第三章光合作用2
- 格式:ppt
- 大小:95.50 KB
- 文档页数:25
浙教版八年级下册第三章第6节光合作用【知识点分析】一.光合作用的条件与产物1.植物光合作用的产物探究12.操作步骤与结论3.光合作用的场所与作用:光合作用发生在叶肉细胞的叶绿体中。
绿色植物利用光提供的能量,在叶绿体内合成淀粉等有机物,并把光能转化为化学能,储存在有机物中。
4.光合作用的产物探究25.结论:光合作用的产物还有氧气。
二.光合作用的原料1.实验探究是否需要二氧化碳2.结论:光合作用需要二氧化碳。
3.光合作用还需要水的参与。
三.光合作用的原理1.光合作用:绿色植物通过叶绿体,利用光能,把二氧化碳和水转化成储存这能量的有机物,并释放氧气的过程。
2.反应式:3.光合作用的影响:一方面制造有机物并释放氧气,另一方面把光能转化为化学能。
四.光合作用和呼吸作用的关系1.思维导图2.相互关系:植物通过光合作用把二氧化碳和水转化为有机物并释放氧气,动植物均可进行呼吸作用把有机物氧化分解为二氧化碳和水,并释放能量供生命活动利用。
光合作用和呼吸作用既相互对立又相互依赖,他们共同存在于统一的有机体--植物中。
【例题分析】一、选择题1.在做“绿叶在光下制造有机物”的实验过程中,有如图所示的实验环节,(提示:1标准大气压下,酒精的沸点是78℃)以下对该环节的描述不正确...的是()A.大烧杯中装有水,小烧杯中装有酒精B.该环节结束后叶片变成黄白色C.酒精的作用是溶解叶绿素D.持续加热小烧杯中的温度会达到100℃【答案】D【解析】A.酒精能溶解叶绿素,而且酒精是易燃、易挥发的物质,直接加热容易引起燃烧发生危险。
使用水对酒精进行加热,起到控温作用,以免酒精燃烧发生危险。
因此小烧杯中装的是酒精,大烧杯中装的是清水,正确。
B.放在盛有酒精的小烧杯中隔水加热,使叶片中的叶绿素溶解到酒精中,叶片变成黄白色,正确。
C.酒精能溶解叶绿素,而且酒精是易燃、易挥发的物质,正确。
D.大烧杯中的液体是水,该液体的沸点是100℃,这就保证了小烧杯中液体的温度不会超过100℃,因此隔水对酒精进行加热,能起到控温作用,以免酒精燃烧发生危险,错误。
光合作用的场所一、教学目标知识目标1、描述叶片的结构2、解释叶片与光合作用相适应的特点3、阐述光合作用的公式和实质.4、应用光合作用的有关知识对植物种植、栽培等进行解释或改进能力目标1、通过练习徒手切片,用显微镜观察叶片的结构,培养学生实验操作能力。
2、学会运用生物学知识分析和解决生产或者社会实际问题。
情感目标1、利用叶绿素形成的原理,理解韭黄等蔬菜形成的原因,关注与生物学相关的生产实际问题。
2、培养学生乐于探究,勤于思考,实事求是的科学态度和探索精神二、教学重难点重点:叶片适于光合作用的特点,光合作用的过程及实质.难点:叶片适于光合作用的特点。
三、课时安排(1课时)四、教具准备教师准备:多媒体课件,实验器具。
五、教学过程(一)情境导入教师:出示不同植物的叶片图片.每种植物叶子的形状不同,大小不同,颜色也有所不同,但是每种植物的叶子都具有非常重要的作用.如果叶子损伤过多,就会影响到植物的生长。
叶在植物的生长中有什么重要的作用呢?学生:观察图片,思考问题。
教师:引导学生学习制作叶片横切面临时切片的步骤。
讲述注意事项。
例如如何切割,如何制片等。
学生:制作叶片横切面的临时切片。
教师:巡视指导。
学生:回忆显微镜的使用方法,利用显微镜观察临时切片,认识叶片的各部分结构。
教师:巡回指导。
学生:讨论教材P42页问题回答,教师:结合图片,与学生一起归纳总结叶片适于光合作用的特点.教师:叶绿体中含有叶绿素,所以叶片呈现绿色,那“蒜黄"、“韭黄”中是否含有叶绿素呢?你知道它们是如何培育的吗?学生:讨论回答。
教师:展示培育过程。
教师:什么是光合作用呢?引导学生回忆所学知识,思考光合作用的过程。
学生:根据所学知识,描述光合作用的过程。
教师:光合作用原理在生产中是如何应用的呢?学生:阅读教材,结合所学知识与生活经验,描述光合作用原理在生产生活中的应用。
(三)课堂小结学生畅谈收获,师生通共同构建知识体系.(四)达标训练教师:出示训练题学生:独立完成教师:反馈、释疑六、板书设计第三节光合作用的场所七、课下作业尝试培育“蒜黄”或者“韭黄”。
第三章植物的光合作用本章内容提要碳素同化作用有三种类型:细菌光合作用和化能合成作用以及绿色植物光合作用。
绿色植物光合作用是地球上规模最大的转换日光能的过程。
高等植物光合色素主要有2类:叶绿素与类胡萝卜素。
叶绿体是光合作用的细胞器,光合色素就存在于内囊体膜(光合膜)上。
光合作用可分为三大步骤: (1)原初反应,包括光能的吸收、传递和转换的过程;(2)电子传递和光合磷酸化,合成的ATP和NADPH(合称同化力)用于暗反应;(3)碳同化,将活跃化学能变为稳定化学能。
碳同化包括三种生化途径:C3途径、C4途径和CAM途径。
C3途径是碳同化的基本途径,可合成糖类、淀粉等多种有机物。
C4途径和CAM途径都只起固定CO2的作用,最终还是通过C3途径合成光合产物等。
光呼吸是乙醇酸的氧化过程,由叶绿体、过氧化体和线粒体三个细胞器协同完成的、耗O2、释放出CO2的耗能过程。
其底物乙醇酸及许多中间产物都是C2化合物,也简称为C2循环。
在C3植物中光呼吸是一个不可避免的过程,对保护光合机构免受强光的破坏具有一定的生理功能。
C4植物的光合速率比C3植物高,主要原因是C4植物CO2的固定由PEPC完成,PEPC 对CO2亲和力高;而CO2的同化在BSC中进行,C4植物BSC花环式结构类似一个CO2泵,因而光呼吸很低。
但C4植物同化CO2需要消耗额外的能量,其高光合速率只有在强光、较高温度下才能表现出来。
光合作用受光照、CO2、温度、水分和矿质元素等环境条件的影响。
植物的光能利用率很低。
改善光合性能是提高光能利用率的根本措施。
提高作物提高光能利用率的途径是:提高光合能力,增加光合面积,延长光合时间,减少有机物质消耗,提高经济系数。
第一节光合作用的意义自养生物吸收二氧化碳转变成有机物的过程叫碳素同化作用(carbon assimilation)。
不能进行碳素同化作用的生物称之为异养生物,如动物、某些微生物和极少数高等植物。
碳素同化作用三种类型:细菌光合作用、绿色植物光合作用和化能合成作用。
第三章植物的光合作用一填空1.绿色植物和光合细菌都能利用光能将合成有机物,它们都属于光养生物。
从广义上讲,所谓光合作用,是指光养生物利用把合成有机物的过程。
(CO2,光能,CO2)2.光合作用本质上是一个氧化还原过程。
其中是氧化剂,是还原剂,作为CO2还原的氢的供体。
(CO2,H2O)3.1940年S.Ruben等发现当标记物为H218O时,植物光合作用释放的O2是,而标记物为C18O2时,在短期内释放的O2则是。
这清楚地指出光合作用中释放的O2来自于。
(18O2,O2,H2O)4.1939年Robert.Hill发现在分离的叶绿体悬浮液中加入适当的电子受体,如铁氰化钾或草酸铁等,照光时可使水分解而释放氧气,这一现象称为,其中的电子受体被称为。
(希尔反应,希尔氧化剂)5.1954年美国科学家D.I.Arnon等在给叶绿体照光时发现,当向体系中供给无机磷、ADP和NADP时,体系中就会有和两种高能物质的产生。
同时发现,只要供给了这两种高能物质,即使在黑暗中,叶绿体也可将转变为糖。
所以这两种高能物质被称为“”。
(ATP,NADPH,CO2,同化力) 6.20世纪初人们研究光强、温度和CO2浓度对光合作用影响时发现,在弱光下增加光强能提高光合速率,但当光强增加到一定值时,再增加光强则不再提高光合速率。
这时要提高温度或CO2浓度才能提高光合速率。
用藻类进行闪光试验,发现在光能量相同的前提下闪光照射的光合效率是连续光下的200%~400%。
这些实验表明光合作用可以分为需光的和不需光的两个阶段。
(光反应,暗反应) 7.由于ATP和NADPH是光能转化的产物,具有在黑暗中使光合作用将CO2转变为有机物的能力,所以被称为“ ”。
光反应的实质在于产生“”去推动暗反应的进行,而暗反应的实质在于利用“”将转化为有机碳(CH2O)。
(同化力,同化力,同化力,CO2)8.量子产额的倒数称为,即光合作用中释放1分子氧和还原1分子二氧化碳所需吸收的。
第三章植物的光合作用复习题及参考答案作者: 来源:本站时间:2006-2-22第三章植物的光合作用复习题一、名词解释1、光反应与暗反应;2、C3途径与C4途径;3、光系统;4、反应中心;5、光合午休现象;6、原初反应;7、磷光现象;8、荧光现象;9、红降现象;10、量子效率;11、量子需要量;12、爱默生增益效应;13、PQ循环;14、光合色素;15、光合作用;16、光合作用单位;17、反应中心色素;18、聚光色素;19、激子传递;20、共振传递;21、解偶联剂;22、水氧化钟;23、希尔反应;24、光合磷酸化;25、光呼吸;26、光补偿点;27、CO2补偿点;28、光饱和点;29、光能利用率;30、光合速率;31、C3-C4中间植物;32、光合滞后期;33、叶面积系数;34、共质体与质外体;35、压力流动学说;36、细胞质泵动学说;37、代谢源与代谢库;38、比集转运速率(SMTR);39、运输速率;40、溢泌现象;41、P-蛋白;42、有机物质装载;43、有机物质卸出;44、收缩蛋白学说;45、协同转移;46、磷酸运转器;47、界面扩散;48、可运库与非运库;49、转移细胞;50、出胞现象;51、生长中心;52、库-源单位;53、供应能力;54、竞争能力;55、运输能力。
二、缩写符号翻译1、Fe-S;2、Mal;3、OAA;4、BSC;5、CFl-Fo;6、NAR;7、PC;8、CAM;9、NADP+;10、Fd;11、PEPCase;12、RuBPO;13、P680,P700;14、PQ;15、PEP;16、PGA;17、Pn;18、Pheo;19、PSP;20、Q;21、RuBP;22、RubisC(RuBPC);23、Rubisco(RuBPCO);24、LSP;25、LCP;26、DCMU;27、FNR;28、LHC;29、pmf;30、TP;31、PSI;32、PSII。
三、填空题1、光合作用是一种氧化还原反应,在该反应中,被还原,被氧化;光合作用的暗反应是在中进行的;光反应是在上进行的。
第三章光合作用名词解释:1、光合作用:绿色植物利用光能,把二氧化碳和水合成有机物质,并释放出氧气的过程。
2、光合速率:即光合强度,指单位时间单位叶面积所吸收的二氧化碳或释放的氧量,或单位时间单位叶面积所积累的干物质量,常用以下单位表示:CO2m g·dm-2·h-13、净光和强度:即表现光合强度,指总光合减去被测部位同时进行的呼吸强度。
4、原初反应:是光合作用的起点,指光合色素吸收日光能所引起的光物理及光化学过程。
包括光能的吸收和色素分子激发态的形成;天线色素分子间能量的传递;作用中心对光能的捕获、电荷分离。
5、光化学反应:是指反应中心色素分子吸收光能所引起的氧化还原反应。
6、反应中心:由反应中心色素分子及其原初电子受体与原初电子供体所组成,聚光色素分子吸收光能,传递到反应中心,反应中心色素分子被光量子所激发,失去电子呈氧化态,原初电子受体接受电子而被还原,反应中心色素分子失去电子即带正电荷,又可从它的原初电子供体获得电子而回复原状。
7、同化力:在电子传递及光合磷酸化作用中形成的NADPH+H+和ATP,随后用于CO2的同化,故称为同化力。
8、光呼吸:指绿色植物细胞在光下吸收O2,氧化乙醇酸,放出CO2的过程,称为光呼吸9、光饱和现象:在光照强度较低时,光合速率随光强的增加而相应增加;光强进一步提高时,光合速率的增加逐渐减小,当超过一定光强时即不再增加,这种现象称光饱和现象10、光饱和点:开始达到光饱和现象时的光照强度称为光饱和点。
11、光补偿点:在在光饱和点以下,光合速率随光照强度的减小而降低,到某一光强时,光合作用中吸收的CO2与呼吸作用中释放的CO2达动态平衡,这时的光照强度称为光补偿点。
12、CO2饱和点:在一定范围内,植物净光合速度随CO2浓度增加而增加,但到达一定程度时再增加CO2浓度,净光合速率不再增加,这时的CO2浓度称为二氧化碳饱和点13、CO2补偿点:在CO2饱和点以下,光合作用吸收的CO2与呼吸同光呼吸释放的CO2 达动态平衡,这时环境中的CO2浓度称为CO2补偿点。
第三章植物的光合作用一、名词解释1. C3途径2. C4途径3. 光系统4. 反应中心5. 原初反应6. 荧光现象7. 红降现象8. 量子产额9. 爱默生效应10. PQ循环11. 光合色素12. 光合作用13. 光合单位14. 反应中心色素15. 聚光色素16. 解偶联剂17. 光合磷酸化18. 光呼吸19. 光补偿点20. CO2补偿点21. 光饱和点22. 光能利用率23. 光合速率二、缩写符号翻译1. Fe-S2. PSI3. PSII4. OAA5. CAM6. NADP+7. Fd 8. PEPCase 9. RuBPO10. P680、P700 11. PQ 12. PEP13. PGA 14. Pheo 15. RuBP16. RubisC(RuBPC) 17. Rubisco(RuBPCO)三、填空题1. 光合作用的碳反应是在中进行的,光反应是在中进行的。
2. 在光合电子传送中最终电子供体是,最终电子受体是。
3. 在光合作用过程中,当形成后,光能便转化成了活跃的化学能;当形成后,光能便转化成了稳定的化学能。
4. 叶绿体色素提取掖液在反射光下观察呈色,在透射光下观察呈色。
5. P700的原初电子供体是,原初电子受体是。
6. 光合作用的能量转换功能是在类囊体膜上进行的,所以类囊体亦称为。
7. 光合作用中释放的氧气来自于。
8. 与水光解有关的矿质元素为。
9. 和两种物质被称为同化能力。
10. 光的波长越长,光子所持有的能量越。
11. 叶绿素吸收光谱的最强吸收区有两个:一个在,另一个在。
12. 光合磷酸化有三种类型:、、。
13. 根据C4化合物和催化脱羧反应的酶不同,可将C4途径分为三种类型:、、。
14. 一般来说,正常叶子的叶绿素和类胡萝卜素的分子比例为;叶黄素和胡萝卜素的分子比例为。
15. 光合作用中,淀粉的形成是在中,蔗糖的形成是在中。
16. C4植物的C3途径是在中进行的;C3植物的卡尔文循环是在中进行的。