第6章 磁路及变压器讲诉
- 格式:ppt
- 大小:2.98 MB
- 文档页数:70
第6章变压器** 三相组式和芯式变压器** 三相组式变压器三相组式变压器由3台容量、变比等基本参数完全相同的单相变压器按三相连接方式连接组成。
其示意图如图6.1.1,此图的原、副边均接成星形,也可接成其它接法。
三相组式变压器的特点是具有3个独立铁心;三相磁路互不关联;三相电压对称时,三相励磁电流和磁通也对称。
** 三相芯式变压器三相芯式变压器的磁路系统是由组式变压器演变过来的,其演变过程如图6.1.2所示。
当我们把三台单相变压器的一个边(即铁心柱)贴合在一起,各相磁路就主要通过未贴合的一个柱体,如图6.1.2(a)所示。
这时,在中央公共铁心柱内的磁通为三相磁通之和,即ΦΣ=ΦA+ΦB+ΦC。
当三相变压器正常运行(即三相对称)时,合成磁通ΦΣ=0,这样公共铁心柱内的磁通也就为零。
因此中央公共铁心柱可以省去,则三相变压器的磁路系统如图6.1.2(b)所示。
为了工艺制造方便起见,我们把3相铁心柱排在一个平面上,于是就得到了目前广泛采用的如图6.1.2(c)所示的三相芯式变压器的磁路系统。
图6.1.2 三相芯式变压器的铁心演变过程(a)3个铁心柱贴合(b)中央公共铁心柱取消(c)三相芯式铁心三相芯式变压器的磁路系统是不对称的,中间一相的磁路比两边要短些。
因此,在对称情况下(即ΦA=ΦB=ΦC时),中间相的励磁电流就比另外两相的小,但由于励磁电流在变压器负载运行时所占比重较小,故这对变压器实际运行不会带来多大影响。
比较芯式和组式三相变压器可以知道,在相同的额定容量下,三相芯式变压器具有省材料、效率高、经济等优点;但组式变压器中每一台单相变压器却比一台三相芯式变压器体积小,重量轻,便于运输。
对于一些超高电压、特大容量的三相变压器,当制造及运输发生困难时,一般采用三相组式变压器。
** 三相变压器的联结组三相变压器的原边和副边都分别有A,B,C 三相绕组,它们之间到底如何联法,对变压器图6.1.1 三相组式变压器的运行性能有很大的影响。
第6章磁路与铁心线圈电路6.1 磁路及其分析方法6.2 交流铁心线圈电路6.3 变压器第6章磁路与铁心线圈电路本章要求:1. 理解磁场的基本物理量的意义,了解磁性材料的基本知识及磁路的基本定律;2. 了解变压器的基本结构、工作原理、运行特性和绕组的同极性端,理解变压器额定值的意义;3. 掌握变压器电压、电流和阻抗变换作用;4.了解三相电压的变换方法。
在很多电工设备(像变压器、电机、电磁铁电工测量仪器等)中,不仅有电路的问题,同时还有磁路的问题。
只有同时掌握了电路和磁路的基本理论,才能对以上电工设备进行全面分析。
磁路和电路往往是相关的,因此在这里要研究磁路和电路的关系以及磁和电的关系。
本章结合磁路和铁心线圈电路的分析,讨论变压器和电磁铁的工作原理,作为应用实例。
在电机、变压器及各种铁磁元件中常用磁性材材料做成一定形状的铁心。
铁心的磁导率比周围空气或其它物质的磁导率高得多,磁通的绝大部分经过铁心形成闭合通路,磁通的闭合路径称为磁路。
直流电机的磁路交流接触器的磁路_+NSN S I f四极直流电机和交流接触器的磁路6.1磁路及其分析方法单相变压器的磁路6.1磁路及其分析方法6.1.1磁场的基本物理量1. 磁感应强度B (矢量)表示磁场内某点磁场强弱和方向的物理量。
磁感应强度B 的大小:磁感应强度B 的方向:与电流的方向之间符合右手螺旋定则。
B Sφ=磁感应强度B 的单位:特斯拉(T ),1T = 1Wb/m 2均匀磁场:各点磁感应强度大小相等,方向相同的磁场。
2. 磁通磁通Φ:穿过垂直于B 方向的面积S 中的磁力线总数。
说明:如果不是均匀磁场,则取B 的平均值。
在均匀磁场中Φ= B S磁感应强度B 在数值上可以看成为与磁场方向垂直的单位面积所通过的磁通,故又称磁通密度。
3.磁场强度磁场强度H :是计算磁场时所引用的一个物理量,也是矢量,通过它来确定磁场与电流之间的关系。
磁场强度H 的单位:安培/米(A/m )磁通Φ的单位:韦[伯](Wb )1Wb =1V ·s ()d e N dtφ=−¾全电流定律(安培环路定律):磁场强度沿任意的闭合路径的线积分等于闭合路径包围的导体电流的代数和。
第6章磁路与铁心线圈电路6.1 磁路及其分析方法6.2 交流铁心线圈电路6.3 变压器第6章磁路与铁心线圈电路本章要求:1. 理解磁场的基本物理量的意义,了解磁性材料的基本知识及磁路的基本定律;2. 了解变压器的基本结构、工作原理、运行特性和绕组的同极性端,理解变压器额定值的意义;3. 掌握变压器电压、电流和阻抗变换作用;4.了解三相电压的变换方法。
在很多电工设备(像变压器、电机、电磁铁电工测量仪器等)中,不仅有电路的问题,同时还有磁路的问题。
只有同时掌握了电路和磁路的基本理论,才能对以上电工设备进行全面分析。
磁路和电路往往是相关的,因此在这里要研究磁路和电路的关系以及磁和电的关系。
本章结合磁路和铁心线圈电路的分析,讨论变压器和电磁铁的工作原理,作为应用实例。
在电机、变压器及各种铁磁元件中常用磁性材材料做成一定形状的铁心。
铁心的磁导率比周围空气或其它物质的磁导率高得多,磁通的绝大部分经过铁心形成闭合通路,磁通的闭合路径称为磁路。
直流电机的磁路交流接触器的磁路_+NSN S I f四极直流电机和交流接触器的磁路6.1磁路及其分析方法单相变压器的磁路6.1磁路及其分析方法6.1.1磁场的基本物理量1. 磁感应强度B (矢量)表示磁场内某点磁场强弱和方向的物理量。
磁感应强度B 的大小:磁感应强度B 的方向:与电流的方向之间符合右手螺旋定则。
B Sφ=磁感应强度B 的单位:特斯拉(T ),1T = 1Wb/m 2均匀磁场:各点磁感应强度大小相等,方向相同的磁场。
2. 磁通磁通Φ:穿过垂直于B 方向的面积S 中的磁力线总数。
说明:如果不是均匀磁场,则取B 的平均值。
在均匀磁场中Φ= B S磁感应强度B 在数值上可以看成为与磁场方向垂直的单位面积所通过的磁通,故又称磁通密度。
3.磁场强度磁场强度H :是计算磁场时所引用的一个物理量,也是矢量,通过它来确定磁场与电流之间的关系。
磁场强度H 的单位:安培/米(A/m )磁通Φ的单位:韦[伯](Wb )1Wb =1V ·s ()d e N dtφ=−¾全电流定律(安培环路定律):磁场强度沿任意的闭合路径的线积分等于闭合路径包围的导体电流的代数和。
第六章磁路与铁心线圈电路★主要内容1、磁场的基本物理量2、磁性材料的磁性能3、磁路及其基本定律4、交流铁心线圈电路5、变压器★教学目的和要求1、理解描述磁场性质的四个有关物理量(磁感应强度、磁通、磁导率和磁场强度)的意义,并熟记它们的单位和符号,了解铁磁材料的磁化、磁滞的物理意义,掌握铁磁材料磁滞回线的概念,了解两类铁磁质的磁性能(磁滞回线的不同特点)和用途。
2、了解磁路的基本概念;了解交流铁心线圈电路的基本电磁关系,掌握交流铁芯线圈端电压与线圈磁通的关系(U≈E=4.44NfΦm)。
3、了解变压器的基本构造、工作原理、绕组的同极性端,掌握理想变压器的三种变换特性,并能利用这些特性对含有变压器的电路进行熟练地计算。
★学时数:6学时★重难点重点:①磁路基本定律、交流铁心线圈;②变压器的三个主要作用难点:①交流铁心线圈电路分析;②变压器与负载的关系★本章作业布置:课本习题P197—199页,6.1.4,6.3.2,6.3.4,6.3.5,6.3.6第六章 磁路与铁心线圈电路本章学习变压器的工作原理。
变压器是一种利用磁路传送电能,实现电压、电流和阻抗变换的重要设备。
§6.1 磁路及其分析方法在电机、变压器及各种铁磁元件中常用铁磁材料做成一定形状的铁心,铁心的磁导率比周围空气或其他物质高得多,因此铁心线圈中电流产生的磁通绝大部分经过铁心而闭合,这种人为造成的磁通闭合路径,称为磁路。
如图7.3-1和图6.1-1分别表示四极直流电机和交流接触器的磁路。
+-一、磁场的基本物理量这部分内容在普物中已基本讲过,这里简单复习一下。
电磁学中已讲过了,电流会产生磁场,通有电流的线圈内部及周围都有磁场存在。
在变压器、电动机等电工设备中,为了用较小的电流产生较强的磁场,通常把线圈绕在铁磁材料制成的铁心上。
由于铁磁性材料的导磁性能比非磁性材料好的多,因此,当线圈中有电流流过时,产生的磁通,绝大部分集中在铁心中,沿铁心面闭合,这部分铁心中的磁通称为主磁通,用Φ表示。