永磁同步电动机的分类和特点
- 格式:doc
- 大小:21.00 KB
- 文档页数:4
永磁同步电动机的工作原理永磁同步电动机的工作原理1. 原理概述:永磁同步电动机是一种回路磁铁回路、定子线圈或直线磁场和转子由永磁体磁场发生的同步电动机。
它是直流电动机、异步电动机等不同类型电动机中发展较晚的一种较新的电动机,具有制造成本低、调速性能优越(抗载频繁调速)、空载功率低、励磁特性优异、效率高、寿命长等特点,极大地满足了工业电机发展的需求,因此在工业应用中受到了广泛的应用。
2. 工作原理:(1)定子线圈供电:顺应交流电源的频率,定子线圈产生交流电磁场;(2)永磁转子磁极的反应:永磁转子被交流电磁场激发,磁极分别穿越固定磁芯交流电磁场相应时刻分别与定子线圈端点处的磁场力线交叉,从而形成廉价磁,它具有空载转矩、空载功率低的特点;(3)旋转磁场的发生及转子的驱动:转子磁极与定子线圈之间的磁通线交叉,产生旋转磁场,旋转磁场作用于每个磁极的磁力向固定的方向,永磁转子的转动产生了转子向前的转动力,从而驱动转子旋转;(4)转子转速的变化:定子线圈频率和永磁转子电感之间存在一定的滞后关系,而随着频率的变化,转子的转速也会随之变化,从而实现调速的目的。
3. 优点:(1)制造成本低:与异步电动机相比,永磁同步电动机无需安装绕组及励磁电路,制造工艺简单,且可拼装成组合机结构,成本低;(2)调速性能优越:由于永磁转子可以抗变频器的频繁调节,调速变化稳定、性能好,既可实现稳态调速,也可实现快速、平稳的调速;(3)空载功率低:永磁转子可通过绝缘材料以最低成本实现较小的空载功率,从而满足操作要求;(4)励磁特性优越:永磁同步电动机的励磁特性好,可以根据不同的调速要求,设置不同的励磁电压;(5)效率高:永磁电动机的效率高,不受频率的影响,使得在实际的使用过程中能够获得更好的效率;(6)寿命长:由于永磁转子可以抵抗载荷瞬变和磁场空载,有效缓冲定子线圈之间的空载、过压和短路,从而提高了永磁同步电动机的使用寿命。
永磁同步电动机的分析与设计永磁同步电机(Permanent Magnet Synchronous Motor, PMSM)是一种采用永磁材料作为励磁源的同步电机。
相较于传统的感应电机,永磁同步电机具有高效率、高功率因数、高转矩密度和高速控制响应等特点,因此在许多应用领域中得到广泛应用。
本文将介绍永磁同步电机的分析与设计内容。
首先,分析永磁同步电机的基本原理。
永磁同步电机由永磁铁和电磁绕组组成。
当绕组通电后,产生的磁场与永磁铁的磁场相互作用,使电机转子产生旋转力矩。
通过分析电机的磁动特性和电动力学特性,可以得到电机的数学模型和控制方程,为电机设计和控制提供理论依据。
其次,设计永磁同步电机的结构参数。
永磁同步电机的结构参数包括定子绕组的匝数、线圈的截面积和磁链密度等。
这些参数的选择将直接影响电机的性能,如转矩、效率和功率因数等。
通过优化设计,可以使电机在给定的体积和功率范围内获得最佳性能。
然后,进行永磁同步电机的电磁设计。
电磁设计包括计算电机的电磁参数,如磁链、磁势和磁密等。
在设计过程中,需要考虑电机的工作条件和负载要求,选择合适的磁路结构和电磁铁材料,以提高电机的效率和转矩密度。
接下来,进行永磁同步电机的电气设计。
电气设计包括计算电机的电气参数,如电压、电流和功率等。
通过分析电机的电气性能,可以确定电机的绕组参数和功率电路的参数,以满足电机的输出要求和电力系统的特性。
最后,进行永磁同步电机的控制设计。
控制设计是永磁同步电机应用中至关重要的一环。
通过采用合适的控制策略和控制器,可以实现电机的速度、位置和转矩精确控制,提高电机的动态响应和工作效率。
总之,永磁同步电机的分析与设计是实现高效电机控制的关键步骤。
通过对电机的原理分析、结构参数设计、电磁设计、电气设计和控制设计等方面的研究,可以实现电机的优化设计和性能优化,推动永磁同步电机技术在各个领域的应用发展。
永磁同步电机特征电流永磁同步电机是由永磁体励磁产生同步旋转磁场的同步电机,永磁体作为转子产生旋转磁场,三相定子绕组在旋转磁场作用下通过电枢反应,感应三相对称电流。
此时转子动能转化为电能,永磁同步电机作发电机(generator)用;此外,当定子侧通入三相对称电流,由于三相定子在空间位置上相差120,所以三相定子电流在空间中产生旋转磁场,转子旋转磁场中受到电磁力作用运动,此时电能转化为动能,永磁同步电机作电动机(motor)用。
永磁同步电机可以将电机整体地安装在轮轴上,形成整体直驱系统,即一个轮轴就是一个驱动单,省去了一个齿轮箱。
永磁同步电机的特点主要有以下几种:(1)PMSM本身的功率效率高以及功率因数高;(2)PMSM发热小,因此电机冷却系统结构简单、体积小、噪声小;(3)系统采用全封闭结构,无传动齿轮磨损、无传动齿轮噪声,免润滑油、免维护;(4)PMSM允许的过载电流大,可靠性显著提高;(5)整个传动系统重量轻,簧下重量也比传统的轮轴传动的轻,单位重量的功率大;(6)由于没有齿轮箱,可对转向架系统随意设计:如柔式转向架、单轴转向架,使列车动力性能大大提高。
1、适用场合永磁电机通常用于小功率场合。
普通电动机,特别是励磁电动机,常用于大功率场合。
永磁电机的形式有矩形脉冲波电流,永磁无刷直流电机PMBDC有矩形脉冲。
波形电流2正弦波电流,永磁磁阻同步电机PSM;因此,应用范围极为广泛,几乎涵盖了航空航天、国防、工业、农业生产和日常生活的所有领域。
下面介绍几种典型永磁电机的主要特点和主要应用场景1稀土永磁电机与传统发电机相比,永磁同步电机不需要集电环和电刷装置,对其结构也没有要求。
2、高效高功率因数永磁同步电动机结合了传统异步电动机和电励磁同步电动机的优点,可以获得与直流电动机相似甚至优于直流电动机的调速特性,性能得到全面提高。
永磁同步电动机和电励磁同步电动机与异步电动机相比,不需要无功励磁电流,并且是可能的;永磁同步电动机的启动和运行是由定子绕组、转子鼠笼绕组和永磁体产生的磁场相互作用形成的。
永磁同步电动机的分类和特点
技术 2008-08-09 15:13:38 阅读178 评论0 字号:大中小
一,永磁同步电动机的特点
永磁同步电动机结构简单、体积小、重量轻、损耗小、效率高,和直流电机相比,它没有直流电机的换向器和电刷等缺点。
和异步电动机相比,它由于不需要无功励磁电流,因而效率高,功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好;但它与异步电机相比,也有成本高、起动困难等缺点。
和普通同步电动机相比,它省去了励磁装置,简化了结构,提高了效率。
永磁同步电机矢量控制系统能够实现高精度、高动态性能、大范围的调速或定位控制,因此永磁同步电机矢量控制系统引起了国内外学者的广泛关注。
我国是盛产永磁材料的国家,特别是稀土永磁材料钕铁硼资源在我国非常丰富,稀土矿的储藏量为世界其他各国总和的4倍左右,号称“稀土王国”。
稀土永磁材料和稀土永磁电机的科研水平都达到了国际先进水平。
因此,对我国来说,永磁同步电动机有很好的应用前景。
二,永磁同步电动机的分类
永磁同步电动机的转子磁钢的几何形状不同,使得转子磁场在空间的分布可分为正弦波和梯形波两种。
因此,当转子旋转时,在定子上产生的反电动势波形也有两种:一种为正弦波;另一种为梯形波。
这样就造成两种同步电动机在原理、模型及控制方法上有所不同,为了区别由它们组成的永磁同步电动机交流调速系统,习惯上又把正弦波永磁同步电动机组成的调速系统称为正弦型永磁同步电动机(PMSM)调速系统;而由梯形波(方波)永磁同步电动机组成的调速系统,在原理和控制方法上与直流电动机系统类似,故称这种系统为无刷直流电动机(BLDCM)调速系统。
永磁同步电动机转子磁路结构不同,则电动机的运行特性、控制系统等也不同。
根据永磁体在转子上的位置的不同,永磁同步电动机主要可分为:表面式和内置式。
在表面式永磁同步电动机中,永磁体通常呈瓦片形,并位于转子铁心的外表面上,这种电机的重要特点是直、交轴的主电感相等;而内置式永磁同步电机的永磁体位于转子内部,永磁体外表面与定子铁心内圆之间有铁磁物质制成的极靴,可以保护永磁体。
这种永磁电机的重要特点是直、交轴的主电感不相等。
因此,这两种电机的性能有所不同。
三无刷直流电动机(BLDCM)
1,BLDCM研究现状
永磁无刷直流电动机与传统有刷直流电动机相比, 是用电子换向取代原直流电动机的机械换向, 并
将原有刷直流电动机的定转子颠倒(转子采用永磁体)从而省去了机械换向器和电刷,其定子电流为方波, 而且控制较简单, 但在低速运行时性能较差, 主要是受转矩脉动的影响。
引起转矩脉动的因素很多, 主要有以下原因:
(1)电枢反应引起的转矩脉动
减弱或克服这种原因造成转矩脉动采用的方法是适当增大气隙, 设计磁路时使电机在空载时达到足够饱和, 以及电机选择瓦形或环形永磁体径向励磁结构等。
(2)电流换相引起的转矩脉动
其抑制措施是通过选择适当的电机转速来削弱换相转矩脉动的影响, 或采用重叠换相法来抑制相电流换相引起的转矩脉动。
(3)齿槽效应引起的转矩脉动减弱齿槽效应最普通的方法是合理地选择极槽配合, 要么采用斜槽, 或转子采用斜极, 另外还可适当增大气隙, 采用分数槽也有助于减少齿槽转矩脉动如果制造无槽电机则是一种最有效的方法。
(4)电流调节误差引起的转矩脉动
克服这种原因所造成的转矩脉动可通过改进电流控制方法来提高电流控制的精度, 以减小电流脉动, 从而把由电流调节引起的转矩脉动降到最低限度。
不过, 要想找到更精确的电流控制方法, 还需在实践中进行更深入的探索和研究。
(5)机械加工因素引起的转矩脉动
譬如, 制造电机所用材料的不一致性、转子的偏心、各相绕组的不对称等都易引起转矩的脉动, 可以采用选择高质量材料, 提高工艺加工水平的办法来减弱它的影响。
的发展趋势
自八十年代以来, 控制技术尤其是控制理论策略发展十分迅猛, 一些先进的控制策略方法(如滑模控制、变结构控制、模糊控制、专家控制等)正被尝试着引入永磁无刷电动机控制器中,这为推动高性能向智能化、柔性化、全数字化方向发展开辟了新道路, 加上人类社会不断的进步, 人们保护生存环境意识不断增强, 选用高性能会成为电机产业发展的一种必然趋势, 而且它将会在电动汽车、家用电器及工厂自动化等小电机行业中获得更广泛的应用。
四永磁同步电机(PMSM)
1.PMSM的种类
采用正弦波的永磁同步电动机可根据永磁体在转子上放置的位置分为三种:一是永磁体埋在转子内的内磁式永磁同步电动机;一是永磁体安放在转子表面的外磁式永磁同步电动机;第三种是永磁体嵌入或部分嵌入的嵌入式永磁同步电动机。
2.PMSM的研究现状
虽然BLDCM比PMSM具有控制简单,成本低, 检测简单等优点, 但因为BLDCM的转矩脉动比较大, 铁心损耗也较大, 所以在低速直接驱动场合的应用中,PMSM的性能比BLDCM及其它交流伺服电动机优越得多。
不过在发展高性能PMSM中也遇到几个“ 瓶颈” 问题有待于作更深入的研究和探索。
存在的主要问题如下:
(1) PMSM在使用过程中出现“退磁”现象,而且在低速时也存在齿槽转矩对其转矩波动的影响。
(2)检侧误差对控制器调节性能有影响, 发展高精度的速度及位置检侧器件和实现无传感器检测的方法均可克服这种影响。
(3)以PMSM作为执行元件构成的永磁交流伺服系统, 由于PMSM本身就是具有一定非线性、强藕合性和时变性的“ 系统” , 同时其伺服对象也存在较强的不确定性和非线性, 加之系统运行时易受到不同程度的干扰, 因此采用先进控制策略, 先进的控制系统实现方式如基于控制, 以从整体上提高系统的
“ 智能化、数字化” 水平, 这应是当前发展高性能PMSM
伺服系统的一个主要的“ 突破口”。
3.PMSM的发展趋势
PMSM伺服系统从其应用领域的特点和自身技术的发展来看, 将会朝着以下两个方向发展一是适用于
简易数控机床、办公自动化设备、家用电器、计算机外围设备以及对性能要求不高的工业运动控制等领域的简易、低成本伺服系统另一方向则是向适用于高精度数控机床、机器人、特种加工设备精细进给驱动以及航空、航天用的高性能全数字化、智能化、柔性化的PMSM伺服系统发展而且后一个发展方向更能充分体现璐伺服系统优点, 今后必将成为重点发展方向。
五,PMSM与BLDCM矢量控制系统的比较
永磁同步电机与无刷直流电机有许多类似之处,转子上均有永磁磁极,定子电枢需要交变电流以产生恒定转矩,其主要区别是永磁同步电机的反电势为正弦波,无刷直流电动机的反电势为梯形波。
为了产生恒定力矩,永磁同步电机需要的定子电流为正弦波对称电流,无刷直流电机需要的定子电流为方波电流。
由于电磁惯性,无刷直流电机的定子电流实际上为梯形波,而无法产生方波电流,并由集中绕组供电,所以无刷直流电动机(BLDCM)较永磁同步电机(PMSM)脉动力矩大。
在高精度伺服驱动中,永磁同步电机有较大竞争力。
在另一方面,永磁同步电机单位电流产生的力矩较无刷直流电机单位电流产生的力矩小。
在驱动同容量的电动机时,永磁同步电机所需逆变器容量大并且需要控制电流为正弦波,开关损耗大很多。
无刷直流电机定子电流为方波,每相开通1200电角度,然后关断600电角度。
每600电角度有一个开关改变状态,所以无刷直流电机转子位置检测器只需要每隔600电角度输出一个脉冲。
永磁同步电机定子电流为正弦波,定子电流瞬时值取决于转子的瞬时位置,所以必须连续地检测转子位置。
永磁同步电机的交轴电抗和直轴电抗随电机磁路饱和等因素而变化,从而影响输出力矩的磁阻力矩分量。
永磁同步电机对参数的变化较无刷直流机敏感,但当永磁同步电机工作于电流控制方式时,磁阻转矩很小,永磁同步电机矢量控制系统对参数变化的敏感性与无刷直流机基本相同。
当电机转速较高,无刷直流电机反电势与直流母线电压相同时,反电势限制了定子电流。
而永磁同步电机能够采用弱磁控制,因此具有较大的调速范围。
六.结束语
21世纪,科学技术迅猛发展,“高新技术”不断涌现,节电,环保意识日益增强,使得高性能的PMSM 伺服系统和BLDC伺服系统发展前途一片光明, 随其技术的快速发展和日渐成熟, 将会赢得更为广阔的发展空间, 获得更加广泛的应用, 和之间谁将成为世纪小电机行业的领头羊, 就要看它们中谁最先突破技术上的难关, 谁就占领这片广阔的市场。