第A13章_虚位移原理
- 格式:pdf
- 大小:395.01 KB
- 文档页数:22
虚位移原理的定义虚位移原理是力学中的一个重要概念,用于描述刚体在平衡状态下受到外力作用时的力学特性。
在物理学中,虚位移原理是一个基本原理,能够帮助我们解决各种力学问题。
虚位移原理的基本概念是,当一个刚体在平衡状态下受到外力作用时,其位移满足虚位移原理。
虚位移是指刚体在平衡状态下的微小位移,它不改变刚体的形状和结构,只是在力学分析中假设的一个方便的概念。
虚位移原理的基本内容是:在平衡状态下,刚体受到的合外力对刚体所作的虚功为零。
虚功是指外力对虚位移所作的功,它是一个力和位移的乘积。
根据虚位移原理,当刚体处于平衡状态时,外力对刚体所作的虚功必须为零。
这意味着,在平衡状态下,刚体受到的合外力的作用线必须通过刚体的重心,否则会产生虚功。
虚位移原理的应用非常广泛。
在静力学中,我们可以利用虚位移原理来求解平衡问题,如悬臂梁的受力分析、杆件的静力平衡等。
在动力学中,虚位移原理也可以用来分析刚体的运动,如刚体的平衡和运动学问题等。
虚位移原理的定义为:在平衡状态下,刚体受到的合外力对刚体所作的虚功为零。
这个定义可以帮助我们理解虚位移原理的基本概念和应用。
通过虚位移原理,我们可以简化力学问题的分析,得到更加简洁和准确的结果。
虚位移原理在力学中有着重要的地位,它是力学分析的基础。
虚位移原理的应用不仅仅局限于静力学和动力学,在其他物理学和工程学的领域也有着广泛的应用。
通过理解和掌握虚位移原理,我们可以更好地理解和解决各种力学问题,为实际工程和科学研究提供有力的支持。
虚位移原理是力学中的一个重要概念,用于描述刚体在平衡状态下受到外力作用时的力学特性。
它的定义是,在平衡状态下,刚体受到的合外力对刚体所作的虚功为零。
虚位移原理的应用广泛,可以帮助我们解决各种力学问题,为实际工程和科学研究提供有力的支持。
对于学习力学的人来说,掌握虚位移原理是非常重要的,它可以帮助我们更好地理解和应用力学知识,提高问题解决能力。
虚位移与虚位移原理虚位移与虚位移原理2010-04-22 10:528.2.1虚位移为了便于理解虚位移的概念,现把虚位移和实位移进行对比阐述。
1实位移--位置函数的微分实位移是质点系在微小的时间间隔内实际发生的位移,可用位置函数的微分表示。
设由n个质点组成的完整约束系统,其自由度为k,选取一组广义坐标,则每个点的位置可用其位置矢径表示。
满足该质点系的约束方程,取其微分(8-4)式(8-4)中,是满足约束条件的增量,是系统受不平衡力系作用而实际发生的微小位移,由动力学方程和运动初始条件确定。
由上式得到的不但是约束许可的,而且其大小和方向还满足运动的初始条件,并有一组惟一的值,称为质点系的一组实位移,而称为质点系的一组广义实位移。
2虚位移--位置函数的变分虚位移是质点系在某瞬时发生的一切为约束允许的微小位移,可用位置函数的变分表示。
(8-5)与实位移不同,虚位移是约束许可的,与主动力和运动初始条件无关的,不需要经历时间的假想微小位移。
在某一时刻,质点的虚位移可以有多个。
系统静平衡时,实位移不可能发生,而虚位移则只要约束允许即可发生。
是质点系的一组虚位移,而称为质点系的一组广义虚位移。
在定常约束下,实位移一定是虚位移中的一个。
如图8.6所示单摆,虚位移可为和,而实位移仅为其一。
但在非定常约束下,实位移一般不可能是虚位移中的一个,如图8.2中所示小球,其实位移中,摆长随时间变化,而虚位移是在固定时刻,摆长不变时的位移,二者显然不同。
思考8-3①试画出思考8-1图(a)中质点B以及图(b)中套筒D的实位移和虚位移。
②试画出图8.5中双摆的虚位移。
3虚位移的计算计算质点系中各点的虚位移以及确定这些虚位移之间的关系涉及质点系的位形变化,内容十分广泛。
这里主要针对定常完整约束的刚体系统,介绍通常采用的几何法与解析法。
例8.1试确定图所示曲柄连杆机构中,A,B两点虚位移之间的关系。
解①几何法。
此处可用求实位移的方法来确定各点虚位移之间的关系。
虚位移原理的定义
在物体的运动中,位移可以由许多因素引起,如外力、惯性、重力等。
虚位移原理的主要思想是将这些因素分离开,然后通过分析每个因素对位
移的贡献,来求解物体的运动方程。
1.确定系统的运动状态:首先,要明确系统的物体以及外部力的情况。
这些可以通过建立物体的坐标系和分析作用力得到。
2.定义虚位移:在给定的运动状态下,假设系统从位置A变化到位置B。
定义系统的虚位移为一个无限小的变化,并使其满足运动约束条件。
这个虚位移可以用一个一般的位移矢量δr来表示。
3.计算虚功:通过分析作用在系统上的外部力,计算出每个力对系统
虚位移的贡献。
这个贡献即代表了力对系统产生的虚功。
4.计算虚力:将虚功除以虚位移,得到一个常数,即为虚力。
这个虚
力与系统的其他因素(如惯性、重力)无关,只与外部力有关。
此外,虚位移原理还可以用于解决静力学、动力学和弹性力学等领域
的问题。
在静力学中,可以通过虚位移原理推导出平衡条件;在动力学中,可以用来分析系统的运动方程;在弹性力学中,可以通过虚位移原理推导
出材料的应力应变关系。
总之,虚位移原理是理论力学中一个十分重要的原理,它具有普遍性
和广泛应用性。
通过应用虚位移原理,我们可以更加简洁和有效地描述和
解决各种力学问题。
虚位移法的原理与应用1. 简介虚位移法(Virtual Displacement Method)是一种经典的结构力学分析方法。
它基于平衡原理和位移相容性原理,用虚位移原理来求解结构受力和变形问题。
本文将介绍虚位移法的原理以及其在实际工程中的应用。
2. 虚位移法的原理虚位移法的基本思想是,一个静力学问题可以通过最小化系统总势能来得到结构的相应。
虚位移法假设结构的位移场可以通过一个虚位移函数来表达,在满足边界条件的情况下,构建系统的虚功原理,可以得到结构的平衡方程。
具体来说,虚位移法的原理包括以下几个步骤:2.1 建立虚位移函数首先,建立一个虚位移函数,其满足边界条件以及位移相容性。
虚位移函数通常是一个多项式或三角函数形式。
2.2 计算系统总势能利用虚位移函数和受力情况,计算系统的总势能,可以通过对虚功原理的应用来得到。
2.3 最小化总势能将系统总势能对虚位移函数的系数进行变分,并令其为0,得到一组代数方程。
解这组方程可以得到结构的平衡方程。
2.4 求解结构响应由平衡方程,可以求解结构的受力分布和位移场分布。
3. 虚位移法的应用虚位移法广泛应用于各种结构的力学分析和设计中。
以下列举了一些虚位移法的应用领域:3.1 静力学分析虚位移法可以用于求解各种静力学问题,如梁、柱、桁架等结构的受力分析。
通过建立适当的虚位移函数,可以得到结构的内力分布和位移场。
3.2 动力学分析虚位移法也可以扩展到动力学分析中。
通过将虚位移函数与时间相关联,并结合动力学方程,可以求解结构的动态响应。
3.3 结构优化设计虚位移法可以用于结构的优化设计。
通过变分原理和虚功原理,可以最小化系统总势能,得到最优的结构形状和尺寸。
3.4 轴对称问题对于轴对称问题,虚位移法是一种非常有效的分析方法。
通过在径向和周向方向上引入合适的虚位移函数,可以求解轴对称结构的受力和位移问题。
4. 总结虚位移法是一种基于虚功原理的结构力学分析方法。
通过建立虚位移函数和最小化系统总势能,可以得到结构的平衡方程和响应。
1理论力学常见问题及解答 第13单元:虚位移原理及分析力学基础 1. 为什么说虚位移原理来自于动力学原理的思想? 解答:对平衡质点系,给系统一个小位移,所有主动力所作的功为FW。由动能定理的微分形式FWTd,由于系统平衡,所以0dT,因此0FW,这便是虚功方程。因此,虚位移原理来自于动力学原理的思想,或是用动力学的思想去解决静力学问题。
参考资料:贾启芬,刘习军. 《理论力学》,机械工业出版社2011第2版 萧龙翔等.《理论力学》,天津大学出版社1995 范钦珊. 《理论力学》,清华大学出版社2004 洪嘉振,杨长俊. 《理论力学》,高等教育出版社2008(第3版) (美)施皮格尔(M.R.Spiegel). 《理论力学 • 理论和习题》,科学出版社1983
关键词:虚位移原理,动力学原理,动能定理 2. 约束的运动学性质如何表示? 解答:用约束方程表示。 参考资料:贾启芬,刘习军. 《理论力学》,机械工业出版社2011第2版 萧龙翔等.《理论力学》,天津大学出版社1995 范钦珊. 《理论力学》,清华大学出版社2004 洪嘉振,杨长俊. 《理论力学》,高等教育出版社2008(第3版) (美)施皮格尔(M.R.Spiegel). 《理论力学 • 理论和习题》,科学出版社1983
关键词:约束,运动学性质,约束方程 3. 按约束的运动性质,约束如何分类? 解答:共有4种分类方法:①几何约束和运动约束;②定常约束和非定常约束;③完整约束和非完整约束;④单面约束和双面约束。
参考资料:贾启芬,刘习军. 《理论力学》,机械工业出版社2011第2版 萧龙翔等.《理论力学》,天津大学出版社1995 (美)施皮格尔(M.R.Spiegel). 《理论力学 • 理论和习题》,科学出版社1983 2
范钦珊. 《理论力学》,清华大学出版社2004 洪嘉振,杨长俊. 《理论力学》,高等教育出版社2008(第3版) 关键词:约束,运动学分类 4. 按照约束的运动学分类,常见的约束有哪些? 解答:几何约束、定常约束、完整约束、双面约束。 参考资料:贾启芬,刘习军. 《理论力学》,机械工业出版社2011第2版 萧龙翔等.《理论力学》,天津大学出版社1995 范钦珊. 《理论力学》,清华大学出版社2004 洪嘉振,杨长俊. 《理论力学》,高等教育出版社2008(第3版) (美)施皮格尔(M.R.Spiegel). 《理论力学 • 理论和习题》,科学出版社1983