运放关键参数及选型原则

  • 格式:doc
  • 大小:70.50 KB
  • 文档页数:14

下载文档原格式

  / 14
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理

运放参数解释及常用运放选型

集成运放的参数较多,其中主要参数分为直流指标和交流指标,外加所有芯片都有极限参数。本文以NE5532为例,分别对各指标作简单解释。下面内容除了图片从NE5532数据手册上截取,其它内容都整理自网络。

极限参数

主要用于确定运放电源供电的设计(提供多少V电压、最大电流不能超过多少),NE5532的极

、输电压。

输入失调

小于±1

输入偏置电流对进行高阻信号放大、积分电路等对输入阻抗有要求的地方有较大的影响。

Inputbiascurrent(偏置电流)是运放输入端的固有特性,是使输出电压为零(或规定值)时,流入两输入端电流的平均值。偏置电流biascurrent就是第一级放大器输入晶体管的基极直流电流。这个电流保证放大器工作在线性范围,为放大器提供直流工作点。

输入偏置电流与制造工艺有一定关系,其中双极型工艺(即上述的标准硅工艺)的输入偏置电流在±10nA~1μA之间;采用场效应管做输入级的,输入偏置电流一般低于1nA。

偏置电流值也限制了输入电阻和反馈电阻数值不可以过大,使其在电阻上的压降与运算电压可比而影响了运算精度。或者不能提供足够的偏置电流,使放大器不能稳定的工作在线性范围。如果设计要求一定要用大数值的反馈电阻和输入电阻,可以考虑用J-FET输入的运放。同样是电压控制的还有MOSFET器件,可以提供更小的输入漏电流。

精心整理

在设计高精度直流放大放大器或选用具有较大输入偏置电流的运放时,必须使运放两端直流通道电阻相等,这样子才能平衡输入偏置电流。

Inputoffsetcurrent(失调电流)是运放两输入端的偏置电流差,是由于输入差分对管的不对称性所致,是使输出电压为零(或规定值)时,流入两输入端电流之差。由于目前多数运放的输入级都存在有不同形式的偏置电流补偿,故偏置电流的量级大为降低,以至于相对失调电流来说显得不那么重要。再加上失调电压的影响,所以通常就不会单独考虑偏置电流的问题,这也就是一般不加偏置电流补偿电阻的原因。

失调电流与偏置电流的的区别

从上图可以看出,输入的内部是三极管或者mos管,要想三极管工作在线性放大区域,必须提供合适的偏置电压和电流。但由于两个管子不可能完全一样,所以两个基极电流的差(Ib1-Ib2),就是输入失调电流。而两个管子的基极电流的平均值((Ib1+Ib2)/2),就是输入偏置电流。

输入端的相同信号,通常是由于线路传导和空间磁场干扰产生的,不携带有效信息,是不希望出现的信号。主要表现为:

1)单线传输时,地电位差异引起的共模信号,会叠加在信号上形成共模干扰,造成原始信号

失真;

2)双线传输时,有效信号是差模信号,共模信号是无效信号。如果共模信号被放大很多,会

影响到真正需要放大的差模信号。

共模抑制比120dB与60dB区别大吗?

比如输出差模信号1V,差模增益1,理论测试结果为1V。但若存在100V共模电压,120dB共模抑制比衰减倍数为0.000001,此时测试误差为0.1mV,而60dB共模抑制比衰减倍数为0.001,测试误差为100mV。也就是说,共模抑制比60dB的测试误差会是120dB测试误差的1000倍。

精心整理

电源电压抑制比PSRR

电源电压抑制比定义为当运放工作于线性区时,运放输入失调电压随电源电压的变化比值。电源电压抑制比反映了电源变化对运放输出的影响。对于电源电压抑制比低的运放,运放的电源需要作认真细致的处理,否则电源的纹波会引入到输出端。当然,共模抑制比高的运放,能够补偿一部分电源电压抑制比,另外在使用双电源供电时,正负电源的电源电压抑制比可能不相同输出峰-峰值电压Vout:

输出峰-峰值电压定义为,当运放工作于线性区时,在指定的负载下,运放在当前大电源电压供电时,运放能够输出的最大电压幅度。除低压运放外,一般运放的输出输出峰-峰值电压大于±10V。一般运放的输出峰-峰值电压不能达到电源电压,这是由于输出级设计造成的,现代部分低压运放的输出级做了特殊处理,使得在10k?负载时,输出峰-峰值电压接近到电源电压的50mV以内,所以称为满幅输出运放,又称为轨到轨(raid-to-raid)运放。需要注意的是,运放的输出峰-峰

.

100kHz

于很小信号处理。NE5532数据手册中貌似没有这项参数。

单位增益带宽GB(NE5532中使用增益带宽积GBW衡量)

单位增益带宽定义为,运放的闭环增益为1倍条件下,将一个恒幅正弦小信号输入到运放的输入端,从运放的输出端测得闭环电压增益下降3db(或是相当于运放输入信号的0.707)所对应的信号频率。

单位增益带宽是一个很重要的指标,对于正弦小信号放大时,单位增益带宽等于输入信号频率与该频率下的最大增益的乘积,换句话说,就是当知道要处理的信号频率和信号需要的增益以后,可以计算出单位增益带宽,用以选择合适的运放。这项参数用于小信号处理中运放选型。

压摆率(转换速率)SR

运放接成闭环条件下,将一个大信号(含阶跃信号)输入到运放的输入端,从运放的输出端测得运放的输出上升速率。由于在转换期间,运放的输入级处于开关状态,所以运放的反馈回路不起作用,也就是转换速率与闭环增益无关。

转换速率对于大信号处理是一个很重要的指标,对于一般运放转换速率SR<=10V/μs,高速运放的转换速率SR>10V/μs。目前的高速运放最高转换速率SR达到6000V/μs。这用于大信号处理中运放选型。

全功率带宽

在额定的负载时,运放的闭环增益为1倍条件下,将一个恒幅正弦大信号输入到运放的输入端,使运放输出幅度达到最大(允许一定失真)的信号频率。这个频率受到运放转换速率的限制。近似地,全功率带宽=转换速率/2πVop(Vop是运放的峰值输出幅度)。全功率带宽是一个很重要的指

1mW。

MOS

对数

AD/DA

20VDC。常用运放及参数

μA741TI单路通用运放

μA747TI双路通用运放

AD515AADI低功耗FET输入运放

AD605ADI低噪声,单电源,可变增益双运放

AD644ADI高速,注入BiFET双运放

AD648ADI精密的,低功耗BiFET双运放

AD704ADI输入微微安培电流双极性四运放

AD705ADI输入微微安培电流双极性运放