相交线与平行线中考真题分类练习
- 格式:docx
- 大小:213.02 KB
- 文档页数:5
中考数学相交线与平行线专题训练50题含答案(单选、填空、解答题)一、单选题1.已知P 是直线m 外一点,A 、B 、C 是直线m 上一点,且532PA PB PC ===,,,那么点P 到直线m 的距离为( )A .等于2B .大于2C .小于或等于2D .小于2 2.如图,1120∠=︒,要使//a b ,则2∠的大小是( )A .60︒B .80︒C .100︒D .120︒ 3.P 为直线外一点,点A 、B 、C 在直线l 上,若2cm, 2.3cm,5cm PA PB PC ===,则点P 到直线l 的距离是( )A .2cmB .小于2cmC .不大于2cmD .5cm 4.如图所示,一束光线垂直照射水平地面,在地面上放一个平面镜,欲使这束光线经平面镜反射后成水平光线,则平面镜与地面所成锐角的度数为( )A .45°B .60°C .75°D .80° 5.如图,AB//EF//CD ,点G 在AB 上,GE//BC ,GE 的延长线交DC 的延长线于点H ,则图中与AGE ∠相等的角(不含AGE ∠)共有( )A .7个B .6个C .5个D .4个 6.如图,直线m∥n ,直线AB 分别与直线m ,n 交于A ,B 两点,∥BAD 的平分线交直线n 于点C ,若∥1=56°,则∥2的度数是( )A .108°B .112°C .118°D .124° 7.下列命题中,属于假命题的是( )A .两直线平行,内错角相等B .平行于同一条直线的两条直线平行C .同位角相等,两直线平行D .一个角的补角一定不大于这个角 8.如图,下列条件中不能判定AB CD ∥的是( ).A .180A ADC ∠+∠=︒B .A ADE ∠=∠C .ABD BDC ∠=∠ D .ADB CBD ∠=∠9.如图,五边形ABCDE 中,//AE CD .若110A C ∠=∠=︒,则B ∠的度数为( )A .70︒B .110︒C .140︒D .150︒ 10.如图,直线a ∥b ,直角三角形ABC 的顶点B 在直线a 上,若∥C =90°,∥α=30°,则∥β的度数为( )A .30°B .45°C .60°D .75° 11.如图,已知BD AC ∥,165∠=︒,40A ∠=︒,则2∠的大小是( )A.55︒B.65︒C.75︒D.85︒12.下列说法正确的个数是()∥两点之间,直线最短=,则点B为线段AC的中点;∥若AB BC∥过一点有且只有一条直线与已知直线垂直;∥过直线外一点有且只有一条直线与已知直线平行A.4B.3C.2D.113.如图,DE∥CF,且∥D=120°,∥A=30°,则∥B的度数为()A.120°B.90°C.60°D.30°14.下列事实中,利用“垂线段最短”依据的是()A.把一根木条固定在墙上至少需要两个钉子B.把弯曲的公路改直,就能缩短路程C.体育课上,老师测量同学们脚后跟到起跑线的垂直距离作为跳远成绩D.火车运行的铁轨永远不会相交15.如图,直线AB∥CD,AF交CD于点E,∥CEF=135°,则∥A等于()A.65°B.55°C.45°D.135°16.下列命题是真命题的是()A.两直线平行,同旁内角相等B.直角三角形的两锐角互余C.三角形的外角大于任一内角D.所有边都相等的多边形是正多边形17.如图,OP 平分MON ∠,PA ON ⊥于点A ,点Q 是射线OM 上的一个动点.若4PA =,则PQ 的最小值为( )A .2B .3C .4D .518.下列说法:∥在同一平面内,两条直线的位置关系有相交和平行两种;∥过一点有且只有一条直线与这条直线平行;∥平行于同一条直线的两条直线平行;∥如果两条直线被第三条直线所截,那么内错角相等;∥直线外一点到这条直线的垂线段,叫做点到直线的距离.其中正确的有( )A .2个B .3个C .4个D .5个 19.如图,下列条件不能判定AB∥CD 的是( )A .12∠∠=B .2E ∠∠=C .B E 180∠∠+=D .BAF C ∠∠= 20.甲,乙两位同学用尺规作“过直线l 外一点C 作直线l 的垂线”时,第一步两位同学都以C 为圆心,适当长度为半径画弧,交直线l 于D ,E 两点(如图);第二步甲同学作∥DCE 的平分线所在的直线,乙同学作DE 的中垂线.则下列说法正确的是( )A .只有甲的画法正确B .只有乙的画法正确C .甲,乙的画法都正确D .甲,乙的画法都不正确二、填空题21.已知点A (3,4),B (3,1),C (﹣4,1),D (﹣4,3),则AB 与CD 的位置关系是_____.22.已知∥1与∥2是对顶角,∥1与∥3是邻补角,则∥2+∥3=_________. 23.如图,OC OD ⊥,150∠=︒,则2∠的度数是_______24.如图,点P 在AOB ∠的平分线上,过点P 作PC OA ⊥,交OA 于点C ,且5PC =,D 是OB 上一动点,则PD 的最小值为___________.25.如图,将矩形纸片ABCD 沿EF 折叠后,点D ,C 分别落在点D 1,C 1的位置,ED 1的延长线交BC 于点G ,若∥EFG =62°,则∥EGB 等于______.26.如图,两直线交于点O ,若∥1+∥2=76°,则∥1=________度.27.如图,过直线AB 上一点O 作射线OC ,30BOC ∠=︒,OD 平分AOC ∠,则DOC ∠的度数为__________.28.如图,a //b ,点B 在直线b 上,且AB ∥BC ,∥1=35°,那么∥2=______.29.如图,在直线a 的同侧有P 、Q 、R 三点,若PQ//a ,QR//a ,则P 、Q 、R 三点______(填“在”或“不在”)同一条直线上.30.把一张长方形纸条按图中折叠后,若∥EFB= 65º,则∥AED ’= _______度 .31.如图,BO 平分ABC ∠,OD BC ⊥于点D ,点E 为射线BA 上一动点,若6OD =,则OE 的最小值为______.32.如图,体育课上老师要测量学生的跳远成绩,其测量时主要依据是______.33.如图,AB 、CD 相交于O ,OE AB ⊥,35∠=︒DOE 则BOC ∠=______;34.如图,已知∥A=∥F=40°,∥C=∥D=70°,则∥ABD=____,∥CED=____.35.已知:如图,AB∥CD ,若∥ABE=130°,∥CDE=152°,则∥BED=__度.36.如图,点E 在射线AD 的延长线上,要使AB//CD ,只需要添加一个条件,这个条件可以是________.(填一个你认为正确的条件即可)37.如图∥是长方形纸带,∥CFE =55°,将纸带沿EF 折叠成图∥,再沿GE 折叠成图∥,则图∥中∥DEF 的度数是_________38.如图,AD BC BAD ∠∥,的平分线交CD 于点E ,交BC 的延长线于点F ,且CEF F ∠=∠,求证:180B BCD ∠+∠=︒.请你将下面的证明过程补充完整:证明:AD BC ∥∴__________F =∠,(理由:____________________)AF 平分BAD ∠∴__________=__________(角平分线的定义)BAF F ∴∠=∠(等量代换)CEF F ∠=∠(已知)BAF CEF ∴∠=∠(等量代换)∴__________∥__________(理由:____________________)180B BCD ∴∠+∠=︒,(理由:____________________)39.如图,ABC ∆中,50B ∠=︒,30C ∠=︒,点D 为边BC 上一点,将ADC ∆沿直线AD 折叠后,点C 落到点E 处,若DE AB ∥,则DAC ∠=____________.40.如图,直线l∥m∥n ,等边∥ABC 的顶点B ,C 分别在直线n 和m 上,边BC 与直线n 所夹的角为25°,则∥α的度数为_____度.三、解答题41.如图,直线MN 分别与直线AC 、DG 交于点B 、F ,且12∠=∠,ABF ∠的角平分线BE 交直线DG 于点E ,BFG ∠的角平分线FC 交直线AC 于点C .(1)求证://BE CF ;(2)若35C ∠=︒,求BED ∠的度数.42.已知:如图,A 、F 、C 、D 在同一直线上,AB ∥DE ,AB =DE ,AF =CD ,求证:(1)BC =EF ;(2)BC ∥EF .43.如图,两条射线AM ∥BN ,线段CD 的两个端点C 、D 分别在射线BN 、AM 上,且∥A =∥BCD =108°.E 是线段AD 上一点(不与点A 、D 重合),且BD 平分∥EBC . (1)求∥ABC 的度数.(2)请在图中找出与∥ABC 相等的角,并说明理由.(3)若平行移动CD ,且AD >CD ,则∥ADB 与∥AEB 的度数之比是否随着CD 位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值.44.如图,已知AB 是∥O 的直径,C 、D 是∥O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE =ED ;(2)若AB =10,∥CBD =36°,求扇形AOC 的面积. 45.如图,三角形ABC 中,点A ,B ,C 都在方格纸的格点(网格线的交点)上,每个小方格的边长为1个单位长度.将三角形ABC 向左平移2格,再向上平移2格,得到三角形111A B C ,点1A ,1B ,1C 的对应点分别是点A ,B ,C .(1)请在图中画出三角形111A B C .(2)画出点C 到直线AB 的垂线段CM ,并回答:点C 到直线AB 的距离等于_____个单位长度.46.如图,AD EF ∥,12180∠+∠=︒.(1)若150∠=︒,求BAD ∠的度数:(2)已知DG 平分ADC ∠,求证:AB DG ∥.47.如图,∥B=∥C=90°,E 是BC 的中点,AE 平分∥BAD ,求证:AE∥DE.48.如图,由点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∥AOB =90°,OF 平分∥BOC , OE 平分∥AOD . 若∥EOF =165°,求∥COD 的度数49.如图,GE 分别与AB ,CD 相交于E ,G 两点,过E 点的直线EH 与CD 相交于点F .若∥1=∥2=∥3=55°.(1)AB 与CD _______平行(填“一定”或“不一定”或“一定不”);(2)求∥4的度数.50.已知:如图,MON ∠.求作:BAD ∠,使BAD MON ∠=∠.下面是小明设计的尺规作图过程.作法:∥在OM 上取一点A ,以A 为圆心,OA 为半径画弧,交射线OA 于点B ;∥在射线ON上任取一点C,连接BC,分别以B,C为圆心,大于12BC为半径画弧,两弧交于点E,F,作直线EF,与BC交于点D;∥作射线AD,BAD∠即为所求.(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下列证明.证明:∥EF垂直平分BC,∥________DC=.∥AO AB=,∥AD OC∥()(填推理依据).∥BAD MON∠=∠.参考答案:1.C【分析】根据“直线外一点到直线上各点的所有线中,垂线段最短”进行解答.【详解】解:∥直线外一点与直线上各点连接的所有线段中,垂线段最短,∥点P到直线m的距离≤PC,即点P到直线m的距离小于或等于2.故选:C.【点睛】本题考查的是点到直线的距离,熟知直线外一点到直线的垂线段的长度,叫做点到直线的距离是解答此题的关键.2.D【分析】根据同位角相等,两直线平行即可求解.∠=∠=︒,那么//a b.【详解】解:如果21120所以要使//∠的大小是120︒.a b,则2故选D.【点睛】本题考查的是平行线的判定定理,掌握同位角相等,两直线平行是解题的关键.3.C【分析】从直线外一点到这条直线上各点所连的线段中,垂线段最短.【详解】解:∥P A=2cm,PB=2.3cm,PC=5cm,∥P A<PB<P C.∥∥当P A∥l时,点P到直线l的距离等于2cm;∥当P A与直线l不垂直时,点P到直线l的距离小于2cm;综上所述,则P到直线l的距离是不大于2cm.故选:C.【点睛】本题主要考查了垂线段最短的性质和点到直线的距离的概念.垂线的两条性质:∥从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.∥从直线外一点到这条直线上各点所连的线段中,垂线段最短.4.A【详解】试题分析:要求平面镜与地面所成锐角的度数,就要利用平行线的性质,和光的反射原理计算.解:∥入射光线垂直于水平光线,∥它们的夹角为90°,虚线为法线,∥1为入射角,∥∥1=0.5×90°=45°,∥∥3=90°﹣45°=45°;∥两水平光线平行,∥∥4=∥3=45°.故选A.【点评】本题用到的知识点为:入射光线与法线的夹角叫入射角;反射光线与法线的夹角叫反射角;入射角等于反射角;两直线平行,内错角相等.5.B【分析】根据平行线性质得出∥AGE=∥GEF=∥EHC=∥BCD=∥EPC=∥BPF=∥GBP,即可得出答案.【详解】∥AB∥EF, ∥∥AGE=∥GEF, ∥GBP=∥BPF∥EF∥CD, ∥∥GEF=∥EHC, ∥PCD=∥EPC=∥BPF,∥GE∥BC, ∥∥EHC=∥BCD,∥∥AGE =∥GEF=∥EHC=∥BCD=∥EPC=∥BPF=∥GBP.共6个角与∥AGE相等.故选:B【点睛】本题考查了平行线性质:两直线平行,同位角相等,内错角相等,以及等量代换等.主要考查学生的推理能力.6.C【分析】根据平行线的性质和角平分线的性质,可以求得∥1+∥3的度数,从而可以得到∥2的度数,本题得以解决.【详解】解:∥m∥n,∥∥1+∥3=∥2,∥∥1=56°,∥∥BAD=124°,∥AC平分∥DAB,∥∥3=62°,∥∥1+∥3=56°+62°=118°,∥∥2=118°,故选:C.【点睛】本题考查平行线的性质和角平分线的定义,熟练掌握基础知识是关键.7.D【分析】利用补角的性质、平行线的性质及判定等知识分别判断后即可确定答案.【详解】解:A、两直线平行,内错角相等,是真命题,不符合题意;B、平行于同一条直线的两条直线平行,是真命题,不符合题意;C、同位角相等,两直线平行,是真命题,不符合题意;D、一个角的补角不一定不大于这个角,原命题是假命题,符合题意;故选:D.【点睛】考查了命题与定理的知识,解题的关键是了解补角的性质、平行线的性质及判定等知识,难度不大.8.D【分析】根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.【详解】解:A、当∥A+∥ADC=180°时,可得:AB∥CD,不合题意;B、当∥A=∥ADE时,可得:AB∥CD,不合题意;C、当∥ABD=∥BDC时,可得:AB∥CD,不合题意;D、当∥ADB=∥CBD时,可得:AD∥BC,符合题意.故选:D.【点睛】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.9.C-⨯︒=︒,结合两直线平行,同旁内角互补解【分析】根据五边形的内角和为(52)180540题.AE CD【详解】//+=180E D ∴∠∠︒五边形ABCDE 的内角和:++++=(5-2)180=540A B C D E ∠∠∠∠∠⨯︒︒又110A C ∠=∠=︒解得,140B ∠=︒故选:C【点睛】本题考查平行线的性质、多边形的内角和定理,是重要考点,难度较易,掌握相关知识是解题关键.10.C【分析】首先过点C 作CE∥a ,可得CE∥a∥b ,然后根据两直线平行,内错角相等,即可求得答案.【详解】解:过点C 作CE∥a ,∥a∥b ,∥CE∥a∥b ,∥∥BCE=∥α=30°,∥ACE=∥β,∥∥ACB=90°,∥∥β=∥ACE=∥ACB-∥BCE=60°.故选C .【点睛】此题考查了平行线的性质和判定,注意掌握辅助线的作法,两直线平行,内错角相等定理的应用是解题的关键.11.C【分析】先根据平行线的性质可得40ABD A ==︒∠∠,再根据平角的定义即可得.【详解】解:BD AC ∥,40A ∠=︒,40ABD A ∴∠=∠=︒,165︒∠=,2180175ABD ∴∠=︒-∠-∠=︒,故选:C .【点睛】本题主要考查了平行线的性质,熟练掌握平行线的性质是解题关键.12.D【分析】根据线段的性质,平行公理及推理,垂线的性质等知识点分析判断,即可求解.【详解】解:∥两点之间,线段最短,该说法错误;,则点B为线段AC的中点,该说法错误;∥当点B在线段AC上时,若AB BC∥在同一平面内,过一点有且只有一条直线与已知直线垂直,该说法错误;∥过直线外一点有且只有一条直线与已知直线平行,该说法正确;所以说法正确的有∥,共1个.故选:D【点睛】本题主要考查了平行公理及推论,线段的性质,两点间的距离以及垂线,熟记基础知识,掌握相关概念是解题的关键.13.B【分析】由平行线的性质得到∠ACF,利用三角形的一个外角等于与它不相邻的两个内角之和,即可求解.【详解】解:∵DE∥CF,∠D=120°,∴∠ACF=∠D=120°,∵∠ACF=∠A+∠B,∠A=30°,∴∠B=∠ACF﹣∠A=120°﹣30°=90°,故选:B.【点睛】此题主要考查了平行线的性质和三角形的外角性质,正确把握“两直线平行,同位角相等”和“三角形的一个外角等于与它不相邻的两个内角之和”是解题关键.14.C【分析】根据“垂线段最短”进行判定即可.【详解】解:A、用两个钉子就可以把木条固定在墙上,利用的是两点确定一条直线,故此选项不符合题意;B、把弯曲的公路改直,就能缩短路程,利用的是“两点之间,线段最短”,故此选项不符合题意;C、体育课上,老师测量同学们脚后跟到起跑线的垂直距离作为跳远成绩,利用的是“垂线段最短”,故此选项符合题意;D、火车运行的铁轨永远不会相交,利用的是两直线平行,没有交点,故此选项不符合题意;故选:C.【点睛】此题主要考查了点到直线的距离的定义,两点确定一条直线,“两点之间,线段最短”,正确把握定义及性质是解题关键.15.C【分析】先根据邻补角的定义得出∥CEA=45°,再根据两直线平行,内错角相等得出∥A=∥CEA,即可得出答案【详解】解:∥AB∥CD,∥∥A=∥CEA,∥∥CEF=135°,∥∥CEA=45°,∥∥A=45°.故选C.【点睛】本题考查了平行线的性质,是基础题,熟记性质并准确识图是解题的关键.16.B【分析】利用平行线的性质,直角三角形的两锐角性质,三角形的外角性质及正多边形的概念分别判断,即可确定正确的选项.【详解】A.两直线平行,同旁内角相等,说法错误,正确为:两直线平行,同旁内角互补,因此不符合题意;B.直角三角形的两锐角互余,说法正确,符合题意;C.三角形的外角大于任一内角,说法错误,正确为:三角形的外角大于任意一个与它不相邻的内角,因此不符合题意;D.所有边都相等的多边形是正多边形,说法错误,比如菱形四条边相等,却不是正多边形,因此不符合题意.故选:B.【点睛】此题考查了命题与定理的知识,解题关键是熟练掌握相关内容及会举出反例来判断一个命题是不是假命题.17.C⊥时,PQ的值最小,根据角平分线性质得出【分析】根据垂线段最短得出当PQ OM=,求出即可.PQ PA【详解】解:当PQ OM ⊥时,PQ 的值最小, OP 平分MON ∠,PA ON ⊥,4PA =,4PQ PA ∴==,故选:C .【点睛】本题考查了角平分线性质,垂线段最短的应用,解题的关键是能得出要使PQ 最小时Q 的位置.18.A【分析】根据平行线的判定与性质、平行线的定义、平行公理及推论、点到直线的距离求解判断即可.【详解】解:∥在同一平面内,两条直线的位置关系有:相交、平行,故此答案正确,符合题意;∥在同一平面内,过直线外一点有且只有一条直线与这条直线平行,故此答案错误,不符合题意;∥行于同一条直线的两条直线平行,故此答案正确,符合题意;∥如果两条平行线被第三条直线所截,那么内错角相等,故此答案错误,不符合题意; ∥直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离,故此答案错误,不符合题意,故选: A .【点睛】此题考查了平行线的判定与性质、平行线的定义、平行公理及推论、点到直线的距离等知识,解题的关键是熟记平行线的判定与性质、平行线的定义、平行公理及推论、点到直线的距离.19.B【分析】结合图形,根据平行线的判定方法对选项逐一进行分析即可得.【详解】A. ∥l=∥2,根据内错角相等,两直线平行,可得AB//CD ,故不符合题意;B. ∥2=∥E ,根据同位角相等,两直线平行,可得AD//BE ,故符合题意;C. ∥B+∥E= 180°,根据同旁内角互补,两直线平行,可得AB//CD ,故不符合题意;D. ∥BAF=∥C ,根据同位角相等,两直线平行,可得AB//CD ,故不符合题意, 故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键. 20.C【分析】利用等腰三角形的三线合一可判断甲乙的画法都正确.【详解】∥CD=CE,∥∥DCE的平分线垂直DE,DE的垂直平分线过点C,∥甲,乙的画法都正确.故选C.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21.平行.【分析】观察发现点A与点B的横坐标相同、点C与点D的横坐标相同,故AB与CD均垂直于x轴,从而可得AB与CD的位置关系.【详解】解:∥A(3,4),B(3,1),二者横坐标相同,∥AB∥x轴,∥C(﹣4,1),D(﹣4,3),二者横坐标相同,∥CD∥x轴,∥AB∥CD,故答案为:平行.【点睛】本题考查了平面直角坐标系中坐标与图形的性质,明确坐标特点与图形性质的关系是解题的关键.22.180°【详解】解:∥∥1与∥3是邻补角,∥∥1+∥3=180°.∥∥1与∥2是对顶角,∥∥1=∥2,∥∥2+∥3=180°(等量代换).故答案为180°.23.40︒##40度【分析】由垂直的定义得到∥COD=90°,再由平角的定义来求解.【详解】解:∥OC∥OD,∥∥COD=90°,∥∥1+∥2=180°-90°=90°,∥∥2=90°-∥1=90°-50°=40°.故答案为:40︒.【点睛】本题主要考查了垂直的定义,平角的定义,理解相关知识是解答关键.【分析】根据垂线段最短可知,当PD OB ⊥时最短,再根据角平分线上的点到角的两边的距离相等可得PD PC =,从而得解.【详解】解:如下图,作PD OB ⊥交OB 与点D ,垂线段最短,∴当PD OB ⊥时,PD 最短, OP 是AOB ∠的平分线,PC OA ⊥,PD PC ∴=,5PC =,5PD ∴=,即PD 长度最小为5,故答案为:5.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,垂线段最短的性质,确定出PD 最小时的位置是解题的关键.25.124°##124度【分析】在矩形ABCD 中,AD ∥BC ,则∥DEF =∥EFG =62°,∥EGB =∥DEG ,又由折叠可知,∥GEF =∥DEF ,可求出∥DEG 的度数,进而得到∥EGB 的度数.【详解】解:在矩形ABCD 中,AD ∥BC ,∥∥DEF =∥EFG =62°,∥EGB =∥DEG ,由折叠可知∥GEF =∥DEF =62°,∥∥DEG =124°,∥∥EGB =∥DEG =124°.故答案为:124°.【点睛】本题主要考查平行线的性质,折叠的性质等,掌握折叠前后角度之间的关系是解题的基础.【分析】直接利用对顶角的性质结合已知得出答案.【详解】解:∥两直线交于点O ,∥∥1=∥2,∥∥1+∥2=76°,∥∥1=38°.故答案为:38.【点睛】此题主要考查了对顶角,正确把握对顶角的定义是解题关键.27.75︒##75度【分析】先根据30BOC ∠=︒,求出150AOC ∠=︒,再根据OD 平分AOC ∠,即可得出答案.【详解】解:∥30BOC ∠=︒,∥180********AOC BOC ∠=︒-∠=︒-︒=︒,∥OD 平分AOC ∠, ∥111507522DOC AOC ∠=∠=⨯︒=︒. 故答案为:75︒.【点睛】本题主要考查了角平分线的有关计算,领补角的计算,解题的关键是根据邻补角求出150AOC ∠=︒.28.55°##55度【分析】先根据∥1=35°,由垂直的定义,可得到∥3的度数,再由a ∥b 即可求出∥2的度数.【详解】解:∥AB ∥BC ,∥∥3=90°﹣∥1=55°.∥a ∥b ,∥∥2=∥3=55°.故答案为55°.【点睛】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.29.在【分析】根据平行公理的内容进行解答即可.【详解】∥PQ//a ,QR//a ,∥P 、Q 、R 三点在同一条直线上,故答案为在.【点睛】本题考查了平行公理,熟知“过直线外一点有且只有一条直线与已知直线平行”是解题的关键.30.50︒【详解】试题分析:根据两直线平行内错角相等可得:∥DEF=∥EFB=65°,根据折叠图形的性质可得:∥D′EF=∥DEF=65°,根据补角的定义可知:∥AE D′=180°-65°×2=50°.点睛:本题主要考查的就是折叠图形的性质以及平行线的性质问题.在解决折叠问题时,我们首先必须要明白折叠之后有哪些线段和哪些角是相等的,然后根据平行线的性质定理得出未知角的度数.在解决折叠问题的时候,我们很多时候也需要转化为直角三角形的问题来求某一条线段的长度(特别是矩形或正方形的折叠).31.6【分析】过O 点作OH BA ⊥于H 点,如图,先根据角平分线的性质得到6OH OD ==,然后根据垂线段最短解决问题.【详解】解:过O 点作OH BA ⊥于H 点,如图, BO 平分ABC ∠,OD BC ⊥,OH BA ⊥,6OH OD ∴==,点E 为射线BA 上一动点,OE ∴的最小值为OH 的长,即OE 的最小值为6.故答案为:6.【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.也考查了垂线段最短.32.垂线段最短.【详解】试题分析:点到线上的任意点之间的长度中,垂线段最短.考点:点到线的距离.33.125︒【分析】根据余角和补角的关系计算即可;【详解】∥OE AB ⊥,∥90AOE BOE ∠=∠=︒,∥35∠=︒DOE ,∥903555BOD ∠=︒-︒=︒,又∥180BOC BOD ∠+∠=︒,∥18055125BOC ∠=︒-︒=︒.故答案是125︒.【点睛】本题主要考查了余角和补角的性质,准确计算是解题的关键.34. 70° 110°【详解】试题解析:∥∥A=∥F=40°,∥DF∥AC ,∥∥D=70°,∥∥D=∥ABD=70°,∥DF∥AC ,∥∥CED+∥C=180°,∥∥C=70°,∥∥CED=110°.点睛:平行线的性质有:∥两直线平行,同位角相等,∥两直线平行,内错角相等,∥两直线平行,同旁内角互补.35.78【详解】试题分析:首先做一条辅助线,平行于两直线,再利用平行线的性质即可求出. 解:过点E 作直线EF∥AB ,∥AB∥CD ,∥EF∥CD,∥AB∥EF,∥∥1=180°﹣∥ABE=180°﹣130°=50°;∥EF∥CD,∥∥2=180°﹣∥CDE=180°﹣152°=28°;∥∥BED=∥1+∥2=50°+28°=78°.故填78.点评:解答此题的关键是过点E作直线EF∥AB,利用平行线的性质可求∥BED的度数.36.∥l=∥2或∥A=∥CDE 或∥C+∥ABC= 180°等【分析】找到相等的同位角、内错角或互补的同旁内角即可.【详解】若∥1=∥2,则AB∥CD;若∥A=∥CDE,则AB∥CD;若∥C+∥ABC= 180°,则AB∥CD,故答案为∥l=∥2或∥A=∥CDE 或∥C+∥ABC= 180°(答案不唯一).【点睛】本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键.37.15 ##15度【分析】根据两条直线平行,内错角相等,则∥AEF=∥CFE=55°,根据平角定义,则图∥中的∥DEG=70°,进一步求得图∥中∥GEF=55°,进而求得图∥中的∥DEF的度数.【详解】解:∥AD∥BC,∥CFE=55°,∥∥AEF=∥CFE=55°,∥DEF=125°,∥图∥中的∥GEF=55°,∥DEG=180°-2×55°=70°,∥图∥中∥GEF=55°,∥DEF=70°-55°=15°.故答案为:15°【点睛】此题主要考查了平行线的性质,折叠的性质,解答的关键是结合图形分析清楚角与角之间的关系.38.见解析【分析】根据平行线的性质和角平分线的性质可得∥BAF =∥CEF ,因此AB ∥DC ,结论可证.【详解】证明:AD BC ∥DAF F ∴∠=∠,(理由:两直线平行,内错角相等) AF 平分BAD ∠BAF DAF ∴∠=∠(角平分线的定义)BAF F ∴∠=∠(等量代换)CEF F ∠=∠,(已知)BAF CEF ∴∠=∠(等量代换)AB DC ∴∥(理由:同位角相等,两直线平行)180B BCD ∴∠+∠=︒.(理由:两直线平行,同旁内角互补)【点睛】本题主要考查了平行线的性质和判定,熟练掌握平行线的性质和判定方法是解题的关键.39.35︒【分析】先根据三角形的内角和定理可得100BAC ∠=︒,再根据折叠的性质可得30,E C DAE DAC ∠=∠=︒∠=∠,然后根据平行线的性质可得30BAE E ∠=∠=︒,最后根据角的和差即可得.【详解】50,30C B ∠=︒=∠︒180100BAC B C ∴∠=︒-∠-∠=︒由折叠的性质可知,30,E C DAE DAC ∠=∠=︒∠=∠//DE AB30BAE E ∴∠=∠=︒又2BAC BAE DAE DAC BAE DAC ∠=∠+∠+∠=∠+∠100302DAC ∴︒=︒+∠解得35DAC ∠=︒故答案为:35︒.【点睛】本题考查了三角形的内角和定理、折叠的性质、平行线的性质等知识点,掌握折叠的性质是解题关键.40.35.【详解】试题分析:本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.先根据m∥n求出∥BCD的度数,再由∥ABC是等边三角形求出∥ACB的度数,根据l∥m即可得出结论.∥m∥n,边BC与直线n所夹的角为25°,∥∥BCD=25°.∥∥ABC 是等边三角形,∥∥ACB=60°,∥∥ACD=60°﹣25°=35°.∥l∥m,∥∥α=∥ACD=35°.故答案为35.考点:平行线的性质;等边三角形的性质.41.(1)见解析;(2)145°【分析】(1)求出∥1=∥BFG,根据平行线的判定得出AC∥DG,求出∥EBF=∥BFC,根据平行线的判定得出即可;(2)根据平行线的性质得出∥C=∥CFG=∥BEF=35°,再求出答案即可.【详解】解:(1)证明:∥∥1=∥2,∥2=∥BFG,∥∥1=∥BFG,∥AC∥DG,∥∥ABF=∥BFG,∥∥ABF的角平分线BE交直线DG于点E,∥BFG的角平分线FC交直线AC于点C,∥∥EBF=12∥ABF,∥CFB=12∥BFG,∥∥EBF=∥CFB,∥BE∥CF;(2)∥AC∥DG,BE∥CF,∥C=35°,∥∥C=∥CFG=35°,∥∥CFG=∥BEG=35°,∥∥BED=180°-∥BEG=145°.【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键.42.(1)证明见解析(2)证明见解析【分析】(1)根据平行线的性质和全等三角形的判定和性质解答即可.(2)根据全等三角形的性质和平行线的判定解答即可.【详解】(1)证明:(1)//AB DE,A D∴∠∠=,AF CD =,AC DF ∴=,在ABC 与DEF 中AB DE A D AC DF =⎧⎪∠=∠⎨⎪=⎩,ABC DEF SAS ∴≅(), BC EF ∴=.(2)(2)ABC DEF ≅,BCA EFD ∴∠∠= ,//BC EF ∴ .【点睛】考查了全等三角形的判定与性质、平行线的判定与性质等知识,证明三角形全等是解决问题的关键.43.(1)∥ABC =72°;(2)与∥ABC 相等的角是∥ADC 、∥DCN ;(3)不发生变化.比值为12.【分析】(1)由平行线的性质可求得∥A +∥ABC =180°,即可求得答案;(2)利用平行线的性质可求得∥ADC =∥DCN ,∥ADC +∥BCD =180°,则可求得答案; (3)利用平行线的性质,可求得∥AEB =∥EBC ,∥ADB =∥DBC ,再结合角平分线的定义可求得答案.【详解】(1)∥AM ∥BN ,∥∥A +∥ABC =180°,∥∥ABC =180°﹣∥A =180°﹣108°=72°.(2)与∥ABC 相等的角是∥ADC 、∥DCN .∥AM ∥BN ,∥∥ADC =∥DCN ,∥ADC +∥BCD =180°,∥∥ADC =180°﹣∥BCD =180°﹣108°=72°,∥∥DCN =72°,∥∥ADC =∥DCN =∥ABC .(3)不发生变化.∥AM ∥BN ,∥∥AEB=∥EBC,∥ADB=∥DBC.∥BD平分∥EBC,∥∥DBC12=∥EBC,∥∥ADB12=∥AEB,∥12 ADBAEB∠∠=.【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.44.(1)见解析;(2)5π【分析】(1)利用垂径定理即可证明;(2)利用弧长公式,扇形的面积公式计算即可.【详解】(1)证明:∥AB是∥O的直径,∥∥ADB=90°,∥OC∥BD,∥∥AEO=∥ADB=90°,即OC∥AD,∥AE=ED(2)解:∥OC∥AD,∥AC CD=,∥∥ABC=∥CBD=36°,∥∥AOC=2∥ABC=2×36°=72°,∥AC=7252 180ππ⨯=,S=2725360π⋅=5π.【点睛】本题考查扇形的面积,弧长公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.45.(1)见解析(2)见解析;4【分析】(1)利用平移变换的性质分别作出A,B,C的对应点1A,1B,1C即可(2)根据垂线段的定义画出图形即可(1)如图,三角形111A B C 即为所求;(2)如(1)图,线段CM 即为所求,点C 到直线AB 的距离等于4个单位长度. 故答案为:4.【点睛】本题考查作图—平移交换,垂线段,解题的关键是掌握平移交换的性质. 46.(1)50︒;(2)见解析.【分析】(1)根据平行线的性质,求解即可;(2)由(1)可得到1BAD ∠=∠,利用三角形外角的性质,可得1ADC BAD ∠=∠+∠,从而得到BAD ADG ∠=∠,即可求证.(1)解:∥AD EF ∥∥2180BAD ∠+∠=︒又∥12180∠+∠=︒∥150BAD ∠=∠=︒;(2)由(1)得1BAD ∠=∠,利用三角形外角的性质,可得12ADC BAD BAD ∠=∠+∠=∠,∥DG 平分ADC ∠,∥2ADC ADG ∠=,∥BAD ADG ∠=∠,。
中考数学复习之相交线与平行线的解答题专项训练1.如图1,把一块含30°的直角三角板ABC 的BC 边放置于长方形直尺DEFG 的EF 边上.(1)如图2,现把三角板绕B 点逆时针旋转n °,当0<n <90,且点C 恰好落在DG 边上时,请直接写出∠1= °,∠2= °(结果用含n 的代数式表示);(2)在(1)的条件下,若∠2恰好是∠1的54倍,求n 的值. (3)如图1三角板ABC 的放置,现将射线BF 绕点B 以每秒2°的转速逆时针旋转得到射线BM ,同时射线QA 绕点Q 以每秒3°的转速顺时针旋转得到射线QN ,当射线QN 旋转至与QB 重合时,则射线BM 、QN 均停止转动,设旋转时间为t (s ).在旋转过程中,是否存在BM ∥QN 若存在,求出此时t 的值;若不存在,请说明理由.2.如图,已知∠1+∠2=180°,∠B =∠E .(1)试猜想AB 与CE 之间有怎样的位置关系?并说明理由.(2)若CA 平分∠BCE ,∠B =50°,求∠A 的度数.3.如图,已知∠A +∠ADC =180°,∠B =∠D ,求证:∠E =∠DFE .4.如图,△ABC中,已知BD⊥AC,EF⊥AC,点D、F是分别为垂足,∠GDB=∠CEF.(1)求证:DG∥BC;(2)若BG=2AG,直接写出△AGD和△ABC的周长比.5.已知:如图,AE⊥BC,FG⊥BC,∠1=∠2,∠D=∠3+60°,∠CBD=70°.(1)求证:AB∥CD;(2)求∠C的度数.6.已知:如图,AB∥CD,∠B+∠D=180°.求证:BF∥ED.7.图1为某型号汤碗,截面如图2所示,碗体部分为半圆,直径AB为4英寸,碗底CD 与AB平行,倒汤时碗底CD与桌面MN夹角为30°.(1)求BE得长;(2)求汤的横截面积(图3阴影部分).8.如图,在△ABC中,点D、E分别在边BC、AC上,且DE∥AB.(1)求作∠DF A,使得点F在边AC上,且∠DF A=∠A;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若DC=13BC,∠B=45°,∠C=30°,BC=15+15√3,求线段DF的长.9.如图,△ABC中,DE∥BC,CD⊥AB于点D,FG⊥AB于点G.(1)求证:∠1=∠2;(2)若∠1=40°,若CD平分∠ACB,直接写出∠A的度数.10.如图,AD∥BC,点E是BA延长线上一点,∠E=∠DCE.(1)求证:∠B=∠D.(2)若CE平分∠BCD,∠E=47°,求∠B的度数.11.如图,AB∥CD,AD∥BC,∠ABC的平分线交AD于点E,交CD的延长线于点F.(1)求证:DE=DF;(2)若∠C=120°,直接写出∠1的度数.12.如图,EF∥CD,GD∥CA,∠1=140°.(1)求∠2的度数;(2)若DG平分∠CDB,求∠A的度数.13.如图,已知AB∥CD,连接BC.点E,F是直线AB上不重合的两点,G是CD上一点,连接ED交BC于点N,连接FG交BC于点M.若∠ENC+∠CMG=180°.(1)求证:∠2=∠3;(2)若∠A=∠1+60°,∠ACB=50°,求∠B的度数.14.如图,在△ABC中,CF⊥AB于F,ED∥CF,∠1=∠2.(1)求证:FG∥BC;(2)若∠A=60°,∠AGF=70°,求∠B及∠2的度数.15.如图,直线AB和CD相交于O点,OE⊥CD,∠EOF=142°,∠BOD:∠BOF=1:3,求∠AOF的度数.16.如图,四边形ABCD,点E是边AB延长线上一点,点F是边CD延长线上一点,连接EF,分别交BC和AD于点G和点H.已知AD∥BC,∠A=∠C.求证:∠E=∠F,并写出每一步的依据.17.如图,△ABC中,AB=AC,AD⊥BC,垂足为D,DE∥AC,求证:AE=DE.18.如图,已知∠1=120°,∠2=60°,若∠3=122°,求∠4的度数.19.如图,在四边形ABCD中,AB∥CD,BD平分∠ABC,∠1与∠2互补.(1)求证:EF∥BD.(2)若∠A=65°,∠AEF=80°,求∠CBD的度数.20.如图,已知AB∥CD,直线EF分别交直线AB、CD于点G、H,GI、HI分别平分∠BGH、∠GHD.(1)求证GI⊥HI.(2)请用文字概括(1)所证明的命题:.。
2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(试题部分)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为()A.60︒B.50︒C.40︒D.30︒2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是()A.B.C.D.∠的大3.(2024·北京·中考真题)如图,直线AB和CD相交于点O,OE OC∠=︒,则EOBAOC⊥,若58小为()A.29︒B.32︒C.45︒D.58︒4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为()A .20︒B .40︒C .60︒D .80︒5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A.B.C.D.11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A、B、C处依次写上的字可以是()A.吉如意B.意吉如C.吉意如D.意如吉12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”)A.校B.安C.平D.园13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有( )A .1种B .2种C .3种D .4种15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是( )A .三棱锥B .圆锥C .三棱柱D .长方体16.(2024·河北·中考真题)如图,AD 与BC 交于点O ,ABO 和CDO 关于直线PQ 对称,点A ,B 的对称点分别是点C ,D .下列不一定正确的是( )A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是( )A .热B .爱C .中D .国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A 最远的点是( )A .B 点 B .C 点 C .D 点 D .E 点29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=( )A .10︒B .15︒C .20︒D .30︒30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ;(2)143B C D △的面积为 .三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD ,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB =),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1 图2 图3(1)直接写出AD AB的值; (2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是( )图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)2024年中考数学真题汇编专题17 几何图形初步及相交线、平行线+答案详解(答案详解)一、单选题1.(2024·河南·中考真题)如图,乙地在甲地的北偏东50︒方向上,则∠1的度数为( )A .60︒B .50︒C .40︒D .30︒ 【答案】B 【分析】本题主要考查了方向角,平行线的性质,利用平行线的性质直接可得答案.【详解】解:如图,由题意得,50BAC ∠=︒,AB CD ∥,∴150BAC ∠=∠=︒,故选:B .2.(2024·陕西·中考真题)如图,将半圆绕直径所在的虚线旋转一周,得到的立体图形是( )A .B .C .D .【答案】C【分析】本题主要考查了点、线、面、体问题.根据旋转体的特征判断即可.【详解】解:将一个半圆绕它的直径所在的直线旋转一周得到的几何体是球,故选:C .3.(2024·北京·中考真题)如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒ 【答案】B 【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒−︒−=︒,故选:B .4.(2024·广西·中考真题)如图,2时整,钟表的时针和分针所成的锐角为( )A .20︒B .40︒C .60︒D .80︒【答案】C 【分析】本题考查了钟面角,用30︒乘以两针相距的份数是解题关键.根据钟面的特点,钟面平均分成12份,每份是30︒,根据时针与分针相距的份数,可得答案.【详解】解:2时整,钟表的时针和分针所成的锐角是30260︒⨯=︒,故选:C .5.(2024·四川内江·中考真题)如图,AB CD ∥,直线EF 分别交AB 、CD 于点E 、F ,若64EFD ∠=︒,则BEF ∠的大小是( )A .136︒B .64︒C .116︒D .128︒ 【答案】C 【分析】本题考查了平行线的性质,根据两直线平行,同旁内角互补求解即可.【详解】解:∵AB CD ∥,∴180BEF EFD ∠+∠=︒,∵64EFD ∠=︒,∴116180EFD BEF ∠︒∠==︒−,故选:C .6.(2024·湖北·中考真题)如图,直线AB CD ∥,已知1120∠=︒,则2∠=( )A .50︒B .60︒C .70︒D .80︒ 【答案】B 【分析】本题主要考查了平行线的性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.根据同旁内角互补,1120∠=︒,求出结果即可.【详解】解:∵AB CD ∥,∴12180∠+∠=︒,∵1120∠=︒,∴218012060∠=︒−︒=︒, 故选:B .7.(2024·陕西·中考真题)如图,AB DC ∥,BC DE ∥,145B ∠=︒,则D ∠的度数为( )A .25︒B .35︒C .45︒D .55︒【答案】B 【分析】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.先根据“两直线平行,同旁内角互补”,得到35C ∠=︒,再根据“两直线平行,内错角相等”,即可得到答案.【详解】AB DC ∥,180B C ∠+∠=︒∴,145B ∠=︒,18035C B ∴∠=︒−∠=︒,∥Q BC DE ,35D C ∴∠=∠=︒.故选B .8.(2024·黑龙江齐齐哈尔·中考真题)将一个含30︒角的三角尺和直尺如图放置,若150∠=︒,则2∠的度数是( )A .30︒B .40︒C .50︒D .60︒由题意得3150∠=∠=︒,590∠=∴2418090390∠=∠=︒−︒−∠=︒故选:B .9.(2024·广东·中考真题)如图,一把直尺、两个含30︒的三角尺拼接在一起,则ACE ∠的度数为( )A .120︒B .90︒C .60︒D .30︒【答案】C【分析】本题考查了平行线的性质.熟练掌握平行线的性质是解题的关键.由题意知,AC DE ∥,根据ACE E ∠=∠,求解作答即可.【详解】解:由题意知,AC DE ∥,∴60ACE E ∠=∠=︒,故选:C . 10.(2024·青海·中考真题)生活中常见的路障锥通常是圆锥的形状,它的侧面展开图是( )A .B .C .D .【答案】D【分析】本题考查了立体图形的侧面展开图.熟记常见立体图形的侧面展开图的特征是解决此类问题的关键.由圆锥的侧面展开图的特征知它的侧面展开图为扇形.【详解】解:圆锥的侧面展开图是扇形.故选:D .11.(2024·四川德阳·中考真题)走马灯,又称仙音烛,据史料记载,走马灯的历史起源于隋唐时期,盛行于宋代,是中国特色工艺品,常见于除夕、元宵、中秋等节日,在一次综合实践活动中,一同学用如图所示的纸片,沿折痕折合成一个棱锥形的“走马灯”,正方形做底,侧面有一个三角形面上写了“祥”字,当灯旋转时,正好看到“吉祥如意”的字样.则在A 、B 、C 处依次写上的字可以是( )A .吉 如 意B .意 吉 如C .吉 意 如D .意 如 吉【答案】A 【分析】本题考查的是简单几何体的展开图,利用四棱锥的展开图的特点可得答案.【详解】解:由题意可得:展开图是四棱锥,∴A、B、C处依次写上的字可以是吉,如,意;或如,吉,意;故选A12.(2024·四川广安·中考真题)将“共建平安校园”六个汉字分别写在某正方体的表面上,下图是它的一种展开图,则在原正方体上,与“共”字所在面相对的面上的汉字是()A.校B.安C.平D.园【答案】A【分析】此题考查正方体相对面上的字.根据正方体相对面之间间隔一个正方形解答.【详解】解:与“共”字所在面相对面上的汉字是“校”,故选:A.13.(2024·江苏盐城·中考真题)正方体的每个面上都有一个汉字,如图是它的一种平面展开图,那么在原正方体中,与“盐”字所在面相对的面上的汉字是()A.湿B.地C.之D.都【答案】C【分析】本题主要考查了正方体相对两个面上的文字,对于正方体的平面展开图中相对的面一定相隔一个小正方形,由此可解.【详解】解:由正方体表面展开图的特征可得:“盐”的对面是“之”,“地”的对面是“都”,“湿”的对面是“城”,故选C.14.(2024·江西·中考真题)如图是43的正方形网格,选择一空白小正方形,能与阴影部分组成正方体展开图的方法有()A.1种B.2种C.3种D.4种【答案】B【分析】此题主要考查了几何体的展开图,关键是掌握正方体展开图的特点.依据正方体的展开图的结构特征进行判断,即可得出结论.【详解】解:如图所示:共有2种方法,故选:B.15.(2024·江苏扬州·中考真题)如图是某几何体的表面展开后得到的平面图形,则该几何体是()A.三棱锥B.圆锥C.三棱柱D.长方体【答案】C【分析】本题考查了常见几何体的展开图,掌握常见几何体展开图的特点是解题的关键.根据平面图形的特点,结合立体图形的特点即可求解.【详解】解:根据图示,上下是两个三角形,中间是长方形,∴该几何体是三棱柱,故选:C .16.(2024·河北·中考真题)如图,AD与BC交于点O,ABO和CDO关于直线PQ对称,点A,B的对称点分别是点C,D.下列不一定正确的是()A .AD BC ⊥B .AC PQ ⊥ C .ABO CDO △≌△D .AC BD ∥ 【答案】A 【分析】本题考查了轴对称图形的性质,平行线的判定,熟练掌握知识点是解题的关键.根据轴对称图形的性质即可判断B 、C 选项,再根据垂直于同一条直线的两条直线平行即可判断选项D .【详解】解:由轴对称图形的性质得到ABO CDO △≌△,,AC PQ BD PQ ⊥⊥,∴AC BD ∥,∴B 、C 、D 选项不符合题意,故选:A .17.(2024·福建·中考真题)在同一平面内,将直尺、含30︒角的三角尺和木工角尺(CD ⊥DE )按如图方式摆放,若AB CD ,则1∠的大小为( )A .30︒B .45︒C .60︒D .75︒ 【答案】A【分析】本题考查了平行线的性质,由ABCD ,可得60CDB ∠=︒,即可求解.【详解】∵AB CD , ∴60CDB ∠=︒, ∵CD ⊥DE ,则90CDE ∠=︒,∴118030CDB CDE ∠=︒−∠−∠=︒,故选:A .18.(2024·江苏苏州·中考真题)如图,AB CD ,若165∠=︒,2120∠=︒,则3∠的度数为( )A .45︒B .55︒C .60︒D .65︒ 【答案】B 【分析】题目主要考查根据平行线的性质求角度,根据题意得出60BAD ∠=︒,再由平角即可得出结果,熟练掌握平行线的性质是解题关键【详解】解:∵AB CD ,2120∠=︒,∴2180BAD ∠+∠=︒,∴60BAD ∠=︒,∵165∠=︒,∴3180155BAD ∠=︒−∠−∠=︒,故选:B19.(2024·内蒙古包头·中考真题)如图,直线AB CD ∥,点E 在直线AB 上,射线EF 交直线CD 于点G ,则图中与AEF ∠互补的角有( )A .1个B .2个C .3个D .4个 【答案】C 【分析】本题考查了平行线的性质,对顶角的性质,补角的定义等知识,利用平行线的性质得出180AEF CGE +∠=︒∠,得出结合对顶角的性质180AEF DGF ∠+∠=︒,根据邻补角的定义得出180AEF BEG ∠+∠=︒,即可求出中与AEF ∠互补的角,即可求解.【详解】解∶∵AB CD ∥,∴180AEF CGE +∠=︒∠,∵CGE DGF ∠=∠,∴180AEF DGF ∠+∠=︒,又180AEF BEG ∠+∠=︒,∴图中与AEF ∠互补的角有CGE ∠,DGF ∠,BEG ∠,共3个.故选∶C .20.(2024·广东深圳·中考真题)如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为( )A .40︒B .50︒C .60︒D .70︒ DE GF ,450=∠=︒故选:B .21.(2024·吉林·中考真题)如图,四边形ABCD 内接于O ,过点B 作BE AD ∥,交CD 于点E .若50BEC ∠=︒,则ABC ∠的度数是( )A .50︒B .100︒C .130︒D .150︒【答案】C【分析】本题考查了平行线的性质,圆的内接四边形的性质,熟练掌握知识点是解题的关键.先根据BE AD ∥得到50D BEC ∠=∠=︒,再由四边形ABCD 内接于O 得到180ABC D ∠+∠=︒,即可求解.【详解】解:∵BE AD ∥,50BEC ∠=︒,∴50D BEC ∠=∠=︒,∵四边形ABCD 内接于O ,∴180ABC D ∠+∠=︒,∴18050130ABC ∠=︒−︒=︒,故选:C .22.(2024·重庆·中考真题)如图,AB CD ∥,若1125∠=︒,则2∠的度数为( )A .35︒B .45︒C .55︒D .125︒【答案】C 【分析】本题考查了平行线的性质,邻补角的定义,根据邻补角的定义求出3∠,然后根据平行线的性质求解即可.【详解】解:如图,∵1125∠=︒,∴3180155∠=︒−∠=︒,∵AB CD ∥,∴2355∠=∠=︒,故选:C .23.(2024·吉林长春·中考真题)如图,在ABC 中,O 是边AB 的中点.按下列要求作图:①以点B 为圆心、适当长为半径画弧,交线段BO 于点D ,交BC 于点E ;②以点O 为圆心、BD 长为半径画弧,交线段OA 于点F ;③以点F 为圆心、DE 长为半径画弧,交前一条弧于点G ,点G 与点C 在直线AB 同侧;④作直线OG ,交AC 于点M .下列结论不一定成立的是( )A .AOMB ∠=∠B .180OMC C ∠+∠= C .AM CM =D .12OM AB = 180,根据平行线分线段成比例得出AOM ∠180一定成立,故的中点,24.(2024·青海·中考真题)如图,一个弯曲管道AB CD ,120ABC ∠=︒,则BCD ∠的度数是( )A .120︒B .30︒C .60︒D .150︒【答案】C 【分析】本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.根据两直线平行,同旁内角互补即可得出结果.【详解】AB CD180ABC BCD ∴∠+∠=︒120ABC ∠=︒60BCD ∴∠=︒ 故选:C25.(2024·吉林长春·中考真题)在剪纸活动中,小花同学想用一张矩形纸片剪出一个正五边形,其中正五边形的一条边与矩形的边重合,如图所示,则α∠的大小为( )A .54oB .60C .70D .7226.(2024·内蒙古赤峰·中考真题)将一副三角尺如图摆放,使有刻度的两条边互相平行,则1∠的大小为( )A .100︒B .105︒C .115︒D .120︒【答案】B 【分析】本题考查了三角板中角度计算问题,由题意得3230∠=∠=︒,根据1180345∠=︒−∠−︒即可求解.【详解】解:如图所示:∠=∠=︒由题意得:3230∠=︒−∠−︒=︒∴1180345105故选:B.27.(2024·四川达州·中考真题)如图,正方体的表面展开图上写有“我们热爱中国”六个字,还原成正方体后“我”的对面的字是()A.热B.爱C.中D.国28.(2024·四川宜宾·中考真题)如图是正方体表面展开图.将其折叠成正方体后,距顶点A最远的点是()A.B点B.C点C.D点D.E点【答案】B【分析】本题考查了平面图形和立体图形,把图形围成立体图形求解.【详解】解:把图形围成立方体如图所示:所以与顶点A距离最远的顶点是C,故选:B.29.(2024·四川泸州·中考真题)把一块含30︒角的直角三角板按如图方式放置于两条平行线间,若145∠=︒,则2∠=()A.10︒B.15︒C.20︒D.30︒【答案】B【分析】本题考查了平行线的性质,三角板中角的运算,熟练掌握相关性质是解题的关键.利用平行线性∠=︒,再根据平角的定义求解,即可解题.质得到3135【详解】解:如图,∠=︒,直角三角板位于两条平行线间且145∴∠=︒,3135又直角三角板含30︒角,∴︒−∠−∠=︒,1802330∴∠=︒,215故选:B.30.(2024·江苏盐城·中考真题)小明将一块直角三角板摆放在直尺上,如图,若155∠=︒,则2∠的度数为()A .25︒B .35︒C .45︒D .55︒ 【答案】B 【分析】此题考查了平行线的性质,根据平行线的性质得到3155∠=∠=︒,再利用平角的定义即可求出2∠的度数.【详解】解:如图,∵155∠=︒,ABCD∴3155∠=∠=︒, ∴21802335∠=︒−∠−∠=︒,故选:B31.(2024·甘肃·中考真题)若55A ∠=︒,则A ∠的补角为( )A .35︒B .45︒C .115︒D .125︒32.(2024·内蒙古呼伦贝尔·中考真题)如图,,AD BC AB AC ⊥∥,若135.8∠=,则B ∠的度数是( )A .3548'︒B .5512'︒C .5412'︒D .5452'︒【答案】C 【分析】本题考查了平行线的性质,垂直的定义,度分秒的计算等,先利用垂直定义结合已知条件求出125.8BAD ∠=︒,然后利用平行线的性质以及度分秒的换算求解即可.【详解】解∶∵AB AC ⊥,135.8∠=,∴19035.8125.8BAD BAC ∠=∠+∠=︒+︒=︒,∵AD BC ∥,∴180B BAD ∠+∠=°,∴18054.25412B BAD '∠=︒−∠=︒=︒,故选∶C .二、填空题33.(2024·吉林·中考真题)如图,从长春站去往胜利公园,与其它道路相比,走人民大街路程最近,其蕴含的数学道理是 .【答案】两点之间,线段最短【分析】本题考查了两点之间线段最短,熟记相关结论即可.【详解】从长春站去往胜利公园,走人民大街路程最近,其蕴含的数学道理是:两点之间,线段最短故答案为:两点之间,线段最短.34.(2024·广西·中考真题)已知1∠与2∠为对顶角,135∠=︒,则2∠= °. 【答案】35【分析】本题主要考查了对顶角性质,根据对顶角相等,得出答案即可.【详解】解:∵1∠与2∠为对顶角,135∠=︒, ∴2135∠=∠=︒.故答案为:35.35.(2024·广东广州·中考真题)如图,直线l 分别与直线a ,b 相交,a b ,若171∠=︒,则2∠的度数为 .∵a b ,171∠=︒,∴1371∠=∠=︒,∴21803109∠=︒−∠=︒;故答案为:109︒36.(2024·四川乐山·中考真题)如图,两条平行线a 、b 被第三条直线c 所截.若160∠=︒,那么2∠= .【答案】120︒/120度【分析】本题考查了直线平行的性质:两直线平行同位角相等.也考查了平角的定义.根据两直线平行同位角相等得到1360∠=∠=︒,再根据平角的定义得到23180∠+∠=︒,从而可计算出2∠.【详解】解:如图,a b ∥,1360∴∠=∠=︒,而23180∠+∠=︒,218060120∴∠=︒−︒=︒,故答案为:120︒.37.(2024·黑龙江绥化·中考真题)如图,AB CD ∥,33C ∠=︒,OC OE =.则A ∠= ︒.【答案】66【分析】本题考查了平行线的性质,等边对等角,三角形外角的性质,根据等边对等角可得33E C ∠=∠=︒,根据三角形的外角的性质可得66DOE ∠=︒,根据平行线的性质,即可求解.【详解】解:∵OC OE =,33C ∠=︒,∴33E C ∠=∠=︒,∴66DOE E C ∠=∠+∠=︒,∵AB CD ∥,∴66A DOE =∠=︒∠,故答案为:66.38.(2024·山东威海·中考真题)如图,在正六边形ABCDEF 中,AH FG ∥,BI AH ⊥,垂足为点I .若20EFG ∠=︒,则ABI ∠= .【答案】50︒/50度【分析】本题考查了正六边形的内角和、平行线的性质及三角形内角和定理,先求出正六边形的每个内角为120︒,即120EFA FAB ∠=∠=︒,则可求得GFA ∠的度数,根据平行线的性质可求得FAH ∠的度数,进而可求出HAB ∠的度数,再根据三角形内角和定理即可求出ABI ∠的度数. 【详解】解:∵正六边形的内角和(62)180720=−⨯=︒, 每个内角为:7206120︒÷=︒,120EFA FAB ∴∠=∠=︒, 20EFG ∠=︒,12020100GFA ∴∠=︒−︒=︒, AH FG ∥,180G FAH FA ∠=︒∴∠+,180********GFA FAH =︒−∠=︒−︒=︒∴∠, 1208040HAB FA FAH B ∴∠=∠−︒−︒=︒∠=,BI AH ⊥,90BIA ∴∠=︒,904050ABI ∴∠=︒−︒=︒.故答案为:50︒.39.(2024·河北·中考真题)如图,ABC 的面积为2,AD 为BC 边上的中线,点A ,1C ,2C ,3C 是线段4CC 的五等分点,点A ,1D ,2D 是线段3DD 的四等分点,点A 是线段1BB 的中点.(1)11AC D △的面积为 ; (2)143B C D △的面积为 . ,证明()11SAS AC D ACD ≌)证明()11SAS AB D ABD ≌三点共线,得11112AB D AC D S △△+=,继而得出113AB D =△,证明3C AD △99CAD S ==△,推出S △【详解】解:(1)连接11B D 、1B ∵ABC 的面积为ABD S S △=∵点A ,1C ,1AC AC =和ACD 中,CAD , ∴()11SAS AC D ACD ≌111AC D ACD S S ==△△,∠11AC D △的面积为1,故答案为:1;)在11AB D 和△1AB AD BAD AD =∠∴()11SAS AB D ABD ≌111AB D ABD S S ==△△,∠180BDA CDA ∠+∠=︒1111180B D A C D A ∠+∠=和ACD 中,3AD AD,3C ∠CAD △,332233C AD CADS AC SAC ⎫==⎪⎭33C AD =△1AC C =【点睛】本题考查三角形中线的性质,全等三角形的判定与性质,相似三角形的判定与性质,等分点的意义,三角形的面积.掌握三角形中线的性质是解题的关键.三、解答题40.(2024·福建·中考真题)在手工制作课上,老师提供了如图1所示的矩形卡纸ABCD,要求大家利用它制作一个底面为正方形的礼品盒.小明按照图2的方式裁剪(其中AE FB=),恰好得到纸盒的展开图,并利用该展开图折成一个礼品盒,如图3所示.图1图2图3(1)直接写出ADAB的值;(2)如果要求折成的礼品盒的两个相对的面上分别印有“吉祥”和“如意”,如图4所示,那么应选择的纸盒展开图图样是()图4A.B.C.D.(3)现以小明设计的纸盒展开图(图2)为基本样式,适当调整AE,EF的比例,制作棱长为10cm的正方体礼品盒,如果要制作27个这样的礼品盒,请你合理选择上述卡纸(包括卡纸的型号及相应型号卡纸的张数),并在卡纸上画出设计示意图(包括一张卡纸可制作几个礼品盒,其展开图在卡纸上的分布情况),给出所用卡纸的总费用.(要求:①同一型号的卡纸如果需要不止一张,只要在一张卡纸上画出设计方案;②没有用到的卡纸,不要在该型号的卡纸上作任何设计;③所用卡纸的数量及总费用直接填在答题卡的表格上;④本题将综合考虑“利用卡纸的合理性”和“所用卡纸的总费用”给分,总费用最低的才能得满分;⑤试卷上的卡纸仅供作草稿用)【答案】(1)2;(2)C;∴所用卡纸总费用为:⨯+⨯+⨯=(元).202533158。
中考数学专项练习相交线与平行线(含解析)一、单选题1.下面四个图形中,∠1与∠2互为对顶角的是()A.B. C.D.2.下列说法:(1)同角的余角相等(2)相等的角是对顶角(3)在同一平面内,不相交的两条直线叫平行线(4)直线外一点与直线上各点连接的所有线段中,垂线段最短中,正确的个数是()A.1B.2C.3D.43.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°4.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=()A.10°B.15°C.20°D.30°5.如图,已知直线AB、CD相交于点O,OB平分∠EOD,若∠EOD= 110°,则∠AOC的度数是()A.35°B.55°C.70°D.110°6.如图,在△ABC中,∠CAB=70º,将△ABC绕点A逆时针旋转到△ADE的位置,连接EC,满足EC∥AB, 则∠BAD的度数为()A.30°B.35°C.40°D.50°7.如图所示,在Rt△ABC中,CD是斜边AB上的高,角平分线AE交CD于点H,EF⊥AB于点F,则下列结论中,不正确的是()A.ACD=B B.CH=CE=EF C.AC=AF D.CH=HD8.如图,以下推理正确的是()A.若AB∥CD,则∠1=∠2B.若AD∥BC,则∠1=∠2C.若∠B=∠D,则AB∥CDD.若∠CAB=∠ACD,则AD∥BC9.如图,下列说法中,正确的是()A.因为∠A+∠D=180°,因此AD∥BC B.因为∠C+∠D=18 0°,因此AB∥CDC.因为∠A+∠D=180°,因此AB∥CD D.因为∠A+∠C=18 0°,因此AB∥CD10.如图,⊙O与Rt△ABC的斜边AB相切于点D,与直角边AC相交于点E,且DE∥BC.已知AE=2,AC=3,BC=6,则⊙O的半径是()A.3B.4C.4D.2二、填空题11.填写理由AB⊥BC,∠1+∠2=90°,∠2=∠3.BE与DF平行吗?什么缘故?解:BE∥/DF∵AB⊥BC,∠ABC=________即∠3+∠4=________又∵∠1+∠2=90°,且∠2=∠3∴________=________理由是:________∴BE∥DF理由是:________12.如图,a∥b,∠1=65°,∠2=140°,则∠3等于________.13.如图,直角三角尺的直角顶点在直线b上,∠3 = 25°,转动直线a,当∠1=________,时,a∥b14.如图一个弯形管道ABCD的拐角∠ABC=120°,∠BCD=60°,这时说管道AB∥CD,是依照________15.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=________度.16.如图,在正方体中,与线段AB平行的线段有________.17.如图,已知AB∥CD,O是∠BAC与∠ACD的平分线的交点.OE ⊥AC于E,OE=2,则点O到AB与CD的距离之和为________.18.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,O D∥AB交BC于D,OE∥AC交BC于E,若BC=10 cm,则△ODE的周长________cm.三、运算题19.如图,将△ABC绕点C顺时针旋转90°后得△DEC,若BC∥DE,求∠B的度数.20.如图在四边形ABCD中,∠B=∠D=90°,AE、CF分别平分∠BA D和∠BCD.试问直线AE、CF的位置关系如何?请说明你的理由.21.如图,已知EF∥AD,∠1=∠2,∠BAC=68°,求∠AGD的度数.22.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.四、解答题23.如图,直线l1∥l2,∠BAE=125°,∠ABF=85°,则∠1+∠2等于多少度?24.如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.25.已知:如图,a//b,∠1=55°,∠2=40°,求∠3和∠4的度数.五、综合题26.如图,点M(4,0),以点M为圆心,2为半径的圆与x轴交于点A、B,已知抛物线y= x2+bx+c过点A和B,与y轴交于点C.(1)求点C的坐标,并画出抛物线的大致图象.(2)点P为此抛物线对称轴上一个动点,求PC﹣PA的最大值.(3)CE是过点C的⊙M的切线,E是切点,CE交OA于点D,求O E所在直线的函数关系式.答案解析部分一、单选题1.【答案】C【考点】对顶角、邻补角【解析】【解答】解:依照对顶角的定义可知:C中∠1、∠2属于对顶角,故选C.【分析】依照对顶角的定义来判定,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,如此的两个角叫做对顶角.2.【答案】C【考点】余角和补角,对顶角、邻补角,垂线段最短【解析】【解答】解:同角的余角相等,故(1)正确;如图:∠ACD=∠BCD=90°,但两角不是对顶角,故(2)错误;在同一平面内,不相交的两条直线叫平行线,故(3)正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故(4)正确;即正确的个数是3,故选C.【分析】依照余角定义,对顶角定义,垂线段最短,平行线定义逐个判定即可.3.【答案】C【考点】平面中直线位置关系【解析】【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故答案为:C.【分析】第一依照同位角相等,两直线平行可得a∥b,再依照平行线的性质可得∠3=∠5,再依照邻补角互补可得∠4的度数.4.【答案】B【考点】平行线的性质【解析】【解答】过点P作PM∥AB,∴AB∥PM∥CD,∴∠BAP=∠APM,∠DCP=∠MPC,∴∠APC=∠APM+∠CPM=∠BAP+∠DCP,∴45°+α=(60°-α)+(30°-α),解得α=15°.故选B.【分析】过点P作一条直线平行于AB,依照两直线平行内错角相等得:∠APC=∠BAP+∠PCD,得到关于α的方程,解即可.注意此类题要常作的辅助线,充分运用平行线的性质探求角之间的关系.5.【答案】B【考点】角平分线的定义,对顶角、邻补角【解析】【解答】解:∵∠EOD=110°,OB平分∠EOD,∴∠BOD = ∠EOD=55°,∴∠AOC=∠BOD=55°,故选:B.【分析】依照角平分线定义可得∠BOD= ∠EOD,由对顶角性质可得∠A OC=∠BOD.6.【答案】C【考点】平行线的性质,全等三角形的判定与性质,旋转的性质【解析】【分析】因为△ADE是由△ABC绕点A逆时针旋转得到的,因此△ADE≌△ABC,因此∠CAB=∠EAD=70º,AE=AC,因为EC∥AB,因此∠CAB=∠ECA=70°,因为AE=AC,因此∠AEC=70°,因此∠EAC=180°-70°×2=40°,因此∠CAD=∠EAD-∠EAC=70º-40°=30°,因此∠BAD=∠CAB-∠CAD =70º-30°=40°.【点评】该题是常考题,要紧考查学生对图形旋转的意义,以及对全等三角形性质和角的等量代换的应用。
中考数学总复习《线段、角、相交线与平行线》专题测试卷及答案学校:___________班级:___________姓名:___________考号:___________A组·考点过关1.若∠A=80∘,则∠A的补角是()A.100∘B.80∘C.40∘D.10∘2.如图,小明在地图上量得∠1=∠2,由此判断幸福大街与平安大街互相平行,他判断的依据是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.对顶角相等3.如图,推动水桶,以点O为支点,使其向右倾斜.若在点A处分别施加推力F1,F2,则F1的力臂OA大于F2的力臂OB.这一判断过程体现的数学依据是()A.垂线段最短B.过一点有且只有一条直线与已知直线垂直C.两点确定一条直线D.过直线外一点有且只有一条直线与已知直线平行4.如图,乙地在甲地的北偏东50∘方向上,则∠1的度数为()A.60∘B.50∘C.40∘D.30∘5.如图,直线AB//CD,已知∠1=120∘,则∠2=()A.50∘B.60∘C.70∘D.80∘6.如图,一束平行光线照射平面镜后反射.若入射光线与平面镜夹角∠1=50∘,则反射光线与平面镜夹角∠4的度数为()A.40∘B.50∘C.60∘D.70∘7.如图,直线AB和CD相交于点O,OE⊥OC.若∠AOC=58∘,则∠EOB的大小为()A.29∘B.32∘C.45∘D.58∘8.命题“如果|a|=|b|,那么a=b.”的逆命题是____________________________________.9.已知∠1与∠2为对顶角,∠1=35∘,则∠2=________.10.如图,两条平行线a,b被第三条直线c所截.若∠1=60∘,那么∠2=__________.第10题图11.如图,在△ABC中∠C=90∘,AD平分∠CAB,DE⊥AB于点E.若CD=3,BD=5,则BE的长为____.第11题图B组·素养提升12.已知线段AB=4,在直线AB上作线段BC,使得BC=2.若点D是线段AC的中点,则线段AD的长为()A.1 B.3 C.1或3 D.2或313.如图,直线m//n,一块含有30∘的直角三角板按如图所示放置.若∠1=40∘,则∠2的大小为()A.70∘B.60∘C.50∘D.40∘14.如图,直线AB//CD,直线MN与AB,CD分别相交于点E,F,直线CD上有一点G,且GE=GF,∠1=122∘,求∠2的度数.15.如图,已知DG⊥BC,AC⊥BC,FE⊥AB,垂足分别为G,C,E,∠1=∠2.求证:CD⊥AB.参考答案A组·考点过关1.A 2.B 3.A 4.B 5.B 6.B 7.B 8.如果a=b,那么|a|=|b|9.35∘10.120∘11.4B组·素养提升12.C 13.A14.解:∵AB//CD∴∠MFD=∠1=122∘∠MFD=∠AEF∠2=∠AEG.∵GE=GF∴∠GFE=∠GEF=180∘−∠MFD=180∘−122∘=58∘∴∠2=180∘−58∘−58∘=64∘.15.证明:如答图.第15题答图∵DG⊥BC AC⊥BC∴DG//AC ∴∠2=∠3.∵∠1=∠2∴∠1=∠3∴FE//CD.∵FE⊥AB ∴CD⊥AB.。
中考数学复习《角、相交线与平行线》经典题型及测试题(含答案)命题点分类集训命题点1 线段【命题规律】主要考查:①两点之间线段最短;②两点确定一条直线这两个基本事实.【命题预测】与图形的变换中立体图形的侧面展开结合,求两点之间的最短距离,另外也会与对称性结合,考查两线段和的最小值.1. 如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短1. D第1题图第2题图2. 如图,AB⊥AC,AD⊥BC,垂足分别为A,D.则图中能表示点到直线距离的线段共有( )A. 2条B. 3条C. 4条D. 5条2. D【解析】AD是点A到直线BC的距离;BA是点B到直线AC的距离;BD是点B到直线AD的距离;CA是点C到直线AB的距离;CD是点C到直线AD的距离,共5条,故答案为D.命题点2 角、余角、补角及角平分线【命题规律】主要考查:①角度的计算(度分秒之间的互化);②余角、补角的计算;③角平分线的性质.【命题预测】角、余角、补角及角平分线等基本概念是图形认识的基础,应给予重视.3. 下列各图中,∠1与∠2互为余角的是( )3. B4. 如图,OP为∠AOB的平分线,PC⊥OB于点C,且PC=3,点P到OA的距离为________.4. 3【解析】如解图,过点P作PD⊥OA于点D,∵OP为∠AOB的平分线,PC⊥OB于点C,∴PD=PC,∵PC=3,∴PD=3,即点P到点OA的距离为3.5. 1.45°=________′.5. 87【解析】∵1°=60′,∴0.45°=27′,∴1.45°=87′.6. 已知∠A=100°,那么∠A的补角为________度.6. 80【解析】用180度减去已知角,就得这个角的补角.即∠A的补角为:180°-100°=80°.命题点3 相交线与平行线【命题规律】考查形式:①三线八角中同位角、内错角、同旁内角的识别或计算,有时综合对顶角、邻补角求角度;②综合角平分线、垂线求角度;③综合三角形的相关知识求角度;④根据角的关系判断两直线的关系.【命题预测】平行线性质是认识图形的基础知识,也是全国命题的潮流和方向.7. 如图,直线a,b被直线c所截,∠1与∠2的位置关系是( )A. 同位角B. 内错角C. 同旁内角D. 对顶角7. B【解析】根据相交线的性质及角的定义可知∠1与∠2的位置关系为内错角,故选B.第7题图第8题图第9题图8. 如图,已知a、b、c、d四条直线,a∥b,c∥d,∠1=110°,则∠2等于( )A. 50°B. 70°C. 90°D. 110°8. B【解析】如解图,∵a∥b,∴∠3+∠4=180°,∵c∥d,∴∠2=∠4,∵∠1=∠3,∴∠2=180°-∠1=70°,故本题选B.9. 如图,在下列条件中,不能..判定直线a与b平行的是( )A. ∠1=∠2B. ∠2=∠3C. ∠3=∠5D. ∠3+∠4=180°9. C【解析】逐项分析如下:选项逐项分析正误A∵∠1=∠2,即同位角相等,两直线平行,∴a∥b √B∵∠2=∠3,即内错角相等,两直线平行,∴a∥b √∵∠3、∠5既不是a与b被第三直线所截的同位角,也不是内错角,×C∴∠3=∠5,不能够判定a与b平行D∵∠3+∠4=180°,即同旁内角互补,两直线平行,∴a∥b √10. 如图,将一块直角三角板的直角顶点放在直尺的一边上,如果∠1=50°,那么∠2的度数是( )A. 30°B. 40°C. 50°D. 60°10. B 【解析】如解图,∠1+∠3=90°,∴∠3=90°-∠1=90°-50°=40°,由平行线性质得∠2=∠3=40°.11. 如图所示,AB ∥CD ,EF ⊥BD ,垂足为E ,∠1=50°,则∠2的度数为( )A . 50°B . 40°C . 45°D . 25°11. B 【解析】∵EF ⊥BD ,∠1=50°,∴∠D =90°-50°=40°,∵AB ∥CD ,∴∠2=∠D =40°.第10题图 第11题图 第12题图 第13题图12. 如图,AB ∥CD ,直线EF 与AB ,CD 分别交于点M ,N ,过点N 的直线GH 与AB 交于点P ,则下列结论错误的是( )A . ∠EMB =∠END B . ∠BMN =∠MNC C . ∠CNH =∠BPGD . ∠DNG =∠AME12. D 【解析】A.两直线平行,同位角相等,∴∠EMB =∠END ;B.两直线平行,内错角相等,∴∠BMN =∠MNC ;C.两直线平行,同位角相等,∴∠CNH =∠APH ,又∠BPG =∠APH ,∴∠CNH =∠BPG ;D.∠DNG 和∠AME 无法推导数量关系,故不一定相等,答案为D.13. 如图,直线a∥b,∠1=45°,∠2=30°,则∠P=________°.13. 75 【解析】如解图,过点P 作PH ∥a ∥b ,∴∠FPH =∠1,∠EPH =∠2,又∵∠1=45°,∠2=30°,∴∠EPF =∠EPH +∠HPF =30°+45°=75°.命题点4 命 题【命题概况】命题考查的知识点比较多,一般几个知识点结合考查,考查形式有:①下面说法错误(正确)的是;②写出命题…的逆命题;③能说明…是假命题的反例.【命题趋势】命题为新课标新增内容,考查知识比较综合,是全国命题点之一.14. (2016宁波)能说明命题“对于任何实数a ,|a|>-a”是假命题的一个反例可以是( )A . a =-2B . a =13C . a =1D . a = 214. A 【解析】由于一个正数的绝对值是它本身,它的相反数是一个负数,所以当a =13,1,2时,|a |>-a 总是成立,当a =-2时,|-2|=2=-(-2),此时|a |=-a ,故本题选A.15. 写出命题“如果a =b ,那么3a =3b”的逆命题...:________________________. 15. 如果3a =3b ,那么a =b 【解析】命题由条件和结论构成,则其逆命题只需将原来命题的条件和结论互换即可,即将结论作为条件,将条件作为结论. ∵命题“如果a =b ,那么3a =3b ,”中条件为“如果a =b ”,结论为“那么3a =3b ”,∴其逆命题为“如果3a =3b ,那么a =b ”.中考冲刺集训一、选择题1. 如图,AB∥CD,DA⊥AC,垂足为A,若∠ADC=35°,则∠1的度数为( )A. 65°B. 55°C. 45°D. 35°第1题图第2题图第3题图2. 如图,AB∥CD,AE平分∠CAB交CD于点E.若∠C=50°,则∠AED=( )A. 65°B. 115°C. 125°D. 130°3. 如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是( )A.75°36′B.75°12′C.74°36′D.74°12′二、填空题4. 如图,平行线AB,CD被直线AE所截,∠1=50°,则∠A=________.第4题图第5题图第6题图5. 如图,直线CD∥EF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=________.6. 如图,AB∥CD,直线EF分别交AB,CD于M,N两点,将一个含有45°角的直角三角尺按如图所示的方式摆放.若∠EMB=75°,则∠PNM等于________度.7. 如图,直线AB∥CD,BC平分∠ABD.若∠1=54°,则∠2=________°.第7题图第8题图第9题图8. 如图,AB∥CD∥EF,若∠A=30°,∠AFC=15°,则∠C=________.9.如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.答案与解析:1. B【解析】∵DA⊥AC,∠ADC=35°,∴∠ACD=90°-∠ADC=90°-35°=55°,∵AB∥CD,∴∠1=∠ACD=55°,故选B.2. B【解析】∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=130°,∵AE平分∠CAB,∴∠EAB=12∠CAB=65°.又∵AB∥CD,∴∠AED+∠EAB=180°,∴∠AED=180°-∠EAB=180°-65°=115°.3. B【解析】根据平面镜反射原理可知,∠ADC=∠ODE,∵DC∥OB,∴∠ADC=∠AOE,∴∠ODE=∠AOE=37°36′,∴∠DEB=∠ODE+∠AOE=37°36′+37°36′=75°12′,故选B.4. 50°5. 30°6. 307. 72【解析】∵CD∥AB,∴∠CBA=∠1=54°,∠ABD+∠CDB=180°,∵CB平分∠ABD,∴∠DBC=∠CBA=54°,∴∠CDB=180°-54°-54°=72°,∴∠2=∠CDB=72°.8. 15°【解析】由两直线平行,内错角相等,可得∠A=∠AFE=30°,∠C=∠CFE,由∠AFC=15°,可得∠CFE=∠C=∠AFE-∠AFC=15°.第9题解图9. 2【解析】如解图,过点P作PE⊥OB于点E,∵OP平分∠AOB,∴PD=PE,∠AOB=2∠AOP=30°,∵PC∥OA,∴∠ECP=∠AOB=30°,∴PE=12PC=2,∴PD=PE=2.。
2023年中考数学一轮专题练习一、单选题(本大题共13小题)1. (2022年西藏)如图,l 1∥l 2,∠1=38°,∠2=46°,则∠3的度数为( )A .46°B .90°C .96°D .134° 2. (辽宁省大连市2022年)如图,平行线AB ,CD 被直线EF 所截,FG 平分EFD ∠,若70EFD ∠=︒,则EGF ∠的度数是( )A .35︒B .55︒C .70︒D .110︒ 3. (山东省泰安市2021年)将含30°角的一个直角三角板和一把直尺如图放置,若150∠=︒,则2∠等于( )A .80°B .100°C .110°D .120° 4. (江苏省常州市2022年)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是( )A .垂线段最短B .两点确定一条直线C .过一点有且只有一条直线与已知直线垂直D .过直线外一点有且只有一条直线与已知直线平行5. (吉林省2022年)如图,如果12∠=∠,那么AB CD ∥,其依据可以简单说成( )A .两直线平行,内错角相等B .内错角相等,两直线平行C .两直线平行,同位角相等D .同位角相等,两直线平行 6. (湖南省岳阳市2022年)如图,已知l AB ∥,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30B .40︒C .50︒D .60︒ 7. (湖南省长沙市2022年)如图,75AB CD AE CF BAE ∠=︒∥,∥,,则DCF ∠的度数为( )A .65︒B .70︒C .75︒D .105︒8. (湖南省湘潭市2022年)在ABCD 中(如图),连接AC ,已知40BAC ∠=︒,80ACB ∠=︒,则BCD ∠=( )A .80︒B .100︒C .120︒D .140︒9. (湖南省娄底市2022年)一条古称在称物时的状态如图所示,已知180∠=︒,则2∠=( )A .20︒B .80︒C .100︒D .120︒10. (湖南省郴州市2022年)如图,直线a b ∥,且直线a ,b 被直线c ,d 所截,则下列条件不能..判定直线c d ∥的是( )A .34∠=∠B .15180∠+∠=︒C .12∠=∠D .14∠=∠ 11. (四川省雅安市2022年)如图,已知直线a ∥b ,直线c 与a ,b 分别交于点A ,B ,若∠1=120°,则∠2=( )A .60°B .120°C .30°D .15° 12. (四川省自贡市2022年)如图,直线,AB CD 相交于点O ,若130∠=,则2∠的度数是( )A .30°B .40°C .60°D .150°13. (四川省泸州市2022年)如图,直线a b ∥,直线c 分别交,a b 于点,A C ,点B 在直线b 上,AB AC ⊥,若1130∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .70︒二、填空题(本大题共6小题)14. (湖南省湘西州2022年)1.如图,直线a ∥b ,点C 、A 分别在直线a 、b 上,AC ⊥BC ,若∠1=50°,则∠2的度数为 _____.15. (四川省眉山市2022年)如图,已知a b ∥,1110∠=︒,则2∠的度数为 .16. (2022年四川省乐山市)如图6,已知直线a ∥b ,∠BAC =90°,∠1=50°,则∠2= .17. (湖北省咸宁市2022年)如图,直线a ∥b ,直线c 与直线a ,b 相交,若∠1=54°,则∠3= 度.18. (广西桂林市2022年)如图,直线l 1,l 2相交于点O ,∠1=70°,则∠2= °.19. (湖北省宜昌市2022年)如图,C 岛在A 岛的北偏东50︒方向,C 岛在B 岛的北偏西35︒方向,则ACB ∠的大小是 .三、解答题(本大题共1小题)20. (湖北省武汉市2022年)如图,在四边形ABCD 中,AD BC ∥,80B ∠=︒.(1)求BAD ∠的度数;(2)AE 平分BAD ∠交BC 于点E ,50BCD ∠=︒.求证:AE DC ∥.参考答案1. 【答案】C【分析】由题意易得∠1+∠3+∠2=180°,然后问题可求解.【详解】解:∵l1∥l2,∴∠1+∠3+∠2=180°,∵∠1=38°,∠2=46°,∴∠3=96°,故选:C.【点睛】本题主要考查平行线的性质,熟练掌握平行线的性质是解题的关键.2. 【答案】A【分析】先根据角平分线的性质可得∠GFD=35︒,再由平行线的性质可得∠EGF=∠GFD=35︒.【详解】解:∵∠EFD=70︒,且FG平分∠EFD∴∠GFD=1∠EFD=35︒2∵AB∥CD∴∠EGF=∠GFD=35︒故选A3. 【答案】C【分析】如图,先根据平行线性质求出∠3,再求出∠4,根据四边形内角和为360°即可求解.【详解】解:如图,由题意得DE∥GF,∴∠1=∠3=50°,∴∠4=180°-∠3=130°,∴在四边形ACMN中,∠2=360°-∠A-∠C-∠4=110°.故选:C4. 【答案】A【分析】根据垂线段最短解答即可.【详解】解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A .5. 【答案】D【分析】根据“同位角相等,两直线平行”即可得.【详解】解:因为1∠与2∠是一对相等的同位角,得出结论是AB CD ,所以其依据可以简单说成同位角相等,两直线平行,故选:D .6. 【答案】C【分析】根据直角三角形的性质求出CED ∠,再根据平行线的性质解答即可.【详解】解:在Rt CDE △中,90CDE ∠=︒,40DCE ∠=︒,则904050CED ∠=︒-︒=︒,∵l AB ∥,∴150CED ∠=∠=︒,故选:C .7. 【答案】C【分析】根据平行线的性质即可求解.【详解】如图,设,AE CD 交于点G ,AB CD ∥,75BAE ∠=︒,∴75DGE BAE ∠=∠=︒AE CF ∥75DCF DGE ∴∠=∠=︒故选:C .8. 【答案】C【分析】根据平行四边形的对边平行和两直线平行内错角相等的性质,再通过等量代换即可求解.【详解】解:∵四边形ABCD 为平行四边形,∴AB ∥CD∴∠DCA =∠CAB ,∵BCD ∠=∠DCA +∠ACB ,40BAC ∠=︒,80ACB ∠=︒∴BCD ∠=40º+80º=120º,故选:C .9. 【答案】C【分析】如图,由平行线的性质可得80,BCD ∠=︒ 从而可得答案.【详解】解:如图,由题意可得:,AB CD ∥ 180∠=︒,180,BCD218080100,10. 【答案】C【分析】利用平行线的判定条件进行分析即可得出结果.【详解】解:A 、当34∠=∠时,c d ∥;故A 不符合题意;B 、当15180∠+∠=︒时,c d ∥;故B 不符合题意;C 、当12∠=∠时,a b ∥;故C 符合题意;D 、∵a b ∥,则12∠=∠,∵14∠=∠,则24∠∠=,∴c d ∥;故D 不符合题意;故选:C11. 【答案】A【分析】先根据对顶角相等求出∠3的度数,再由平行线的性质即可得出结论.【详解】解:∵∠1=120°,∠1与∠3是对顶角,∴∠1=∠3=120°,∵直线a ∥b ,2=180360,故选:A . 12. 【答案】A【分析】根据对顶角相等可得2=1=30∠∠︒.【详解】解:∵130∠=,1∠与2∠是对顶角,∴2=1=30∠∠︒.故选:A .13. 【答案】B【分析】根据平行线的性质可得∠CAD =∠1=130°,再根据AB ⊥AC ,可得∠BAC =90°,即可求解.解:因为a ∥b ,所以∠1=∠CAD =130°,因为AB ⊥AC ,所以∠BAC =90°,所以∠2=∠CAD -∠BAC =130°-90°=40°.故选:B .14. 【答案】40°【分析】利用平行线的性质定理和垂直的意义解答即可.【详解】如图,∵AC ⊥BC ,∴∠2+∠3=90°,∵a ∥b ,∴∠1=∠3=50°.∴∠2=90°﹣∠3=40°.故答案为:40°.【点睛】本题主要考查了平行线的性质,垂直的意义,熟练掌握平行线的性质是解题的关键.15. 【答案】110︒##110度【分析】根据题意,由平行线的性质“两直线平行,同位角相等”可知3=1∠∠,再借助3∠与2∠为对顶角即可确定2∠的度数.【详解】解:如下图,∵a b ∥,1110∠=︒,∴3=1110∠∠=︒,∵3∠与2∠为对顶角,∴2=3110∠∠=︒.故答案为:110︒.16. 【答案】40°##40度【分析】根据平行线的性质可以得到∠3的度数,进一步计算即可求得∠2的度数.【详解】解:∵a ∥b ,∴∠1=∠3=50°,∵∠BAC =90°,∴∠2+∠3=90°,∴∠2=90°-∠3=40°,故答案为:40°.17. 【答案】54【分析】根据对顶角相等和平行线的性质“两直线平行同位角相等”,通过等量代换求解.【详解】因为a ∥b ,所以23∠=∠,因为12∠∠,是对顶角,所以12∠=∠,所以31∠=∠,因为154∠=︒,所以354∠=︒,故答案为:54.18. 【答案】70【分析】根据对顶角的性质解答即可.【详解】解:∵∠1和∠2是一对顶角,∴∠2=∠1=70°,故答案为:70.19. 【答案】85︒##85度【分析】过C 作CF DA ∥交AB 于F ,根据方位角的定义,结合平行线性质即可求解.【详解】 解:C 岛在A 岛的北偏东50︒方向,50DAC ∴∠=︒,C 岛在B 岛的北偏西35︒方向,35CBE ∴∠=︒,过C 作CF DA ∥交AB 于F ,如图所示:DA CF EB ∴∥∥,50,35FCA DAC FCB CBE ∴∠=∠=︒∠=∠=︒, 85ACB FCA FCB ∴∠=∠+∠=︒,故答案为:85︒.20. 【答案】(1)100BAD ∠=︒(2)详见解析【分析】(1)根据两直线平行,同旁内角互补,即可求解; (2)根据AE 平分BAD ∠,可得50DAE ∠=︒.再由AD BC ∥,可得50AEB DAE ∠=∠=︒.即可求证.(1)解:∵AD BC ∥, ∴180B BAD ∠+∠=°, ∵80B ∠=︒, ∴100BAD ∠=︒.(2)证明:∵AE 平分BAD ∠, ∴50DAE ∠=︒. ∵AD BC ∥, ∴50AEB DAE ∠=∠=︒. ∵50BCD ∠=︒, ∴BCD AEB ∠=∠. ∴AE DC ∥.。
数学第五章 相交线与平行线练习题附解析一、选择题1.如图,直线a ∥b ,则∠A 的度数是( )A .28°B .31°C .39°D .42°2.如图,直线AB ,CD 被直线EF 所截,与AB ,CD 分别交于点E ,F ,下列描述: ①∠1和∠2互为同位角 ②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是( )A .①③B .②④C .②③D .③④3.如图,AB ∥CD ∥EF ,AF ∥CG ,则图中与∠A (不包括∠A )相等的角有( )A .5个B .4个C .3个D .2个4.如图,下列条件不能判定AB ∥CD 的是( )A .12∠∠=B .2E ∠∠=C .B E 180∠∠+=D .BAF C ∠∠= 5.如图,直线a ∥b ,把三角板的直角顶点放在直线b 上,若∠1=60°,则∠2的度数为( )A .45°B .35°C .30°D .25°6.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A .、1个B .2个C .3个D .4个7.如图,已知AB ∥CD ∥EF ,则∠x 、∠y 、∠z 三者之间的关系是( )A .180x y z ++=°B .180x y z +-=°C .360x y z ++=°D .+=x z y8.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠=9.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°10.如图,直线l 与直线AB 、CD 分别相交于点E 、点F ,EG 平分BEF ∠交直线CD 与点G ,若168BEF ∠=∠=︒,则EGF ∠的度数为( ).A .34°B .36°C .38°D .68°二、填空题11.如图,现给出下列条件:①∠1=∠2,②∠B =∠5,③∠3=∠4,④∠5=∠D ,⑤∠B+∠BCD =180°,其中能够得到AD ∥BC 的条件是______(填序号);能够得到AB ∥CD 的条件是_______.(填序号)12.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.13.如图,//AB CD ,BD 平分ABC ∠,:4:1C DBA ∠∠=,则CDB ∠=______.14.如图,△ABC 的边长AB =3 cm ,BC =4 cm ,AC =2 cm ,将△ABC 沿BC 方向平移a cm (a <4 cm ),得到△DEF ,连接AD ,则阴影部分的周长为_______cm .15.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.16.如图,∠AEM=∠DFN=a,∠EMN=∠MNF=b,∠PEM=12∠AEM,∠MNP=12∠FNP,∠BEP,∠NFD的角平分线交于点I,若∠I=∠P,则a和b的数量关系为_____(用含a的式子表示b).17.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.18.如图,长方形ABCD的周长为30,则图中虚线部分总长为____________.19.如图,直线AB、CD相交于点O,OE平分∠AOC,OF⊥OE于点O,若∠AOD=70°,则∠AOF=______度.20.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.三、解答题21.如图1,D是△ABC延长线上的一点,CE//AB.(1)求证:∠ACD=∠A+∠B;(2)如图2,过点A作BC的平行线交CE于点H,CF平分∠ECD,FA平分∠HAD,若∠BAD =70°,求∠F 的度数.(3)如图3,AH //BD ,G 为CD 上一点,Q 为AC 上一点,GR 平分∠QGD 交AH 于R ,QN 平分∠AQG 交AH 于N ,QM //GR ,猜想∠MQN 与∠ACB 的关系,说明理由.22.综合与探究综合与实践课上,同学们以“一个含30角的直角三角尺和两条平行线”为背景开展数学活动,如图,已知两直线a ,b ,且//a b ,三角形ABC 是直角三角形,90BCA ∠=︒,30BAC ∠=︒,60ABC ∠=︒操作发现:(1)如图1.148∠=︒,求2∠的度数;(2)如图2.创新小组的同学把直线a 向上平移,并把2∠的位置改变,发现21120∠-∠=︒,请说明理由.实践探究:(3)填密小组在创新小组发现的结论的基础上,将图2中的图形继续变化得到图3,AC 平分BAM ∠,此时发现1∠与2∠又存在新的数量关系,请写出1∠与2∠的数量关系并说明理由.23.已知:如图所示,直线MN ∥GH ,另一直线交GH 于A ,交MN 于B ,且∠MBA =80°,点C 为直线GH 上一动点,点D 为直线MN 上一动点,且∠GCD =50°.(1)如图1,当点C 在点A 右边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(2)如图2,当点C 在点A 右边且点D 在点B 右边时,∠DBA 的平分线交∠DCA 的平分线于点P ,求∠BPC 的度数;(3)当点C 在点A 左边且点D 在点B 左边时,∠DBA 的平分线交∠DCA 的平分线所在直线交于点P ,请直接写出∠BPC 的度数,不说明理由.24.如图1,AB//CD ,在AB 、CD 内有一条折线EPF .(1)求证:AEP CFP EPF ∠∠∠+=.(2)如图2,已知BEP ∠的平分线与DFP ∠的平分线相交于点Q ,试探索EPF ∠与EQF ∠之间的关系;(3)如图3,已知BEQ ∠=1BEP 3∠,1DFQ DFP 3∠∠=,则P ∠与Q ∠有什么关系,请说明理由.25.已知E 、D 分别在AOB ∠的边OA 、OB 上,C 为平面内一点,DE 、DF 分别是CDO ∠、CDB ∠的平分线.(1)如图1,若点C 在OA 上,且//FD AO ,求证:DE AO ⊥;(2)如图2,若点C 在AOB ∠的内部,且DEO DEC ∠=∠,请猜想DCE ∠、AEC ∠、CDB ∠之间的数量关系,并证明;(3)若点C 在AOB ∠的外部,且DEO DEC ∠=∠,请根据图3、图4直接写出结果出DCE ∠、AEC ∠、CDB ∠之间的数量关系.26.如图1,已知a ∥b ,点A 、B 在直线a 上,点C 、D 在直线b 上,且AD ⊥BC 于E .(1)求证:∠ABC+∠ADC=90°;(2)如图2,BF 平分∠ABC 交AD 于点F ,DG 平分∠ADC 交BC 于点G ,求∠AFB+∠CGD 的度数;(3)如图3,P为线段AB上一点,I为线段BC上一点,连接PI,N为∠IPB的角平分线上一点,且∠NCD=12∠BCN,则∠CIP、∠IPN、∠CNP之间的数量关系是______.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】试题分析:根据平行线的性质可得∠1=70°,再根据三角形的一个外角等于和它不相邻的两个内角的和可得∠A=70°-31°=39°.故选C.考点:平行线的性质2.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.3.B解析:B【分析】由平行线的性质,可知与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD.【详解】∵AB∥CD,∴∠A=∠ADC;∵AB∥EF,∴∠A=∠AFE;∵AF∥CG,∴∠EGC=∠AFE=∠A;∵CD∥EF,∴∠EGC=∠DCG=∠A;所以与∠A相等的角有∠ADC、∠AFE、∠EGC、∠GCD四个,故选B.4.B解析:B【分析】结合图形,根据平行线的判定方法对选项逐一进行分析即可得.【详解】A. ∠l=∠2,根据内错角相等,两直线平行,可得AB//CD,故不符合题意;B. ∠2=∠E,根据同位角相等,两直线平行,可得AD//BE,故符合题意;C. ∠B+∠E= 180°,根据同旁内角互补,两直线平行,可得AB//CD,故不符合题意;D. ∠BAF=∠C,根据同位角相等,两直线平行,可得AB//CD,故不符合题意,故选B.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.5.C解析:C【分析】由a与b平行,利用两直线平行同位角相等求出∠3的度数,再利用平角定义及∠4为直角,即可确定出所求角的度数.【详解】【解答】解:∵a∥b,∴∠3=∠1=60°,∵∠4=90°,∠3+∠4+∠2=180°,∴∠2=30°.故选:C.【点睛】本题考查了根据平行线的性质求角的度数,利用直角转化角是一种比较常见的方法,在一条直线上,3个角共顶点,且有一个角为直角,则另两个角的和为90°.6.C解析:C【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.7.B解析:B【分析】根据平行线的性质可得∠CEF=180°-y,x=z+∠CEF,利用等量代换可得x=z+180°-y,再变形即可.【详解】解:∵CD∥EF,∴∠C+∠CEF=180°,∴∠CEF=180°-y,∵AB∥CD,∴x=z+∠CEF,∴x=z+180°-y,∴x+y-z=180°,故选:B.8.C解析:C【分析】由∠A+∠ABC=180°可得到AD∥BC,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.9.B解析:B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,10.A解析:A【分析】由角平分线的性质可得∠GEB=12∠BEF=34°,由同位角相等,两直线平行可得CD ∥AB ,即可求解.【详解】∵EG 平分∠BEF ,∴∠GEB=12∠BEF=34°, ∵∠1=∠BEF=68°,∴CD ∥AB ,∴∠EGF=∠GEB=34°,故选:A .【点睛】本题考查了平行线的判定和性质,角平分线的定义,灵活运用这些性质进行推理是本题的关键.二、填空题11.①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,解析:①④ ②③⑤【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【详解】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为①④,②③⑤.【点睛】本题考查的是平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.12.【解析】试题分析:如图:∵△ABC是等边三角形,∴∠ABC=60°,又∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35解析:035【解析】试题分析:如图:∵△ABC 是等边三角形,∴∠ABC=60°,又∵直线l 1∥l 2∥l 3,∠1=25°,∴∠1=∠3=25°.∴∠4=60°-25°=35°,∴∠2=∠4=35°.考点:1.平行线的性质;2.等边三角形的性质.13.30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“平分,”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°解析:30°【分析】先由AB//CD 得到∠CDB=∠ABD ,∠C+∠ABC=180︒,设出∠ABD=x°,依据“BD 平分ABC ∠,:4:1C DBA ∠∠=”列出方程,求出∠ABD 即可解决问题.【详解】∵AB//CD∴∠ABD=x°,∠ABD ,∠C+∠ABC=180︒,BD 平分ABC ∠,∴∠ABD=∠CBD∵:4:1C DBA ∠∠=,∴4C DBA ∠=∠设∠ABD=x°,则∠CBD=x°,∠C=4x°,∴2x°+4x°=180°,解得,x=30∴∠ABD=30°,∴∠CDB=30°,故答案为:30°.【点睛】此题主要考查了平行线的性质以及角平分线的定义,求出∠ABD=30°是解此题的关键.14.9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平解析:9【分析】根据平移的特点,可直接得出AC、DE、AD的长,利用EC=BC-BE可得出EC的长,进而得出阴影部分周长.【详解】∵AB=3cm,BC=4cm,AC=2cm,将△ABC沿BC方向平移a cm∴DE=AB=3cm,BE=a cm∴EC=BC-BE=(4-a)cm∴阴影部分周长=2+3+(4-a)+a=9cm故答案为:9【点睛】本题考查平移的特点,解题关键是利用平移的性质,得出EC=BC-BE.15.68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB ∥CD ,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.16..【分析】分别过点P 、I 作ME∥PH,AB∥GI,设∠AME=2x,∠PNF=2y,知∠PEM=x,∠MNP=y,由PH∥ME 知∠EPH=x,由EM∥FN 知PH∥FN,据此得∠HPN=2y,∠E 解析:81209a b =-︒. 【分析】分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME=2x ,∠PNF=2y ,知∠PEM=x ,∠MNP=y ,由PH ∥ME 知∠EPH=x ,由EM ∥FN 知PH ∥FN ,据此得∠HPN=2y ,∠EPN=x+2y ,同理知3902EIF x x ∠︒-+=,根据∠EPN=∠EIF 可得答案. 【详解】 分别过点P 、I 作ME ∥PH ,AB ∥GI ,设∠AME =2x ,∠PNF =2y ,则∠PEM =x ,∠MNP =y ,∴∠DFN =2x ,∵PH ∥ME ,∴∠EPH =x ,∵EM ∥FN ,∴PH ∥FN ,∴∠HPN =2y ,∠EPN =x +2y ,同理,3902EIF x x ∠︒-+=,∵∠EPN=∠EIF,∴3902x x︒-+=x+2y,∴339042b︒-a=,∴91358b a =︒-,∴81209b-︒a=,故答案为:81209b-︒a=.【点睛】本题主要考查平行线的判定与性质,解题的关键是熟练掌握平行线的判定与性质.17.如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.18.15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意,虚线部分的总长为:.故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意, 解析:15【分析】由长方形的性质和平移的性质,即可求出答案.【详解】解:根据题意, 虚线部分的总长为:130152AB BC +=⨯=. 故答案为:15.【点睛】本题考查了长方形的性质,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型. 19.145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵,∵OE 平分∠AOC ,∴,∵OF⊥OE 于点O ,∴∠EOF=90°,∴∠A解析:145【分析】由已知、角平分线和垂直的定义可以得到∠AOE 和∠EOF 的大小,从而得到∠AOF 的值.【详解】解:∵70180110AOD AOC AOD ∠=︒∴∠=︒-∠=︒,,∵OE 平分∠AOC ,∴1552AOE AOC ∠=∠=︒, ∵OF ⊥OE 于点O ,∴∠EOF =90°,∴∠AOF =∠AOE+∠EOF =55°+90°=145°, 故答案为145.【点睛】本题考查邻补角、角平分线和垂直以及角度的运算等知识,根据有关性质和定义灵活计算是解题关键.20.12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的解析:12【解析】分析:由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长.详解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的, 故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为12.点睛:本题主要考查了平移的性质,需要注意的是:平移前后图形的大小、形状都不改变.三、解答题21.(1)证明见解析;(2)∠F=55°;(3)∠MQN =12∠ACB ;理由见解析. 【分析】(1)首先根据平行线的性质得出∠ACE =∠A ,∠ECD =∠B ,然后通过等量代换即可得出答案;(2)首先根据角平分线的定义得出∠FCD =12∠ECD ,∠HAF =12∠HAD ,进而得出∠F =12(∠HAD+∠ECD ),然后根据平行线的性质得出∠HAD+∠ECD 的度数,进而可得出答案;(3)根据平行线的性质及角平分线的定义得出12QGR QGD ∠=∠,12NQG AQG ∠=∠,180MQG QGR ∠+∠=︒ ,再通过等量代换即可得出∠MQN =12∠ACB . 【详解】解:(1)∵CE //AB ,∴∠ACE =∠A ,∠ECD =∠B ,∵∠ACD =∠ACE+∠ECD ,∴∠ACD =∠A+∠B ;(2)∵CF 平分∠ECD ,FA 平分∠HAD ,∴∠FCD =12∠ECD ,∠HAF =12∠HAD , ∴∠F =12∠HAD+12∠ECD =12(∠HAD+∠ECD ), ∵CH //AB ,∴∠ECD =∠B ,∵AH //BC ,∴∠B+∠HAB =180°,∵∠BAD =70°,110B HAD ∴∠+∠=︒,∴∠F =12(∠B+∠HAD )=55°; (3)∠MQN =12∠ACB ,理由如下: GR 平分QGD ∠,12QGR QGD ∴∠=∠. GN 平分AQG ∠,12NQG AQG ∴∠=∠. //QM GR ,180MQG QGR ∴∠+∠=︒ .∴∠MQN =∠MQG ﹣∠NQG=180°﹣∠QGR ﹣∠NQG=180°﹣12(∠AQG+∠QGD ) =180°﹣12(180°﹣∠CQG+180°﹣∠QGC ) =12(∠CQG+∠QGC ) =12∠ACB . 【点睛】本题主要考查平行线的性质和角平分线的定义,掌握平行线的性质和角平分线的定义是解题的关键.22.(1)242∠=︒;(2)理由见解析;(3)12∠=∠,理由见解析.【分析】(1)由平角定义求出∠3=42°,再由平行线的性质即可得出答案;(2)过点B 作BD ∥a .由平行线的性质得∠2+∠ABD =180°,∠1=∠DBC ,则∠ABD =∠ABC−∠DBC =60°−∠1,进而得出结论;(3)过点C 作CP ∥a ,由角平分线定义得∠CAM =∠BAC =30°,∠BAM =2∠BAC =60°,由平行线的性质得∠1=∠BAM =60°,∠PCA =∠CAM =30°,∠2=∠BCP =60°,即可得出结论.【详解】解:(1)如图1148∠=︒,90BCA ∠=︒,3180142BCA ∴∠=︒-∠-∠=︒,//a b ,2342∴∠=∠=︒;图1BD a,(2)理由如下:如图2.过点B作//图2∴∠+∠=︒,2180ABDa b,//∴,//b BD∴∠=∠DBC,1ABD ABC DBC∴∠=∠-∠=︒-∠,601∴∠+︒-∠=︒,2601180∴∠-∠=︒;21120∠=∠,(3)12图3CP a,理由如下:如图3,过点C作//AC平分BAM∠,∴∠=∠=︒,CAM BAC30∠=∠=︒,260BAM BACa b,又//∴,CP b//∠=∠=︒,160BAM30PCA CAM ∴∠=∠=︒,903060BCP BCA PCA ∴∠=∠-∠=︒-︒=︒,又//CP a ,260BCP ∴∠=∠=︒,12∠∠∴=.【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键.23.(1)∠BPC =65°;(2)∠BPC =155°;(3)∠BPC =155°【分析】(1)如图1,过点P 作PE ∥MN ,根据题意结合平行线的性质和角平分线的性质可以得出:∠BPE=∠DBP=40°,1CPE PCA DCA 252︒∠=∠=∠=,据此进一步求解即可; (2)如图2,过点P 作PE ∥MN ,根据平角可得∠DBA =100°,再由角平分线和平行线的性质得∠BPE =130°,1PCA CPE DCA 252︒∠=∠=∠=,据此进一步求解即可; (3)如图3,过点P 作PE ∥MN ,根据角平分线性质得出∠DBP =∠PBA=40°,由此得出∠BPE =∠DBP =40°,然后根据题意得出1PCA DCA 652︒∠=∠=,由此再利用平行线性质得出∠CPE 度数,据此进一步求解即可.【详解】(1)如图1,过点P 作PE ∥MN .∵PB 平分∠DBA ,∴∠DBP=∠PBA=40°,∵PE ∥MN ,∴∠BPE=∠DBP=40°,同理可证:1CPE PCA DCA 252︒∠=∠=∠=, ∴∠BPC =40°+25°=65°;(2)如图2,过点P 作PE ∥MN .∵∠MBA=80°.∴∠DBA=180°−80°=100°.∵BP平分∠DBA.∴1DBP DBA502︒∠=∠=,∵MN∥PE,∴∠BPE=180°−∠DBP=130°,∵PC平分∠DCA.∴1PCA DCA252︒∠=∠=,∵MN∥PE,MN∥GH,∴PE∥GH,∴∠EPC=∠PCA=25°,∴∠BPC=130°+25°=155°;(3)如图3,过点P作PE∥MN.∵BP平分∠DBA.∴∠DBP=∠PBA=40°,∵PE∥MN,∴∠BPE=∠DBP=40°,∵CP平分∠DCA,∠DCA=180°−∠DCG=130°,∴1PCA DCA652︒∠=∠=,∵PE∥MN,MN∥GH,∴PE∥GH,∴∠CPE=180°−∠PCA=115°,∴∠BPC=40°+115°=155°.【点睛】本题主要考查了平行线性质与角平分线性质的综合运用,熟练掌握相关概念是解题关键.24.(1)见解析;(2)∠EPF+2∠EQF=360°;(3)∠P+3∠Q=360°.【分析】(1)首先过点P作PG∥AB,然后根据AB∥CD,PG∥CD,可得∠AEP=∠1,∠CFP=∠2,据此判断出∠AEP+∠CFP=∠EPF即可.(2)首先由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ;然后根据∠BEP的平分线与∠DFP的平分线相交于点Q,推得∠EQF=1(360)2EPF⨯︒-∠,即可判断出∠EPF+2∠EQF=360°.(3)首先由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ;然后根据∠BEQ=1 3∠BEP,∠DFQ=13∠DFP,推得∠Q=13×(360°﹣∠P),即可判断出∠P+3∠Q=360°.【详解】(1)证明:如图1,过点P作PG∥AB,∵AB∥CD,∴PG∥CD,∴∠AEP=∠1,∠CFP=∠2,又∵∠1+∠2=∠EPF,∴∠AEP+∠CFP=∠EPF.(2)如图2,,由(1),可得∠EPF=∠AEP+CFP,∠EQF=∠BEQ+∠DFQ,∵∠BEP的平分线与∠DFP的平分线相交于点Q,∴∠EQF=∠BEQ+∠DFQ=12(∠BEP+∠DFP)=1[360()] 2AEP CFP︒-∠+∠=1(360)2EPF⨯︒-∠,∴∠EPF+2∠EQF=360°.(3)如图3,,由(1),可得∠P=∠AEP+CFP,∠Q=∠BEQ+∠DFQ,∵∠BEQ=13∠BEP,∠DFQ=13∠DFP,∴∠Q=∠BEQ+∠DFQ=13(∠BEP+∠DFP)=13[360°﹣(∠AEP+∠CFP)]=13×(360°﹣∠P),∴∠P+3∠Q=360°.【点睛】此题主要考查了平行线的性质的应用,要熟练掌握,解答此题的关键是要明确:(1)定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.(2)定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.(3)定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.25.(1)证明见解析;(2)∠CDB+∠AEC=2∠DCE;(3)图3中∠CDB=∠AEC+2∠DCE,图4中∠AEC=∠CDB+2∠DCE.【分析】(1)依据DE、DF分别是∠CDO、∠CDB的平分线,可得∠CDF=12∠CDB,∠CDE=1 2∠CDO,进而得出∠EDF=12(∠CDB+∠CDO)=90°,再根据平行线的性质,即可得到∠AED=90°,即DE⊥AO;(2)连接OC,依据∠DEO=∠DEC,∠EDO=∠EDC,可得∠DOE=∠DCE,再根据三角形外角性质,即可得到∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)如图3中,依据∠CDB是△ODG的外角,可得∠CDB=∠DOG+∠DGO,依据∠DGO 是△CEG的外角,可得∠DGO=∠AEC+∠C,进而得到∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4中,同理可得∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【详解】解:(1)如图1,∵DE、DF分别是∠CDO、∠CDB的平分线,∴∠CDF=12∠CDB,∠CDE=12∠CDO,∴∠EDF=12(∠CDB+∠CDO)=90°,又∵DF∥AO,∴∠AED=90°,∴DE⊥AO;(2)如图2,连接OC,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△COD的外角,∠AEC是△COE的外角,∴∠CDB=∠COD+∠OCD,∠AEC=∠EOC+∠ECO,∴∠CDB+∠AEC=∠COD+∠OCD+∠EOC+∠ECO=2∠DCE;(3)图3中,∠CDB=∠AEC+2∠DCE;图4中,∠AEC=∠CDB+2∠DCE.理由:如图3,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠CDB是△ODG的外角,∴∠CDB=∠DOG+∠DGO,∵∠DGO是△CEG的外角,∴∠DGO=∠AEC+∠C,∴∠CDB=∠DOG+∠AEC+∠C=∠AEC+2∠DCE;如图4,∵∠DEO=∠DEC,∠EDO=∠EDC,∴∠DOE=∠DCE,∵∠AEC是△OEH的外角,∴∠AEC=∠DOE+∠OHE,∵∠OHE是△CDH的外角,∴∠OHE=∠CDB+∠C,∴∠AEC=∠DOE+∠CDB+∠C=∠CDB+2∠DCE.【点睛】本题主要考查了平行线的性质以及三角形外角性质的综合运用,解题时注意:三角形的外角等于与它不相邻的两个内角的和.26.(1)见解析;(2)225°;(3)3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【分析】(1)如图1中,过E作EF∥a,利用平行线的性质即可解决问题;(2)如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,可得x+y=45°,证明∠AFB=180°-(2y+x),∠CGD=180°-(2x+y),推出∠AFB+∠CGD=360°-(3x+3y)即可解决问题;(3)分两种情形:①当点N在∠DCB内部时,②当点N′在直线CD的下方时,分别画出图形求解即可.【详解】(1)证明:如图1中,过E作EF∥a.∵a∥b,∴a∥b∥EF,∵AD⊥BC,∴∠BED=90°,∵EF∥a,∴∠ABE=∠BEF,∵EF∥b,∴∠ADC=∠DEF,∴∠ABC+∠ADC=∠BED=90°.(2)解:如图2中,作FM∥a,GN∥b,设∠ABF=∠EBF=x,∠ADG=∠CDG=y,由(1)知:2x+2y=90°,x+y=45°,∵FM∥a∥b,∴∠BFD=2y+x,∴∠AFB=180°-(2y+x),同理:∠CGD=180°-(2x+y),∴∠AFB+∠CGD=360°-(3x+3y),=360°-3×45°=225°.(3)解:如图,设PN交CD于E.当点N在∠DCB内部时,∵∠CIP=∠PBC+∠IPB,∴∠CIP+∠IPN=∠PBC+∠BPN+2∠IPE,∵PN平分∠EPB,∴∠EPB=∠EPI,∵AB∥CD,∴∠NPE=∠CEN,∠ABC=∠BCE,∵∠NCE=12∠BCN,∴∠CIP+∠IPN=3∠PEC+3∠NCE=3(∠NCE+∠NEC)=3∠CNP.当点N′在直线CD的下方时,同理可知:∠CIP+∠CNP=3∠IPN,综上所述:3∠CNP=∠CIP+∠IPN或3∠IPN=∠CIP+∠CNP.【点睛】本题考查平行线的性质,对顶角相等等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.。
中考数学精选题专练 相交线与平行线 一、选择题: 1.如图所示的四图个中各有两个完全相同的三角形,如果其中一个三角形不动,移动另一个三角
形,则能够通过平移使两个三角形重合的图形有( )
A.①②③ B.①③④ C.①②④ D.①③ 2.下列各式中,正确的是( )
A.一个图形平移后,形状和大小都改变 B.一个图形平移后,形状和大小都不变 C.一个图形平移后,形状改变但大小不变 D.一个图形平移后,形状不变但大小改变
3.如图,将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是
( )
A.16cm B.18cm C.20cm D.21cm 4.如图所示,一辆汽车,经过两次转弯后,行驶的方向与原来保持平行,如果第一次转过的角
度为α,第二次转过的角度为β,则β等于( )
A.α B.90°﹣α C.180°﹣α D.90°+α 5.将命题“对顶角相等”写成“如果„„,那么„„”的形式,正确的是( )
A.如果两个角相等,那么它们是对顶角 B.如果两个角是对顶角,那么它们相等 C.如果对顶角,那么相等 D.如果两个角不是对顶角,那么这两个角不相等 6.如图,l1∥l2,∠1=56°,则∠2的度数为( )
A.34° B.56° C.124° D.146°
7.有下列几种说法:
①两条直线相交所成的四个角中有一个是直角; ②两条直线相交所成的四个角相等; ③两条直线相交所成的四个角中有一组相邻补角相等; ④两条直线相交对顶角互补. 其中,能两条直线互相垂直的是( ) A.①③ B.①②③ C.②③④ D.①②③④
8.如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=( )
A.52° B.38° C.42° D.60° 二、填空题:
9.长方形ABCD中,∠ADB=20°,现将这一长方形纸片沿AF折叠,若使AB′∥BD,则折痕AF与AB的夹
相交线与平行线中考真题分类练习 - 1 - / 5 相交线与平行线 几个重要结论: (一)点,线,角 1.点、直线、面(不定义概念)及其表示;2.射线、线段、线段的中点及其表示; 3.两点确定一条直线;★ 4.两点之间线段最短(两点之间的距离);★ 5.角、角的顶点、边、角平分线的表示及其性质; 6.角的分类(锐角、直角、钝角、平角、周角)、度量(度、分、秒)及计算. (二)关系角及其性质 1.对顶角、余角、补角(邻补角)、同位角,内错角、同旁内角;2.对顶角相等;★ 3.同角(或等角)的余角(或补角)相等.★ (三)相交线、平行线 1.垂直: 过一点(直线上或直线外)有且只有一条直线和已知直线垂直;★ 直线外一点与直线上各点的连的所有线段中,垂线段最短(点到直线的距离) 2.两点之间的距离、点与直线的距离: ① 连结两点的线段的______,叫做这两点间的距离; ② 从直线外一点到这条直线的___________的长度,叫点到直线的距离。 3.平行: 过直线外一点,有且只有一条直线与已知直线平行;★ 如果两条直线都与第三条直线平行,那么这两条直线也互相平行.★ 三线八角与平行线的关系;★ ①判定公理: 同位角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b. ②判定定理1:内错角相等,两直线平行. ∵ ∠1=∠2, ∴ a∥b. ③判定定理2:同旁内角互补,两直线平行. ∵∠1+∠2=1800 , ∴ a∥b. ④性质公理: 两直线平行,同位角相等. ∵ a∥b, ∴∠1=∠2. ⑤性质定理1:两直线平行,内错角相等. ∵ a∥b, ∴∠1=∠2. ⑥性质定理2:两直线平行,同旁内角互补. ∵ a∥b, ∴ ∠1+∠2=1800 . 4.尺规作图: 会过一点画(作)已知直线的垂线;(一落,二靠,三画) 会过直线外一点,画已知直线的平行线. (1)限定只能使用_______和没有_______的直尺作图称为尺规作图. (2)5种基本作图包括:①作一条线段等于已知线段;②作一个角等于已知角;③作已知角的平分线;④作已知线段的_______;⑤过一点作已知直线的_______. 5.命题:命题:真命题: 假命题:逆命题: 相交线与平行线中考真题分类练习 - 2 - / 5 Ol2
l1
β
α
E D
相交线与平行线 考点一 与角有关的概念和计算 1.(2010福建)下面四个图形中,能判断∠1>∠2的是( )
A. B. C. D. 2.(2010山东)如果60,那么的余角的度数是( ) A.30° B.60° C.90° D.120° 3.(2010湖南)如图,直线l1与l2相交于点O,1OMl,若44,则等于( ) A.56 B.46 C.45 D.44
第3题 第4题 第6题 第7题 4.(2010陕西)如图,点O在直线AB上,且OC⊥OD,若∠COA=36°,则∠DOB的大小为( ) A.36° B.54° C.64° D.72° 5.(2010云南)从3时到6时,钟表的时针旋转角的度数是( ) A.300 B.600 C.900 D.1200 6.(2010江苏)如图,O是直线l上一点,∠AOB=100°,则∠1 + ∠2 = 。 7.(2016湖南)如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOD=100°,则∠AOE=___. 考点二 平行线性质与判定 1.(2010湖南)下列图形中,由ABCD,能得到12的是
2.(2010四川)将一副三角板如图放置,使点A在DE上,BC∥DE,则∠AFC的度数为 A.45° B.50° C.60° D.75° A
C B 相交线与平行线中考真题分类练习 - 3 - / 5 第2题 第3题 3.(2010湖北)如图,已知直线AB//CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠BCD的度数( ) A.150° B.130° C.120° D.100° 4.(2010甘肃)如图,ABCD∥,EFAB于EEF,交CD 于F,已知160°,则2( ) A.30° B.20° C.25° D.35°
第4题 第5题 第6题 第7题 5.(2015•滨州)如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么∠BAO与∠ABO之间的大小关系一定为( ) A.互余 B.相等 C.互补 D.不等 6.(2015•浙江)如图,在平行四边形ABCD中,已知AD=12cm,AB=8cm,AE平分∠BAD交BC于点E,则CE的长等于( )
A. 8cm B. 6cm C. 4cm D. 2cm 7.(2015•江苏)如图所示,直线a,b被直线c所截,∠1与∠2是( ) A.同位角 B.内错角 C.同旁内角 D.邻补角 8.(2015•重庆)下列说法不正确的 是( ) A.两直线平行,同位角相等 B两点之间直线最短 C.对顶角相等 D.半圆所对的圆周角是直角 9.(2015•广西)如图,在△ABC中,AB=AC,DE∥BC,则下列结论中不正确的是( ) A.AD=AE B. DB=EC C.∠ADE=∠C D.DE=BC 10.(2010山东) 如图,l∥m,∠1=115º,∠2=95º,则∠3=( ) A.120º B.130º C.140º D.150º
第9题 第10题 第11题 第12题 11.(2010 山东)如图,直线AB∥CD,∠A=70,∠C=40,则∠E等于( ) A.30° B.40° C.60° D.70° 12.(2010广西南宁)如图所示,直线a、b被c、d所截,且701,,bcac, 则2 0
13.(2010年南通市)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF. 相交线与平行线中考真题分类练习 - 4 - / 5 A B C
能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一.
个合适的条件......,添加到已知条件中,使AB∥ED成立,并给出证明.
供选择的三个条件(请从其中选择一个): ①AB=ED; ②BC=EF; ③∠ACB=∠DFE.
考点三 方位角 1.(2010山东) 在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点1000m的C地去,先沿北偏东70方向到达B地,然后再沿北偏西20方向走了500m到达目的地C,此时小霞在营地A的 A. 北偏东20方向上 B. 北偏东30方向上 C. 北偏东40方向上 D. 北偏西30方向上
第2题 2.如图,小明在操场上从A点出发.先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是 ( ) A.120° B.135° C.150° D.160° 考点四 尺规作图 1.已知:线段a.c,∠a, 求作:△ABC,使BC=a,AB=c,∠ABC=∠a
提示 先作∠B=∠a,再在角的两边截取BC=a,AB=c,最后连接AC即可. 2.(2010重庆市)尺规作图:请在原图上作一个∠AOC,使其是已知∠AOB的 3 2 倍(要求:写出已知、
求作,保留作图痕迹,在所作图中标上必有要的字母,不写作法和结论) 已知: 求作: 相交线与平行线中考真题分类练习 - 5 - / 5 3.如图,点C在∠AOB的边OB上,用尺规作出了CN∥OA,作图痕迹中,弧FG是 ( ) A.以点C为圆心,OD长为半径的弧 B.以点C为圆心,DM长为半径的弧 C.以点E为圆心,OD长为半径的弧[来源:Zxxk.Com] D.以点E为圆心,DM长为半径的弧 考点五 命题 1. (2016·黑龙江)下列命题中,真命题的个数是( ) ①同位角相等 ②经过一点有且只有一条直线与这条直线平行 ③长度相等的弧是等弧 ④顺次连接菱形各边中点得到的四边形是矩形. A.1个B.2个C.3个D.4个 2.(2016·福建)下列命题是假命题的是( ) A.若|a|=|b|,则a=b B.两直线平行,同位角相等 C.对顶角相等 D.若b2﹣4ac>0,则方程ax2+bx+c=0(a≠0)有两个不等的实数根 3.(2016•娄底)下列命题中,错误的是( ) A.两组对边分别平行的四边形是平行四边形 B.有一个角是直角的平行四边形是矩形 C.有一组邻边相等的平行四边形是菱形 D.内错角相等 4.(2016•衡阳)下列命题是假命题的是( ) A.经过两点有且只有一条直线 B.三角形的中位线平行且等于第三边的一半 C.平行四边形的对角线相等 D.圆的切线垂直于经过切点的半径 5.(2011广东)已知三条不同的直线a,b,c在同一平面内,下列四个命题: ①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c; ③如果b⊥a,c⊥a,那么b⊥c; ④如果b⊥a,c⊥a,那么b∥c. 其中真命题的是 .(填写所有真命题的序号)【答案】①②④