基坑开挖稳定性的有限元模拟研究
- 格式:pdf
- 大小:1.03 MB
- 文档页数:2
基于Midas GTS的深基坑桩锚支护结构整体稳定性研究摘要:基于四川省某基坑开挖工程,通过有限元软件Madis建立三维数值模型研究不同工况下基坑围护结构、坑底隆起变形规律以及支撑内力变化。
研究结果表明:随着基坑开挖的进行,围护结构水平位移逐渐增大,整体呈现先增后减的复合式变形,其最大水平位移约发生在基坑开挖深度的7/10处;坑底隆起变形为弹性隆起,最大竖向位移发生在基坑中间处;围护结构弯矩随基坑开挖深度的增加,弯矩最大值逐渐下移,最大值为12KN·m;围护板桩最大水平剪力为16.5KN;内支撑轴力最大值为276KN,发生在基坑开挖完成时;预应力锚杆随开挖的进行锚杆轴力无明显变化,最大值为219KN。
关键词:基坑开挖;有限元分析;水平位移;内力引言:在深基坑施工过程中,因施工方法的不同,会对周围环境造成诸多不利因素,国内外众多学者采用数值仿真法、实测法、理论分析法、经验预测法等进行了相关研究[1-5]。
江晓峰、刘国彬等[6]对大量深基坑监测数据整理分析,总结出墙后地表沉降的影响区间;汪鹏程[7]通过建立基坑下卧隧道三维模型,证明了抗拔桩和高压旋喷桩两种坑底加固方法均可有效控制下卧隧道的竖向位移;张翔等[8]为研究基坑回弹与工程桩之间的关系,通过建立数值模型分析,表明工程桩的桩长、桩径及刚度对基坑回弹影响明显;万星等[9]收集大量软土基坑案例研究,归纳出软土地区围护结构变形存在着明显的时空效应;王正振等[10]通过某基坑实测数据分析,表明冠梁标高对基坑顶部土体变形影响较大。
然而,目前对多种支护结构作用的基坑以及支护结构内力研究较少,本文依托四川省某深基坑工程为背景,采用有限元软件Midas建立相应基坑模型,分析基坑围护结构、土体变形以及支护结构内力变化规律,为早起设计和后期开挖过程中保持基坑的稳定性以及该地区其他类似工程管理及监测重点提供给一定的参考。
1.工程概况某基坑位于四川省绵阳市,该基坑周边暂无邻近建构筑物,基坑南北长约20m,东西长约10m,基坑最大开挖深度为10m,此基坑开挖分成5个阶段进行开挖,支护形式主要为围护板桩、圈梁、立柱、内支撑、锚杆等支护结构,板桩深度12m,嵌入深度为2m。
深基坑开挖有限元模拟及现场实测研究共3篇深基坑开挖有限元模拟及现场实测研究1深基坑开挖是城市建设中常见的一项工程,其施工过程涉及到复杂的地质条件和土力学性质,需要选择合适的开挖工艺以及进行科学的现场管理。
通过有限元模拟和现场实测研究,可以更好地掌握深基坑开挖的关键技术和避免工程事故。
一、深基坑开挖的有限元模拟研究1.选取模型有限元模拟研究需要从实际工程出发,在模型选择上要考虑到基坑的深度、土层性质和土体状态等因素。
一般来说,深基坑开挖的有限元模型可以分为全尺度和局部尺度两种。
全尺度模型主要考虑基坑周围的影响因素,包括建筑物、道路、桥梁等,更具有综合性和实用性;而局部尺度模型着重考虑基坑内部的变形和应力分布规律,更加精细。
2.确定材料参数及边界条件在模型构建之前,需要确定土的物理力学参数、断裂面和裂隙等模型参数,并设定模型变形和应力边界条件。
一般来说,这些参数的设定会影响到模型的精度和收敛速度。
3.模拟分析在模型构建、参数设定之后,进行仿真计算,获取模型变形和应力分布规律,从而判断深基坑开挖过程中可能出现的问题和安全风险。
在此基础上,可以设计更加合理的开挖方案,从而避免工程事故的发生。
二、深基坑开挖的现场实测研究1.场地勘察深基坑开挖的现场实测研究需要进行详细的场地勘察,包括地质勘察、水文勘察以及周边地形和土地利用状况等。
通过合理的场地勘察,可以更准确地分析地质条件和土力学性质,指导深基坑开挖的实际操作。
2.数据采集数据采集是现场实测研究的关键步骤,需要安装监测仪器,记录现场的土体变形和应力变化。
其中包括垂直变形、水平变形、扭转变形等各种类型,可以通过测钻、测绘等手段进行采集。
3.实测分析通过数据采集和实测分析,可以获取土体在不同阶段的变形和应力变化特征,判定深基坑开挖过程中可能出现的地质问题和安全隐患。
同时,实测数据可以与有限元模拟结果进行对比和验证,提高模拟精度。
总结深基坑开挖是一项复杂的工程,需要进行科学的设计、管理和监测。
基坑支护结构的稳定性分析方法引言:在城市建设中,基坑开挖是常见且必不可少的过程。
然而,基坑的开挖会导致周围土体失去支撑,从而导致基坑失稳的危险。
为了确保基坑工程的安全与稳定,我们需要对基坑的支护结构进行稳定性分析。
一、基坑支护结构的分类:基坑支护结构按材料分类可分为刚性支护和柔性支护。
刚性支护主要包括钢板桩、混凝土连续墙等,其特点是刚度大、稳定性强;而柔性支护则包括了土钉墙、搪瓷土工袋墙等,其特点是弯曲变形能力较好。
二、常见的基坑支护结构的稳定性分析方法:1. 极限平衡法:极限平衡法是基坑支护结构常用的稳定性分析方法之一。
该方法基于支护结构达到平衡时的刚恢复力和土体的抗力之间的平衡关系。
通过平衡方向的判断,可以确定支护结构是否稳定。
2. 有限元法:有限元法是一种通过将结构或土体划分为单元,并对各个单元进行计算和分析来确定稳定性的方法。
该方法能够考虑到不同材料的刚度和力学性质,较为准确地分析基坑支护结构的稳定性。
3. 解析法:解析法是通过解析解方程来求解支护结构的稳定性问题的方法。
该方法适用于解决几何形状简单、边界条件明确的基坑支护结构。
4. 数值模拟法:数值模拟法是一种通过数值计算来模拟基坑工程中各种复杂情况的方法。
通过建立适当的物理模型和假设,可以使用数值方法对基坑的支护结构进行稳定性分析和计算。
三、基坑支护结构的稳定性分析方法的适用范围:不同的稳定性分析方法适用于不同类型的基坑支护结构。
极限平衡法适用于简单的基坑支护结构,能够直观地判断结构的稳定性;有限元法适用于复杂的基坑支护结构,可以更准确地分析结构的受力和位移情况;解析法适用于几何形状简单、边界条件明确的基坑支护结构;数值模拟法适用于模拟复杂的基坑工程过程,可以较为真实地反映实际工程中的情况。
结论:基坑支护结构的稳定性分析是确保基坑工程安全与稳定的重要环节。
不同的稳定性分析方法适用于不同类型的基坑支护结构。
在实际工程中,可以根据基坑工程的具体情况选择适合的分析方法,以确保基坑支护结构的稳定性,并采取相应的措施确保工程的顺利进行。
大厦基坑施工有限元分析报告首先,我们进行了基坑周围土体的有限元分析。
通过建立土体模型,我们可以分析不同地质条件下的土体的应力和位移分布。
根据分析结果,我们确定了土体的受力情况和变形特点,为后续的基坑开挖施工提供了重要依据。
其次,我们通过有限元分析模拟了基坑开挖的过程。
我们考虑了开挖的深度、开挖速度以及支护结构的设置等因素,并对其进行了动态分析。
通过模拟开挖过程中的土体位移、应力分布和支护结构的变形情况,我们可以评估基坑开挖对土体和周边结构的影响,并综合考虑各种因素制定相应的施工方案。
在有限元分析的基础上,我们对大厦基坑的支护结构进行优化设计。
通过对不同支护结构的受力特点和变形情况进行分析,我们选择了合适的支护结构,并对其进行了优化设计。
通过有限元分析,我们可以评估不同支护结构的稳定性和受力情况,确保施工期间基坑的稳定性和安全性。
此外,我们还对基坑开挖后的土体回填过程进行了有限元分析。
我们考虑了土体的位移和应力分布,以及回填材料的密实度和固结效应等因素,并根据分析结果制定回填方案。
通过有限元分析,我们可以评估土体回填后的稳定性,并根据分析结果对施工过程进行优化。
最后,我们对有限元分析结果进行了验证。
我们对施工过程中的实测数据进行对比,并进行了误差分析。
通过与实测数据的比较,我们可以评估有限元分析结果的准确性,并对分析模型进行修正和改进。
综上所述,大厦基坑施工的有限元分析是确保施工安全和保护周边环境的重要工具。
通过有限元分析,我们可以评估基坑开挖对土体和周边结构的影响,选择合适的支护结构并制定相应的施工方案。
通过对有限元分析结果的验证,我们可以提高分析模型的准确性,并为基坑施工提供科学依据。
矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。
如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。
㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。
(2 列出开发利用方案编制所依据的主要基础性资料的名称。
如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。
对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。
二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。
2、国内近、远期的需求量及主要销向预测。
㈡产品价格分析
1、国内矿产品价格现状。
2、矿产品价格稳定性及变化趋势。
三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。
2、矿区矿产资源概况。
3、该设计与矿区总体开发的关系。
㈡该设计项目的资源概况
1、矿床地质及构造特征。
2、矿床开采技术条件及水文地质条件。