当前位置:文档之家› 硅橡胶性能测试的主要指标及其意义

硅橡胶性能测试的主要指标及其意义

硅橡胶性能测试的主要指标及其意义
硅橡胶性能测试的主要指标及其意义

硅橡胶的主要性能测试指标及其意义

1、硬度:

表示橡胶抵抗外力压入的能力,也是所有胶料的基本性能。橡胶的硬度在一定程度上与其他一些性能相关。例如,胶料的硬度愈高,相对地说,强度就较大,伸长率较小,耐磨性较好,而耐低温性能就较差。高硬度橡胶能抗高压下挤压破坏。因此应根据零件工作特性选用合适的硬度。

2、拉伸性能:

拉伸性能是所有胶料应首先考虑的性能,包括拉伸强度、定伸应力、伸长率、扯断伸长率和扯断永久变形,以及应力——应变曲线。拉伸强度是试样拉伸至断裂的最大拉伸应力。定伸应力(定伸模量)是在规定伸长时达到的应力(模量)。伸长率是试样受拉伸应力而引起的变形,用伸长增量与原长之比的百分数表示。扯断伸长率则是试样拉断时的伸长率。扯断永久变形是拉伸断裂后标距部分的残余变形。

3、撕裂性能:

橡胶的撕裂是由于材料中的裂纹或者裂口受力而迅速扩大开裂而导致破坏的现象。试样撕裂时单位厚度所承受的负荷为撕裂强度,表示橡胶制品使用的优劣。撕裂实验按所需试样不同,分裤形撕裂、直角撕裂和新月形三种。直角形撕裂试样,由于试样不一定需要先割口,故测试的人为影响因素少,因而被广泛采用。

4、压缩性能:

橡胶密封件通常处于受压缩状态,由于橡胶的粘弹性,橡胶受压缩后,压缩应力会随时间而减小,表现为压缩应力松弛;除去压力后,不能恢复原来的外形,表现为压缩永久变形。在高温油介质中,这些现象更为显著。它们会影响密封件的密封性能,是密封件用胶料的重要性能之一。

5、低温性能:

低温性能通常采用以下三种方法表示橡胶的耐低温性能。

1)最常用的是脆性温度:是指试样在低温受一定的冲击力时出现破裂的最高温度,可用于比较不同胶料的低温性能。但由于橡胶的工作状态与试验条件不同,橡胶的脆性温度并不表示橡胶件的最低工作温度,尤其在油介质中。

2)低温回缩温度是在室温下将试片拉伸至一定长度,然后固定,迅速冷却到冻结温度以下,达到温度平衡后松开试片,并以一定速度升温,记录试片回缩10%、30%、50%和70%时的温度,分别以TR10、TR30、TR50和TR70表示。材料标准中一般以TR10作为标准,与橡胶脆性温度相接近。

3)耐寒系数,一般是将试样在室温压缩到一定的变形量,然后在规定的低温下冷冻,再卸除负荷让其在低温下恢复,恢复量与压缩量之比称为压缩耐寒系数。系数愈大,橡胶的耐寒性愈好。

6、耐油性能:

橡胶在油介质中(燃油、润滑油、液压油等),特别在较高温度下,会导致膨胀、软化和降低强度、硬度,同时橡胶中的增塑剂或可溶性物质可能被油浸出,导致重量减轻,体积减小,引起泄漏。因此橡胶的耐油性是在油介质中工作胶料的重要性能。一般是在一定温度下在油中浸泡若干时间后测定其重量变化、体积变化以及强度、伸长率和硬度的变化。有时也可用耐油系数表示,即在介质中浸泡后的强度或伸长率与原始强度或伸长率之比。

7、耐老化性能

橡胶受氧(空气)、臭氧、热、光、水分和机械应力等因素的作用后会引起性能变坏,称为橡胶的老化。橡胶的耐老化性能可通过自然老化和人工加速老化试验(热老化、湿热老化、臭氧老化等)测定。耐老化性可用老化后试样的强度、伸长率或硬度等性能的变化表示,也可用老化系数表示,即老化后试样的拉伸强度、扯断伸长率或拉伸强度与扯断伸长率的相乘积与原始值之比,相应地称为按拉伸强度计算的老化系数(简称按强度计老化系数)、按扯断伸长率计算的老化系数(简称按伸长计老化系数)或按抗张积计算的老化系数(简称按抗张积计老化系数)。

8、其他性能

此外,减震用橡胶还应考虑其动态力学性能,如动态模量和阻尼;膜片材料还应考虑其断裂强度及疲劳性能;电绝缘用橡胶还应考虑其电性能;橡胶胶粘剂则要考虑其对各种被粘物胶接性能,包括剥离强度、扯离强度和剪切强度。

导热硅胶片阻湿性能的测试方案

导热硅胶片阻湿性能的测试方案 摘要:阻湿性能的高低是影响导热硅胶片使用性能的重要因素,本文通过对某品牌导热硅胶片水蒸气透过率的测试,介绍了一种导热硅胶片阻湿性能测试方法,并通过对试验原理、设备W3/330水蒸气透过率测试系统的试验过程等内容的描述,为企业测试导热硅胶片的阻湿性能提供参考。 关键词:阻湿性能、水蒸气透过率、导热硅胶片、水蒸气透过率测试系统、电解法 1、意义 导热硅胶片是以硅胶为基材,添加金属氧化物等辅材合成的一种导热介质材料,这种材料是通过将其填充到热源与散热器之间的缝隙,从而使两者之间形成良好的散热通路。导热硅胶片在LED行业、电源行业、通讯行业、汽车电子行业、家电行业等领域均有广泛应用,如笔记本电脑主板芯片与散热器之间的连接散热。由于电子产品内部构件对水汽比较敏感,因此在其使用过程中防止内部受潮是保证产品使用寿命、使用性能的前提条件,而当导热硅胶片用于电子芯片与散热器之间时,便可将电子芯片密封在密闭的环境中,而导热硅胶片作为密封材料的一部分,其对水蒸气阻隔性能的高低将直接影响电子芯片可接触到的水蒸气量。因此,选择适宜阻湿性能的导热硅胶片对防止电子产品受潮具有重要意义。 图1 导热硅胶片 2、检测依据 目前,材料水蒸气透过率的测试方法主要分为杯式法、电解传感器法、红外传感器法、

湿度传感器法四种,本文采用电解传感器法对导热硅胶片的水蒸气透过率进行测试,依据的方法标准为GB/T 21529-2008《塑料薄膜和薄片水蒸气透过率的测定电解传感器法》。 3、试验样品 本次试验所测试的样品为某品牌导热硅胶片。 4、试验设备 图2 W3/330水蒸气透过率测试系统 4.1 试验原理 将试样装夹到渗透腔内后,试样将渗透腔分成低湿腔和高湿腔。低湿腔中流动干燥的氮气,高湿腔中流动的是具有一定湿度的氮气,从高湿腔透过试样进入低湿腔的水蒸气被氮气携带到电解池内。电解池的结构通常为:内有两个螺旋形金属电极,电极安装在玻璃毛细管的内壁上,电极表面涂有一薄层五氧化二磷。氮气通过玻璃毛细管,由其携带的水蒸气被五氧化二磷定量地吸收。通过给电极施加一定的直流电压,将水蒸气电解成氢气和氧气。根据电解电流的数值,计算单位时间内透过单位面积试样的水蒸气量。 4.2 适用范围 (1) 本设备适用于塑料片材、薄膜、纸张、纸板及其复合材料、容器等包装水蒸气透过率测试。片材类包括各种工程塑料、橡胶、建材等片状材料,如PP片材、PVC片材、PVDC片材等;纸张、纸板类试样,如烟包镀铝纸、纸铝塑复合片材等;薄膜类材料包括各种塑料薄膜、纸塑复合膜、共挤膜、镀铝膜、铝箔、铝箔复合膜、玻纤铝箔纸复合膜等;

性能测试报告-模板

Xxx系统性能测试报告 拟制:****日期:****审核:日期: 批准:日期:

1.概述 1.1.编写目的 本次测试报告为xxx系统的性能测试总结报告,目的在于总结性能测试工作,并分析测试结果,描述系统是否符合xxx系统的性能需求。 预期参考人员包括用户、测试人员、开发人员、项目管理者、质量管理人员和需要阅读本报告的高层经理。 1.2.项目背景 腾讯公司为员工提供一个网上查询班车的入口,分析出哪些路线/站点比较紧张或宽松,以进行一些合理调配。 1.3.测试目标 (简要列出进行本次压力测试的主要目标)完善班车管理系统,满足腾讯内部员工的班车查询需求,满足500个用户并发访问本系统。 1.4.名词解释 测试时间:一轮测试从开始到结束所使用的时间 并发线程数:测试时同时访问被测系统的线程数。注意,由于测试过程中,每个线程都是以尽可能快的速度发请求,与实际用户的使用有极大差别,所以,此数据不等同于实际使用时的并发用户数。 每次时间间隔:测试线程发出一个请求,并得到被测系统的响应后,间隔多少时间发出下一次请求。 平均响应时间:测试线程向被测系统发请求,所有请求的响应时间的平均值。 处理能力:在某一特定环境下,系统处理请求的速度。 cache影响系数:测试数据未必如实际使用时分散,cache在测试过程中会比实际使用时发挥更大作用,从而使测试出的最高处理能力偏高,考虑到这个因素而引入的系数。 用户习惯操作频率:根据用户使用习惯估算出来的,单个用户在一段时间内,使用此类功能的次数。通常以一天内某段固定的高峰使用时间来统计,如果一天内没有哪段时间是固定的高峰使用时间,则以一天的工作时间来统计。

换热器性能综合测试实验

第一章实验装置说明 第一节系统概述 一、装置概述 目前我国传热元件的结构形式繁多,其换热性能差异较大,在合理选用和设计换热器的过程中,传热系数是度量其性能好坏的重要指标。本装置通过以应用较为广泛的间壁式换热器(共有套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器四种)为实验对象,对其传热性能进行测试。。 二、系统特点 1.采用四种不同结构的换热器(分别为套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器)作为实验对象,对其进行性能测量。 2.实验装置可测定换热器总的传热系数、对数传热温差和热平衡误差等,并能根据不同的换热器对传热情况和性能进行比较分析。 3.实验装置采用工业现场的真实换热器部件,与实际应用接轨。 三、技术性能 1.输入电源:三相五线制 AC380V±10% 50Hz 2.工作环境:温度-10℃~+40℃;相对湿度<85%(25℃);海拔<4000m 3.装置容量:<4kVA 4.套管式换热器:换热面积0.14m2 5.螺旋板式换换热器:换热面积1m2 6.列管式换热器:换热面积0.5m2 7.钎焊板式换热器:0.144m2 8.电加热器总功率:<3.5kW 9.安全保护:设有电流型漏电保护、接地保护,安全符合国家标准。 四、系统配置 1.被控对象系统:主要由不锈钢钢架、热水箱、热水泵、冷水箱、冷水泵、涡轮流量计、PT100温度传感器、板式换热器、列管式换热器、套管式换热器、螺旋板式换热器、冷凝器、电加热棒、电磁阀、电动球阀、黄铜闸阀以及管道管件等。 2.控制系统:主要由电源控制箱、漏电保护器、温度控制仪、流量显示仪、调压模块、开关电源以及开关指示灯等。 第二节换热器的认识 一、换热器的形式 能使热流体向冷流体传递热量,满足工艺要求的装置称为换热器。换热器的形式有很多,

xxx大数据性能测试方案-V1.0-2.0模板

编号: 密级: XXX大数据平台 性能测试方案 [V1-2.0] 拟制人: 审核人: 批准人: [2016年06月08日]

文件变更记录 *A - 增加M - 修订D - 删除 修改人摘要审核人备注版本号日期变更类型 (A*M*D) V2.0 2016-06-08 A 新建性能测试方案

目录 目录................................................................................................................................................................... I 1 引言 (1) 1.1编写目的 (1) 1.2测试目标 (1) 1.3读者对象 (1) 1.4 术语定义 (1) 2 环境搭建 (1) 2.1 测试硬件环境 (1) 2.2 软件环境 (2) 3 测试范围 (2) 3.1 测试功能点 (2) 3.2 测试类型 (2) 3.3性能需求 (3) 3.4准备工作 (3) 3.5 测试流程 (3) 4.业务模型 (4) 4.1 基准测试 (4) 4.1.1 Hadoop/ Spark读取算法的基准测试 (4) 4.1.2 Hadoop/ Spark写入算法的基准测试 (5) 4.1.3 Hadoop/ Spark导入算法的基准测试 (6) 4.1.4 Hadoop/ Spark导出算法的基准测试 (7) 4.2 负载测试 (8) 4.2.1 Hadoop/ Spark并行读取/写入算法的负载测试 (8) 4.2.2 Hadoop/ Spark并行导入/导出算法的负载测试 (9) 4.3 稳定性测试 (10) 4.3.1 Hadoop/ Spark并行读取/写入/导入/导出算法,7*24小时稳定性测试 (10) 5 测试交付项 (12) 6 测试执行准则 (12) 6.1 测试启动 (12) 6.2 测试执行 (12) 6.3 测试完成 (13) 7 角色和职责 (13) 8 时间及任务安排 (13) 9 风险和应急 (14) 9.1影响方案的潜在风险 (14) 9.2应急措施 (14)

口腔医学硅橡胶印模材料的临床应用

硅橡胶印模材料的临床应用 专业:口腔医学姓名:徐强指导老师李志杰 【摘要】目的:观察硅橡胶印模材料在口腔临床治疗中的使用及治疗效果。方法:观察硅橡胶印模材料的性质、熟悉其使用方法及技巧、评价其消毒灭菌后的精确度以及用于临床治疗中的效果。结果:硅橡胶印模材料在各种修复治疗中的效果非常理想消毒等处理对其精确度及稳定性影响不大,硅橡胶印模材料在治疗效果、操作、人力等各个方面都比其他普通印模材料具有明显的优势。结论:运用硅橡胶印模材料对修复临床病人进行治疗可以很大的提高治疗效果,并且可以使病人感到相对舒适,减少医生的工作量、使医生操作难度降低,省时省力。所以硅橡胶印模材料为当下口腔治疗中较先进的印模材料。【关键词】硅橡胶印模材料;模型;精确度;颈缘;连续性;灭菌;消毒; 随着国民素质的提升,患者对口腔治疗舒适及美观的要求越来越高,FPD、套筒冠、IFPD及精密附着体修复等被用于口腔临床修复治疗。由于这些修复体的制作过程属于高精密度的制作,所以对于工作模型的精确度要求很高,这就要求印模的精确度必须得到保障。其中印模材料对于印模精确度的影响是一个很关键的因素,这就使得对印模材料各方面性能的要求十分严格。而临床上传统的印模材料是藻酸盐印模材料该材料使用的优点是应用广泛、价格低廉、操作简单等,该材料使用时是人工按一定的水粉比例在橡皮碗内用调拌刀迅速搅拌而成,由于是人工操作存在个人差异和操作误差,这对印模精确度的影响十分巨大。所以个人因素对于印模精确度的影响十分显

著不可忽视【2】。硅橡胶作为新兴的印模材料与传统的印模材料相比具有以下优势:材料强度及弹性高于普通材料、流动性优越、理化性质稳定、精确度高、使用时比例及调和有严格的标准、制取的印模保存时间长即使灌注的模型损坏也可以使用原印模重复灌模等,这使得该材料的使用越来越广泛具有取代其他印模材料的趋势【1】。本文将从硅橡胶印模材料的性能、应用过程中的方法、各种修复治疗中的效果、调和取模的技巧及注意事项等方面叙述总结该材料的各方面的性能。 1.硅橡胶印模材料的分类、作用机制、及理化性质 1.1 缩聚类硅橡胶印模材料:该材料是由基质、交联剂、催化剂及添料组成。其相对应的物质是端羟基聚二甲基硅氧烷、硅酸乙酯、辛酸亚锡、添料按其用途和具体性能的要求可添加不通的物质。其市场出售形式有双组份和三组份两种形式其中三组分的优势是贮存时间较长,形式根据不同的供应商而异。所有硅橡胶印模材里其精确性是最低的。其作用的机制是基质(端羟基聚二甲基硅氧烷)与交联剂(硅酸乙酯)中的四个乙氧基相互起交联反应,首先反应成线状聚合物再由线状聚合物交联反应变成网状聚合物,在聚合反应的同时会产生副产物乙醇。反应过程中辛酸亚锡的加入使得该材料在口腔温度下迅速的(一般为3到6分钟此段时间是医生进行各种修整的具体时间)联结成弹性体,具体时间将收到室内温度及催化剂剂量多少的影响。该类材料在一般高温、弱酸弱碱条件下及生理盐水中长时间浸泡都具有良好的稳定性及抗老化性,经高温高压灭菌后性能也不会发生变化。经过该材料制取的印模表面光滑、无气泡、清晰度高、尺寸精确、具有合适的强度且质软容易脱模【1】。 1.2 加聚类硅橡胶:此类材料是所有硅橡胶类材料中精确度最高的材料之

换热器综合实验报告

实验四换热器综合实验报告 一、实验原理 换热器为冷热流体进行热量交换的设备。本次实验所用的均是间壁式换热器,热量通过 固体壁面由热流体传递给冷流体,包括:套管式换热器、板式换热器和管壳式换热器。针对上述三种换热器进行其性能的测试。其中,对套管式换热器、板式换热器和管壳式换热器可以进行顺流和逆流两种方式的性能测试。换热器性能实验的内容主要为测定换热器的总传热系数,对数传热温差和热平衡温度等,并就不同换热器,不同两种流动方式,不同工况的传热情况和性能进行比较和分析。 传热过程中传递的热量正比于冷、热流体间的温差及传热面积,即Q = KAΔT (1) 式中:A—传热面积,m2 (1)套管式换热器:0.45m2 (2)板式换热器:0.65m2 (3)管壳式换热器:1.05m2 电加热器:6kV ΔT—冷热流体间的平均温差,℃ K—换热器的传热系数,W/(m·℃) Q—冷热流体间单位时间交换的热量,W.冷热流体间的平均温差ΔT 常采用对数平均温差。对于工业上常用的顺流和逆流换热器,对数平均温差由下式计算 除了顺流和逆流按公式(2)计算平均温差以外,其他流动形式的对数平均温差,都可 以由假想的逆流工况对数平均温差乘上一个修正系数得到。修正系数的值可以由各种传热学书上或换热器手册上查得。 换热器实验的主要任务是测定传热系数K。实验时,由恒温热水箱中出来的热水经水泵

和转子流量计后进入实验换热器内管。在热水进出换热器处分别用热电阻测量水温。从换热 器内管出来的已被冷却的热水仍然回到热水箱中,经再加热供循环使用。冷却水由冷水箱经 水泵、转子流量计后进入换热器套管,在套管中被加热后的冷却水排向外界,一般不再循环 使用。套管外包有保温层,以尽量减少向外界的散热损失。冷却水进出口温度用热电阻测量。 通常希望冷热侧热平衡误差小于3%。 实验中待各项温度达到稳定工况时,测出冷、热流体进出口的温度和冷、热流体的流量, 就可以由下式计算通过换热面的总传热量 根据计算得到的传热量、对数平均温差及已知的换热面积,便可由公式(1)计算出传热系数K 。 换热器类型 方式 热进温度 热出温度 冷进温度 冷出温度 热流体流量 冷流体流量 板式 顺流 57.1 43.5 22.8 31.8 78 72 逆流 56.5 35.9 23.1 33.1 76 72 套管式 顺流 57.6 40.7 22.5 31.6 72 78 逆流 56.8 35.2 22.1 33 72 64 管壳式 顺流 57.1 40.5 22.5 31.3 76 72 逆流 57.2 41.1 22.6 32 74 65 计算传热系数K 和换热器效率 TA Q K ?=

高效液相色谱仪的使用及运行性能测试

高效液相色谱仪的使用及运行性能测试 实验目的 1.了解高效液相色谱仪的基本原理和结构。 2.掌握高效液相色谱仪的基本操作方法。 3.掌握测试高效液相色谱仪运行性能的指标和方法,验证各部件及整机的性能。 实验器材 高效液相色谱仪,LC-ATvp高压泵、SCL-10Avp程序控制器、SPD-M10Avp二极管阵列检测器、CTO-10Asvp温度控制器。Shim-packVP-ODS C18 150×4.6mm分析柱、20μl进样器、AS3210型超声波发生器。无水甲醇和双蒸水各500ml(脱气处理)、萘、咖啡因(均为色谱纯或分析纯)。 实验原理 高效液相色谱法是一种现代液相色谱法,其基本方法是用高压输液泵将流动相泵入装有填充剂的色谱柱,注入的供试品被流动相带入柱内进行分离后,各成分先后进入检测器,用记录仪或数据处理装置记录色谱图并进行数据处理,得到测定结果。由于应用了各种特性的微粒填料和加压的液体流动相,本法具有分离性能高、分析速度快的特点。 仪器描述 高效液相色谱仪由输液泵、进样器、色谱柱、检测器和色谱数据处理系统组成。LC-2010和Agilent1100型为单泵型,适于单一流动相的洗脱;LC-10Avp型为双泵型高效液相色谱仪,适于程序洗脱。单泵型高效液相色谱仪的结构示意见图9-1。 实验步骤 (一)高效液相色谱仪的基本操作步骤(以岛津LC-10A为例) 1.依照顺序开机,自检完毕后进入操作模板; 2.设定洗脱程序、检测器的条件及测定报告; 3.完成实验过程,打印试验结果,依照顺序关机。 (二)性能测试

高效液相色谱仪的性能检查分为单个部件的验证和整机验证。验证时一般先验证泵、柱温箱、自动进样器的性能,接着是检测器的性能,最后是整机的性能验证。验证目的是检查并确认高效液相色谱仪运行性能是否符合要求。 1.验证标准 按照中华人民共和国国家计量检定规程,高效液相色谱仪各验证部件的验证项目的合格标准见表9-1。 表9-1 高效液相色谱仪各验证部件的验证项目的合格标准 验证部件验证项目合格标准 输液泵流量设定值误差Ss 0.5ml.min-1: < 5%; 1.0ml.min-1: < 3% 2.0 ml.min-1: < 2% 流量稳定性误差SR 0.5ml.min-1: < 3%; 1.0ml.min-1: < 2% 2.0 ml.min-1: < 2% 柱温箱柱温箱设定值误差ΔTs< ±2℃柱温箱控温稳定性Tc ≤1℃ 自动进样器进样量准确度误差≤±2% 检测器基线噪声≤2×10+5AU 最小检测浓度≤1×10-7g.ml-1(萘的甲醇溶液) 基线漂移≤5×10-4AU.h-1 整机性能定性测量重复性误差RSD≤0.5% 2.验证步骤 (1)输液泵泵流量设定值误差SS、流量稳定性误差SR的检定 将仪器的各部分联接好,以甲醇为流动相,流量设为1.0mL.min-1,按说明书启动仪器,待压力平稳后保持10分钟,按表16-2设定相应数值,待流速稳定后,在流动相排出口用事先清洗称重过的容量瓶收集流动相,同时用秒表计时,准确地收集,称重。按式(1)、式(2)计算SS和SR,结果填入数据记录与处理的表9-3中。 表9-2 流量、次数、收集时间表 流量设定值(mL/min)0.5 1.0 2.0 测量次数 3 3 3 流动相收集时间(min)10 5 5

性能测试方案

XXX系统--版本号XXX 性能测试方案 XXX有限公司 XXXX年XX月XX日 修订历史记录

目录 1简介 (1) 1.1目的和软件说明 (1) 1.2内容摘要 (1) 1.3适用对象 (1) 1.4术语和缩略语 (1) 1.5参考文档 (1) 2系统概述 (2) 2.1项目背景 (2) 2.2系统架构 (3) 2.2.1架构概述 (3) 2.2.2运行环境 (3) 2.2.3处理流程 (4) 2.3技术方案设计 (4) 3测试目标 (5) 4测试范围 (6)

4.1测试对象 (6) 4.2需要测试的特性 (6) 4.3不需要测试的特性 (7) 5 4. 测试启动/结束/暂停/再启动准则 (8) 5.1启动准则 (8) 5.2结束准则 (8) 5.3暂停准则 (8) 5.4再启动准则 (9) 6测试人员 (10) 7测试时间 (11) 8测试环境 (12) 8.1系统架构图 (12) 8.2测试环境逻辑架构图 (12) 8.3测试环境物理架构图 (12) 8.4环境配置列表 (12) 8.4.1生产环境 (12)

8.4.2测试环境 (13) 8.4.3环境差异分析 (13) 8.4.4测试客户机 (14) 8.5测试工具 (14) 9测试策略 (15) 10测试场景设计 (16) 10.1总体设计思路 (16) 10.2业务模型 (16) 10.3测试场景设计 (17) 10.3.1......................................... 单交易负载测试 17 10.3.2....................................... 混合交易负载测试 18 10.3.3............................................. 稳定性测试 18 10.3.4...................................... 有/无缓存比对测试 19 10.3.5....................................... 网络带宽模拟测试 19 11测试实施准备.. (21) 11.1................................................. 测试环境准备 21

硅橡胶性能

置:新塑化城 > 行业资讯 > 行业频道 > 橡胶 > 硅橡胶性能概述与配合 来源:中国化工信息网 2007年7月23日 自从1942年道康宁公司将硅橡胶工业化之后,现在已经出现许多经过改进的硅橡胶产品。并且,随着品种的增加,基于硅橡胶的新产品开发也取得了长足的进步。 由于硅橡胶具有独特的化学组成,不同种类的硅橡胶被广泛应用于如洗发剂、速溶咖啡的外包装、医用试管和鱼饵盒的自动垫圈等日常用品上。而且,硅橡胶可以在极限温度范围内保持柔韧性,其它合成聚合物就没有这种特性。 1 硅橡胶基本情况 1.1 基本结构 像丁腈橡胶(NBR)、丁苯橡胶(SBR)、异戊二烯橡胶(IR)和天然橡胶(NR)等碳-碳键的聚合物,其分子链上存在不饱和键,但硅橡胶是通过重复转换硅原子和氧原子的排列而成链的,在其主链上没有不饱和键。对有机聚合物来讲,不饱和键是其硫化的化学活性区域,并且该区域会由于紫外线、臭氧、光照和热量的作用而降解。 硅-氧键的高键能,完全饱和的基本结构以及过氧化物硫化是保持硅橡胶良好耐热和耐天候性能的关键所在。除了更高的键能,对于碳原子而言,更大的硅原子也提供了更大的自由空间,使硅橡胶玻璃化温度低,透气性能更好。由于应用上的不同,透气性能可能是优点亦有可能是缺点。 1.2 硅橡胶的合成 硅橡胶合成的简要过程是:砂石或二氧化硅还原为单体硅→于300%温度下,以铜作催化剂,硅与甲基氯化物相互作用→形成甲基氯化硅的混合物(一元、二元或三元)→通过蒸馏分离出二甲基氯化硅→二甲基氯化硅水解成硅烷又迅速合成为线型或环型硅氧烷→线型硅氧烷在氢氧化钾(KOH)的帮助下,形成四元双甲基环状体(D4)→在KOH存在下,D4聚合,链终止导致过程的完成。 1.3 硅氧烷的硫化 硅氧烷一般使用过氧化物硫化,以优化其耐高温能力。硅氧烷中含的乙烯基可被硫黄硫化,但硫键的低热敏性导致硅橡胶的热稳定性能容易受到破坏。 铂硫化体系也是硅橡胶硫化常用的,带来的性能包括:低挥发性、紧密的表面硫化、在任何介质中的超快硫化,铂硫化体系具有比传统过氧化硫化对应物略低的热稳定性能。 表1 用于海绵状或紧密状硅氧烷硫化的过氧化物 种类总体硫化温度/℃可应用的硫化介质 2,4-二氯苯甲酰104-121热空气、液体床硫化介质(熔盐)、玻璃细珠 苯116-138模压、蒸汽、液体床硫 企业投 稿热线 0512- 52683339 cpi360@126.c om 如果您有塑化相关文章,欢迎给我们投稿!

液-液换热器传热性能测试与计算方法( )

Q/SH1020 中国石化集团胜利石油管理局企业标准 Q/SH1020 ××××-×××× 液—液换热器传热性能测试 与计算方法 2005-××-××发布 2005-××-××实施中国石化集团胜利石油管理局发布

Q/SH1020××××-×××× 目次 前言 1 范围 (1) 2 规范性引用文件 (1) 3 总则 (1) 4 术语和定义 (1) 5 测试 (1) 6 换热器热负荷和传热性能指标计算 (2) 7 测试报告主要内容 (4) 附录A(资料性附录)测试计算数据综合表 (5) 附录B(资料性附录)测试数据汇总表 (6) 附录C(提示性附录)符号 (6) I

Q/SH1020××××-×××× 前言 本标准的附录A、附录B为资料性附录,附录C为提示性附录。 本标准由胜利石油管理局节能专业标准化委员会提出并归口。 本标准由中国石化集团胜利石油管理局批准。 本标准起草单位:中国石化胜利油田有限公司技术检测中心能源监测站。 本标准主要起草人:许涛、宋鑫、王强、王贵生、周长敬、李忠东、邓寿禄、冯国栋、郑召梅。 II

液-液换热器传热性能测试与计算方法 1 范围 本标准规定了液-液换热器传热性能的测试方法、技术要求、测试用仪器仪表、计算方法及测试报告主要内容。 本标准适用于液-液换热器(以下简称换热器)。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方,研究是否可使用这些文件的最新版本。 GB 151-1999 管壳式换热器 GB16409-1996 板式换热器 3 总则 3.1 换热器传热性能测试体系是由被测试换热器、冷热流体循环系统及测试仪表组成。 3.2 换热器型号表示方法符合GB 151-1999中3.10和GB16409-1996中3.5的规定。 3.3 换热器传热性能测试分级:一级测试为鉴定新投产换热器的测试,二级测试为换热器运行中的测试。 4 术语和定义 下列术语和定义适用于本标准。 4.1 液-液换热器 指水-水、水-油、油-油等以液体与液体之间进行热交换的换热器。 4.2 换热器一次侧 指热量的提供侧,即高温介质端。 4.3 换热器二次侧 指热量的接收侧,即低温介质端。 4.4 换热器传热性能指标 4.4.1 对数平均温差 指冷热流体平均温差的表示,表征换热器传热的动力。 4.4.2 传热效率 指实际传热量与最大理论传热量之比值。 4.4.3 传热面积 指从放热介质中吸收热量并传递给受热介质的表面积。 4.4.4 传热系数 指单位传热面积上,冷热流体的平均温差为1℃时,两流体通过换热器所传递的热量。 4.5 额定热负荷 指换热器使用设计的介质流体,在设计参数下运行,即在规定的介质流量、温差和一定的传热效率下连续运行时,单位时间的传热量。 4.6 运行热负荷 指在换热器连续运行工况下,单位时间的传热量。 4.7 热平衡相对误差 指一次侧热负荷与二次侧热负荷之差值与一次侧热负荷之比。 4.8 传热系数误差 指在额定热负荷工况下测试两次所得的传热系数,两值之差与其中较大的传热系数之比。 5 测试 5.1 测试技术要求 1

性能测试测试方案

性能测试详细测试方案 、八、- 前言 平台XX项目系统已经成功发布,依据项目的规划,未来势必会出现业务系统中信息大量增长的态势。 随着业务系统在生产状态下日趋稳定、成熟,系统的性能问题也逐步成为了我们关注的焦点:每天大数据量的“冲击”,系统能稳定在什么样的性能水平,面临行业公司业务增加时,系统能否经受住“考验”,这些问题需要通过一个完整的性能测试来给出答案。 1第一章XXX系统性能测试概述 1.1 被测系统定义 XXX系统作为本次测试的被测系统(注:以下所有针对被测系统地描述均为针对XXX系统进行的),XXX系统是由平台开发的一款物流应用软件,后台应用了Oraclellg数据库, 该系统包括主要功能有:XXX 等。在该系统中都存在多用户操作,大数据量操作以及日报、周报、年报的统计,在本次测试中,将针对这些多用户操作,大数据量的查询、统计功能进行如预期性能、用户并发、大数据量、疲劳强度和负载等方面的性能测试,检查并评估在模拟环境中,系统对负载的承受能力,在不同的用户连接情况下,系统的吞吐能力和响应能力,以及在预计的数据容量中,系统能够容忍的最大用户数。1.1.1 功能简介 主要功能上面已提到,由于本文档主要专注于性能在这里功能不再作为重点讲述。 1.1.2 性能测试指标 本次测试是针对XXX系统进行的全面性能测试,主要需要获得如下的测试指标。 1、应用系统的负载能力:即系统所能容忍的最大用户数量,也就是在正常的响应时间中,系统能够支持的最多的客户端的数量。

2、应用系统的吞吐量:即在一次事务中网络内完成的数据量的总和,吞吐量指标反映的是服务器承受的压力。事务是用户某一步或几步操作的集合。 3、应用系统的吞吐率:即应用系统在单位时间内完成的数据量,也就是在单位时间内,应用系统针对不同的负载压力,所能完成的数据量。 4、T PS每秒钟系统能够处理事务或交易的数量,它是衡量系统处理能力的重要指标。 5、点击率:每秒钟用户向服务器提交的HTTP青求数。 5、系统的响应能力:即在各种负载压力情况下,系统的响应时间,也就是从客户端请求发起,到服务器端应答返回所需要的时间,包括网络传输时间和服务器处理时间。 6、应用系统的可靠性:即在连续工作时间状态下,系统能够正常运行的时间,即在连续工作时间段内没有出错信息。 1.2系统结构及流程 XXX系统在实际生产中的体系结构跟本次性能测试所采用的体系结构是一样的,交易流 程也完全一致的。不过,由于硬件条件的限制,本次性能测试的硬件平台跟实际生产环境略有不同。 1.2.1系统总体结构 描述本系统的总体结构,包括:硬件组织体系结构、网络组织体系结构、软件组织体系结构和功能模块的组织体系结构。 1.2.2功能模块 本次性能测试中各类操作都是由若干功能模块组成的,每个功能都根据其执行特点分成 了若干操作步骤,每个步骤就是一个功能点(即功能模块),本次性能测试主要涉及的功能 模块以及所属操作如下表

换热器性能试验大纲

换热能力验证 1、试验目的 验证换热器的换热性能流体阻力特性。 2、实验依据 JB/T 10379-2002 换热器热工性能和流体阻力特性通用测定方法。 3、试验单位资质 ISO17025 4、实验条件 4.1试验地点 4.2 试验对象 4.3 实验设备 序号名称数 量型号测试厂家鉴定单位合格证 到期日期 1 涡轮流量传 感器 1 LWGY-40 2 压力传感器 1 DW115DP0-500Kpa 3 水银温度计 2 50-100 4 温度传感器 6 PT100 5 风速仪 1 VT100 6 压力传感器 1 475-0 MARK III 4.4状态要求 乙二醇溶液额定流量15 l/min 冷风额定流量0,475 m3/s 乙二醇溶液配比48/52%(体积比)

4.5环境要求 测试环境温度为20 .....+45 ℃左右 5、试验步骤 5.1 换热量测试—变冷介质流量(在100%通风面积和90%通风面积两种条件下分别测试) 5.1.1 将换热器按照JB/T 10379-2002 图2安装到测试台上。 5.1.2 冷介质进口温度为环境温度a℃ 5.1.3 热介质进口温度为a+20℃。 5.1.4 调节热介质在15 l/min 5.1.5 将冷却介质(冷却风)分别调节到0.5m3/s,0.9m3/s,1.3m3/s,1.76m3/s,2.2m3/s, 2.64m3/s, 5.1.6 按照JB/T10379-2002 记录各项测试参数值。 5.1.7 计算换热量 冷介质热流量 热介质热流量 平均换热量 热平衡误差 5.2 换热量测试-变热介质流量

5.2.1 将换热器按照JB/T10379-2002 要求安装到测试台上。 5.2.2 冷介质进口温度为环境温度a ℃ 5.2.3 热介质进口温度为a+20℃ 5.2.4 按照下表调节冷热测流量 5.2.5 按照JB/T10379-2002 记录各项测试参数值 5.2.6 计算换热量 冷介质热流量 热介质热流量 平均换热量 热平衡相对误差 5.3 风侧阻力曲线 5.3.1 换热面积100% 5.3.1.1 将换热器按照JB/T10379-2002 图2要求安装到测试台上 5.3.1.2 冷风测试温度:环境温度20-45℃ 5.3.1.3 控制热介质(乙二醇溶液)在15 l/min 5.3.1.4 控制热介质(乙二醇溶液进口温度为75℃,进出口平均温度72℃。 5.3.1.5 冷风变化范围0.15m3/s-0.6 m3/s(0.15,0.25,35,0.475,0.6) 5.3.1.6 记录不同介质流量下对应的压降 5.3.2 换热面积90% 5.3.2.1 将换热器按照JB/T10379-2002 图2要求安装到测试台上 5.3.2.2 冷风测试温度:环境温度20-45℃ 5.3.2.3 控制热介质(乙二醇溶液)在15 l/min 5.3.2.4 控制热介质(乙二醇溶液进口温度为75℃,进出口平均温度72℃。 5.3.2.5 冷风变化范围0.5m3/s-2.64 m3/s(0.5,0.9,01.3,1.76,2.2,2.64) 5.3.2.6 记录不同介质流量下对应的压降 5.4 热侧(乙二醇溶液)阻力曲线 5.4.1将换热器按照JB/T10379-2002 图2要求安装到测试台上

性能测试流程规范

目录 1前言 (2) 1.1 文档目的 (2) 1.2 适用对象 (2) 2性能测试目的 (2) 3性能测试所处的位置及相关人员 (3) 3.1 性能测试所处的位置及其基本流程 (3) 3.2 性能测试工作内容 (4) 3.3 性能测试涉及的人员角色 (5) 4性能测试实施规范 (5) 4.1 确定性能测试需求 (5) 4.1.1 分析应用系统,剥离出需测试的性能点 (5) 4.1.2 分析需求点制定单元测试用例 (6) 4.1.3 性能测试需求评审 (6) 4.1.4 性能测试需求归档 (6) 4.2 性能测试具体实施规范 (6) 4.2.1 性能测试起始时间 (6) 4.2.2 制定和编写性能测试计划、方案以及测试用例 (7) 4.2.3 测试环境搭建 (7) 4.2.4 验证测试环境 (8) 4.2.5 编写测试用例脚本 (8) 4.2.6 调试测试用例脚本 (8) 4.2.7 预测试 (9) 4.2.8 正式测试 (9) 4.2.9 测试数据分析 (9) 4.2.10 调整系统环境和修改程序 (10) 4.2.11 回归测试 (10) 4.2.12 测试评估报告 (10) 4.2.13 测试分析报告 (10) 5测试脚本和测试用例管理 (11) 6性能测试归档管理 (11) 7性能测试工作总结 (11) 8附录:............................................................................................. 错误!未定义书签。

1前言 1.1 文档目的 本文档的目的在于明确性能测试流程规范,以便于相关人员的使用,保证性能测试脚本的可用性和可维护性,提高测试工作的自动化程度,增加测试的可靠性、重用性和客观性。 1.2 适用对象 本文档适用于部门内测试组成员、项目相关人员、QA及高级经理阅读。 2性能测试目的 性能测试到底能做些什么,能解决哪些问题呢?系统开发人员,维护人员及测试人员在工作中都可能遇到如下的问题 1.硬件选型,我们的系统快上线了,我们应该购置什么样硬件配置的电脑作为 服务器呢? 2.我们的系统刚上线,正处在试运行阶段,用户要求提供符合当初提出性能要 求的报告才能验收通过,我们该如何做? 3.我们的系统已经运行了一段时间,为了保证系统在运行过程中一直能够提供 给用户良好的体验(良好的性能),我们该怎么办? 4.明年这个系统的用户数将会大幅度增加,到时我们的系统是否还能支持这么 多的用户访问,是否通过调整软件可以实现,是增加硬件还是软件,哪种方式最有效? 5.我们的系统存在问题,达不到预期的性能要求,这是什么原因引起的,我们 应该进行怎样的调整? 6.在测试或者系统试点试运行阶段我们的系统一直表现得很好,但产品正式上 线后,在用户实际环境下,总是会出现这样那样莫名其妙的问题,例如系统运行一段时间后变慢,某些应用自动退出,出现应用挂死现象,导致用户对我们的产品不满意,这些问题是否能避免,提早发现? 7.系统即将上线,应该如何部署效果会更好呢? 并发性能测试的目的注要体现在三个方面:以真实的业务为依据,选择有代表性的、关键的业务操作设计测试案例,以评价系统的当前性能;当扩展应用程序的功能或者新的应用程序将要被部署时,负载测试会帮助确定系统是否还能够处理期望的用户负载,以预测系统的未来性能;通过模拟成百上千个用户,重复执行和运行测试,可以确认性能瓶颈并优化和调整应用,目的在于寻找到瓶颈问题。

硅胶对比及检测处理方案

一.接线盒的粘接 太阳电池组件封装完成以后,需要通过胶粘剂把接线盒与背板粘接在一起。这就要求胶粘剂对各种背板及接线盒具有很好的粘接性能。为了确保接线盒在局部受力的情况下,即使长期老化后也不会从背板上脱落,要求胶粘剂具有较好的抗撕裂性能及耐老化性能。 二.接线盒的灌封 接线盒内元器件的绝缘性能要求很高,太阳电池组件在异常工作条件下会有大量电流通过旁路二极管并使其发热,为提高接线盒的散热性能及绝缘性能需要使用灌封胶,并达到防潮抗震的作用。灌封胶应具备以下特点:良好的流动性,能够流到狭小的缝隙中;有一定的可操作时间和较快的凝胶时间;固化后应具有良好的绝缘性能;对汇流条没有腐蚀;良好的耐老化性能。双组分有机硅灌封胶具有良好的绝缘性能、导热性和耐老化性能,无腐蚀性并具有良好的流动性,目前已被广泛应用与接线盒的灌封。 三. IEC和UL标准对太阳电池组件用胶要求的解读 目前关于太阳电池组件认证的标准主要有IEC61215[1]、IEC61730[2,3]和UL1703[4],下面是这几个标准对太阳电池组件用胶的要求。 1.IEC61215对太阳电池组件用胶的要求 根据10.3条规定,太阳电池组件中的载流部分与边框或外部之间的绝缘电阻不应低于400M (组件面积小于0.1m2)或

40MΩ·m2(组件面积大于0.1m2),因此胶粘剂应具有良好的电绝缘性能。 根据10.3、10.10条规定,太阳电池组件需要进行室外曝露试验和紫外预处理试验,在测试试验以后要求外观没有明显的变化,并且绝缘电阻同10.3的规定,因此胶粘剂应具有良好的耐紫外光老化性能,并保持良好的电绝缘性能。 根据10.9和10.18条规定,太阳电池组件需要进行热斑耐久试验和旁路二极管热性能试验,在试验过程中太阳电池组件会产生局部过热的现象,因此胶粘剂应具有良好的耐高温性能及良好的导热性能。 根据10.11和10.12条规定,太阳电池组件需要进行-40℃~85℃的冷热循环试验和-40℃~85℃、85%RH的湿冻循环试验,因此胶粘剂应具有良好的弹性来有效调节不同质材料间的热膨胀差异,并且具有良好的耐高低温和湿冻老化性能来满足组件的粘接性能和电绝缘性能。 根据10.13条规定,太阳电池组件需要进行85℃、85%RH老化试验,因此胶粘剂应具有良好的耐湿热老化性能,并保持良好的电绝缘性能。 根据10.15条规定,要求太阳电池组件浸入一定的水溶液中,其绝缘电阻不应低于400MΩ(组件面积小于0.1m2)或40MΩ·m2(组件面积大于0.1m2),因此胶粘剂应具有良好耐湿性及湿漏电性能。 根据10.16、10.17条规定,太阳电池组件在85℃、85%RH老化试验以后进行机械载荷和冰雹冲击试验,因此胶粘剂在湿热老化以后仍然具有良好的粘接性能和变形能力。 2.IEC61730-1对太阳电池组件用胶的要求 根据5.2条规定,用作带电部件外壳的胶粘剂应满足以下的要求:5-V阻燃等级;浸水试验(IEC 60095-1-1)以后仍然保

换热器性能综合测试实验教学内容

换热器性能综合测试 实验

第一章实验装置说明 第一节系统概述 一、装置概述 目前我国传热元件的结构形式繁多,其换热性能差异较大,在合理选用和设计换热器的过程中,传热系数是度量其性能好坏的重要指标。本装置通过以应用较为广泛的间壁式换热器(共有套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器四种)为实验对象,对其传热性能进行测试。。 二、系统特点 1.采用四种不同结构的换热器(分别为套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器)作为实验对象,对其进行性能测量。 2.实验装置可测定换热器总的传热系数、对数传热温差和热平衡误差等,并能根据不同的换热器对传热情况和性能进行比较分析。 3.实验装置采用工业现场的真实换热器部件,与实际应用接轨。 三、技术性能 1.输入电源:三相五线制 AC380V±10% 50Hz 2.工作环境:温度-10℃~+40℃;相对湿度< 85%(25℃);海拔<4000m 3.装置容量:<4kVA 4.套管式换热器:换热面积0.14m2 5.螺旋板式换换热器:换热面积1m2 6.列管式换热器:换热面积0.5m2 7.钎焊板式换热器:0.144m2 8.电加热器总功率:<3.5kW 9.安全保护:设有电流型漏电保护、接地保护,安全符合国家标准。 四、系统配置 1.被控对象系统:主要由不锈钢钢架、热水箱、热水泵、冷水箱、冷水泵、涡轮流量计、PT100温度传感器、板式 __________________________________________________

换热器、列管式换热器、套管式换热器、螺旋板式换热器、冷凝器、电加热棒、电磁阀、电动球阀、黄铜闸阀以及管道管件等。 2.控制系统:主要由电源控制箱、漏电保护器、温度控制仪、流量显示仪、调压模块、开关电源以及开关指示灯等。 第二节换热器的认识 一、换热器的形式 能使热流体向冷流体传递热量,满足工艺要求的装置称为换热器。换热器的形式有很多,用途也很广泛。诸如为高炉炼铁提供热风的热风炉,就是一座大型蓄热式陶土换热器;热电厂锅炉上的高温过热器是以辐射为主的高温换热器,而省煤器是以对流为主的交叉流换热器;冶金工厂安装在高温烟道中的热回收装置常用片状管式、波纹管式、插件式等型式换热器;制冷系统上的冷凝器、蒸发器属于有相变流体的换热器,这类换热器无所谓顺流或逆流;内燃机的冷却水箱属于交叉流间壁式换热器的一种。 二、几种主要的换热器 1.列管式换热器(图1) 列管式换热器是目前化工及酒精生产上应用最广的一种换热器。它主要由壳体、管板、换热管、封头、折流挡板等组成。列管式换热器可以采用普通碳钢、紫铜或不锈钢进行制作。在进行换热时,一种流体由封头的连结管处进入,在管道中流动,从封头另一端的出口管流出,这称之管程;另-种流体由壳体的接管进入,从壳体上的另一接管处流出,这称为壳程。 列管式换热器有多种结构形式,常见的有固定管板式换热器、浮头式换热器、填料函式换热器及U型管式换热器。 2.螺旋板式换热器(图2) __________________________________________________

性能测试经验总结

性能测试经验总结 第一步:计划测试 1、明确压力点,根据压力点设计多少种场景组合 2、把文档(包括多少种场景组合、场景与场景组合条件的对应表)写好 3、如果监测UNIX机器,在被监测的机器需要安装监测Unix的进程 4、让开发人员帮助我们准备测试数据或他们写相关的文档我们来准备数据 5、让开发人员做一个恢复数据的脚本,以便于我们每次测试的时候都能够有一个相同的环 境 6、针对每一个模块包括四个子文件夹:如模块A下包括“脚本”“场景”“结果”“图表”四 个子文件夹,每个子文件夹储存对应的文件,如下表所示 其中:结果名“1场景”是在场景中的“Results Setting”中设置的,具体的设置见“建立场景”部分,这里也可以有另外一种方法:在打开模板设置,如下: 选中“Automatically save the session as:”并且在“%ResultDir%”后面填写你想保存的文件名,当你打开某个lrr文件时,系统自动在当前目录中生成一个文件保存分析图表,如下图所示:

第二步:生成测试脚本 1、把登陆部分放到“vuser_init”部分,把需要测试的内容部分放到“Action”部 分执行;但是如果是模拟多个用户登陆系统,则要把登陆部分放到Action部分来实现 2、录制脚本后,想查询某个函数的原型,按“F1”键 3、确认脚本中哪些参数是需要进行参数化的(最好能可以和开发人员一起确认) 4、在脚本参数化时把函数web_submit_data()中的ITEMDATA后面的数据参数 化,因为这些数据是传递给服务器的,当然也可以把一个函数中的所有相同变量都替换掉 5、脚本中无用的部分用“/*”“*/”“//”注释掉,但最好不要删除 6、调试脚本遵循以下原则: 确认在VU里SUSI(单用户单循环次数single user & single iteration) 确认在VU里SUMI(单用户多循环次数single user & multi iteration) 确认在controller中MUSI(多用户单循环次数multi user & single iteration)确认在controller中MUMI(多用户多循环次数multi user & multi iteration)7、事务的名称取的有意义便于事务之间的区分,把所有的事务名都记录在一起, 便于在测试结果概要中区分它们,这要写成一个表:某次测试有哪些模块,每个模块中有哪些事务(见对应的“关系表”) 8、在“Parameter List”中可以选择参数类型“Random Number”, 使某一个参数取设定的范围内的随机值 第三步:建立场景 1、把场景名称编号,并制定出一份场景名称和场景条件组合的对应表。比如,场景m对应 于“某一模块_xx个vu _分z台machine”(见“关系表”中的例子) 2、根据上面的对应表把场景设置好,需要设置的要素如下:总体多少个用户、分多少个组、

相关主题
文本预览
相关文档 最新文档