D.2.中国古代人民在生产生活中发现了许多数学问题,在《孙子算经》中记载了这样一个问题,大意为:有若干人乘车,若每车乘坐3人,则2辆车无人乘坐;若每车乘坐2人,则9人无车可乘,问共有多少辆车,多少人,设共有x辆车,y人,则可列方程组为()A.B.C.D.3.已知梯形的高是7cm,面积是56cm2,它的上底比下底的三分之一还多4cm,求该梯形的上底和下底的长度是多少?设上底为xcm,下底为ycm,则可以列方程组为()A.B.C.D.4.在抗击“新冠肺炎”的战役中,某品牌消毒液生产厂家计划向部分学校共捐赠13吨消毒液,如果这13吨消毒液的大瓶装(500克)与小瓶装(250克)两种产品分装的数量(按瓶计算)比为3:7,那么这两种产品应该各分装多少瓶?若设生产的消毒液应需分装x 大瓶、y小瓶,则以下所列方程组正确的是()A.B.C.D.5.某校春季运动会比赛中,七年级(1)班、(2)班的竞技实力相当,关于比赛结果,甲同学说:(1)班与(2)班得分比为2:1;乙同学说:(1)班得分比(2)班得分多38分.若设(1)班得x分,(2)班得y分,根据题意所列的方程组应为()A.B.C.D.6.某车间需加工某种零件500个,若用2台自动化车床和6台普通车床加工一天,则还剩10个零件没加工;若用3台自动化车床和5台普通车床加工一天,则可以超额完成15个零件.如果一台自动化车床和一台普通车床一天加工的零件数分别为x个和y个,则下列所列方程组正确的是()A.B.C.D.7.已知∠A、∠B互补,∠A比∠B小30°,设∠A、∠B的度数分别为x°、y°,下列方程组中符合题意的是()A.B.C.D.8.小红在网上购买了一次性医用口罩和N95口罩共90个,其中一次性医用口罩比N95口罩数量的3倍多6个,设购买一次性医用口罩x个,N95口罩y个,根据题意可列方程组为()A.B.C.D.9.张翔从学校出发骑自行车去县城,中途因道路施工步行了一段路,1.5h后到达县城.他骑车的平均速度是15km/h,步行的平均速度是5km/h,路程全长20km.他骑车与步行各走了多少千米?设他骑自行车行了xkm,步行走了ykm,则可列方程组为()A.B.C.D.10.阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”大意是:“一群乌鸦在树上栖息,若每棵树上有3只,则5只没地方去,若每棵树上有5只,则多了一棵树.”设乌鸦x只,树y棵.依题意可列方程组()A.B.C.D.二.填空题11.《孙子算经》中有鸡兔同笼问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”,如果设鸡有x只,兔有y只,以题意可得二元一次方程组.12.某车间有60名工人,每人平均每天可加工螺栓14个或螺母20个,要使每天加工的螺栓和螺母配套(1个螺栓配2个螺母),设应分配x人生产螺母,y人生产螺栓,依题意列方程组得.13.古代一歌谣:栖树一群鸦,鸦树不知数:三个坐一棵,五个地上落;五个坐一棵,闲了一棵树.请你动脑筋,鸦树各几何?若设乌鸦有x只,树有y棵,由题意可列方程组.14.弟弟对哥哥说:“我像你这么大的时候你已经20岁.”哥哥对弟弟说:“我像你这么大的时候你才5岁.”求弟弟和哥哥的年龄.设这一年弟弟x岁,哥哥y岁,根据题意可列出二元一次方程组是.15.某班级为奖励网络课堂线上学习先进个人,花了800元钱购买甲、乙两种奖品共60件,其中甲种奖品每件16元,乙种奖品每件12元,求甲乙两种奖品各买多少件?该问题中,若设购买甲种奖品x件,乙种奖品y件,根据题意可列方程组为.三.解答题16.某文具店,甲种笔记本标价每本8元,乙种笔记本标价每本5元(1)两种笔记本各销售了多少?(2)所得销售款可能是660元吗?为什么?17.一批机器零件共840个,甲先做4天,乙加入做,再做8天刚好完成.设甲每天做x 个,乙每天做y个.(1)列出关于x,y的二元一次方程;(2)用含x的代数式表示y,并求当x=36,y的值是多少?(3)若乙每天做45个,则甲每天做多少个?.参考答案1.解:由题意可得,,故选:A.2.解:根据题意可得:,故选:A.3.解:设上底为xcm,下底为ycm,根据题意可以列方程组为,故选:C.4.解:设生产的消毒液应需分装x大瓶、y小瓶,由题意得,.故选:B.5.解:设(1)班得x分,(2)班得y分,由题意可得,,即,故选:D.6.解:设一台自动化车床一天加工x个零件,一台普通车床一天加工y个零件.由题意,得,故选:C.7.解:设∠A,∠B的度数分别为x°,y°,由题意得.故选:A.8.解:设购买一次性医用口罩x个,N95口罩y个,依题意,得:.故选:B.9.解:由题意可得,,故选:A.10.解:设乌鸦x只,树y棵.依题意可列方程组:.故选:A.11.解:设鸡有x只,兔有y只,根据题意,可列方程组为,故答案是:.12.解:设应分配x人生产螺母,y人生产螺栓,依题意,得.故答案是:.13.解:依题意,得:,故答案为:.14.解:设这一年弟弟x岁,哥哥y岁,根据题意得:,故答案为:.15.解:若设购买甲种奖品x件,乙种奖品y件,甲.乙两种奖品共60件,所以x+y=60因为甲种奖品每件16元,乙种奖品每件12元,所以16x+12y=800由上可得方程组:.故答案为:.16.解:(1)设甲种笔记本销售x本,乙种笔记本销售y本,依题意得,解得,答:甲种笔记本销售65本,乙种笔记本销售35本;(2)所得销售款不可能是660元设甲种笔记本销售x本,乙种笔记本销售(100﹣x)本,则8x+(100﹣x)×5=660.解得该方程的解不是整数,故销售款不可能是660元.17.解:(1)依题意,得:(4+8)x+8y=840.(2)由(1)得:y=105﹣x.当x=36时,y=105﹣x=51.(3)当y=45时,105﹣x=45,解得:x=40.答:若乙每天做45个,则甲每天做40个.。
5.3应用二元一次方程组——鸡兔同笼教学目标能根据具体问题的数量关系,列出二元一次方程组解决简单的实际问题.(重点)课前准备幻灯片.教学过程第一环节:引入课题活动内容1:例1 今有雉(兔)同笼,上有三十五头,下有九十四足,问雉兔各几何?提问:(1)"上有三十五头"的意思是什么?"下有九十四足"呢?(2)你能解决这个有趣的问题吗?(说明:多媒体展示"鸡兔同笼"问题后,说明该问题是古代著名的"难题",以此激发学生解决问题的好奇心;提出问题后,让学生先思考,后讨论,然后找学生说出他的解题思路, 写出解题过程,让学生讨论对不对,有没有不同的思路和观点;最后在学生充分讨论的基础上,老师用多媒体课件,给出正确的答案.)1.用一元一次方程求解解:设有鸡x 只,则有兔(35-x )只,得.1235.23.462.9441402.94)35(42=-=-=-=-+=-+x x x x x x x所以有鸡23只,兔12只.小结:一元一次方程解法优点: 思维便捷些.一元一次方程解法不足:计算较复杂.2.用二元一次方程求解:解:设有鸡x 只,兔y 只,则 x +y =35, ①2x +4y =94. ②① ×2,得 2x +2y =70 , ③②-③,得 2y =24,y =12,把 y =12 代入①,得x =23.所以有鸡23只,兔12只.小结:用二元一次方程组解答优点:思维快速简单.用二元一次方程组解答不足:计算复杂些.活动目的:体会解决鸡兔同笼问题的不同思维过程,通过比较算术方法、列一元一次方程方法、列二元一次方程组三种方法的优缺点,从而感受方程模型思想的必要性和优越性,并从列一元一次方程和列二元一次方程组的方法中,领会列二元一次方程组,思维方式的简洁明了性和在解一些等量关系较为复杂的应用题时体现的优越性.活动实际效果:这样,一方面在列方程组的建模过程中,强化了方程的模型思想,并通过比较,感受了列二元一次方程组的优越性,培养了学生列方程(组)解决实际问题的意识和应用能力;另一方面,将解方程组的技能训练与实际问题的解决融为一体,在实际问题的解决过程中,进一步提高学生解方程组的技能.活动内容2:随堂练习1列方程解古算题:"今有牛五、羊二,值金十两;有牛二、羊五,值金八两.牛、羊各值金几何?(在引例及例题的基础上,学生已基本掌握了列二元一次方程组解决实际问题的方法,此题可由学生独立完成.当然由于本题是古文,可以先找学生说出题目的大意:5头牛、2只羊共价值10两"金",2头牛、5只羊共价值8两"金",每头牛、每只羊各价值多少"金"?在题的结果上强调只要分数表示即可;要学生板书整个解题过程.)解:设每头牛值"金" x 两,设每只羊值"金" y 两,则有方程: 5x +2y =10 , ①2x +5y =8. ②①×2,得 10x +4y =20 , ③②×5, 得 10x +25y =40 , ④④-③, 得 21y =20,解得 y =2120, 把 y =2021 代入②得:x =3421. 所以,每头牛值"金" 3421 两,设每只羊值"金"2021两.活动意图:让学生通过练习巩固列二元一次方程组解应用题的技能。
3 应用二元一次方程组——鸡兔同笼【知识与技能】能够找出古代实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组【过程与方法】经历同方程组解决实际问题的过程,体现方程组是刻画现实世界中含有多个未知数的问题的有效数学模型。
【情感态度】培养学生分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。
【教学重点】以方程组为工具分析,解决含有多个未知数的实际问题。
【教学难点】确定解题策略,建立等量关系.一、创设情境,导入新课《孔子算经》是我国古代一部较为普及的算书,许多问题浅显有趣。
其中下卷第31题:“雉兔同笼”流传尤为广泛,漂洋过海流传到日本等国。
“雉兔同笼"题为:“今有雉(鸡)兔同笼,上有三十五头,下有九十四足。
问雉兔各几何?”(1)“上有三十五头”的意思是什么?“下有九十四足”呢?(2)你能根据(1)中的数量关系列出方程组吗?(3)你能解决这个有趣的问题吗?与同学们交流一下.【教学说明】以古代的数学名题入手,可以增强学生的民族自豪感,激发学生学好数学的感情.又为设未知数列方程组解决实际问题的引出做好铺垫。
二、思考探究,获取新知应用二元一次方程组解决古代问题。
同学们,根据上面的方法,你能解决下面的另外一个古代问题吗?例:以绳测井,若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?【教学说明】教师可以引导学生分析题目的意思,帮助他们理清数量之间的关系,为设未知数列方程组解决问题做好充分的准备。
为了给学生一个完整的解答应用题的过程,教师可以做示范:解:设绳长x 尺,井深y 尺,根据题意,得5314①②x y ,x y ,⎧-=⎪⎪⎨⎪-=⎪⎩ ①—②得434x x -= , 12x =4, x=48将x=48代入①得y=11.所以绳长48尺,井深11尺。
三、运用新知,深化理解1。
方程组25437,,x y x y +=+=⎧⎨⎩ 的解为 。
2。
一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有 ,兔有 。