第三章植物的光合作用
- 格式:doc
- 大小:45.00 KB
- 文档页数:4
植物⽣理学习题⼤全——第3章植物的光合作⽤第三章光合作⽤⼀. 名词解释光合作⽤(photosynthesis):绿⾊植物吸收阳光的能量,同化⼆氧化碳和⽔,制造有机物质并释放氧⽓的过程。
光合⾊素(photosynthetic pigment):植物体内含有的具有吸收光能并将其光合作⽤的⾊素,包括叶绿素、类胡萝⼘素、藻胆素等。
吸收光谱(absorption spectrum):反映某种物质吸收光波的光谱。
荧光现象(fluorescence phenomenon):叶绿素溶液在透射光下呈绿⾊,在反射光下呈红⾊,这种现象称为荧光现象。
磷光现象(phosphorescence phenomenon):当去掉光源后,叶绿素溶液还能继续辐射出极微弱的红光,它是由三线态回到基态时所产⽣的光。
这种发光现象称为磷光现象。
光合作⽤单位(photosynthetic unit):结合在类囊体膜上,能进⾏光合作⽤的最⼩结构单位。
作⽤中⼼⾊素(reaction center pigment):指具有光化学活性的少数特殊状态的叶绿素a分⼦。
聚光⾊素(light harvesting pigment ):指没有光化学活性,只能吸收光能并将其传递给作⽤中⼼⾊素的⾊素分⼦。
原初反应(primary reaction):包括光能的吸收、传递以及光能向电能的转变,即由光所引起的氧化还原过程。
光反应(light reactio):光合作⽤中需要光的反应过程,是⼀系列光化学反应过程,包括⽔的光解、电⼦传递及同化⼒的形成。
暗反应(dark reaction):指光合作⽤中不需要光的反应过程,是⼀系列酶促反应过程,包括CO2的固定、还原及碳⽔化合物的形成。
光系统(photosystem,PS):由不同的中⼼⾊素和⼀些天线⾊素、电⼦供体和电⼦受体组成的蛋⽩⾊素复合体,其中PS Ⅰ的中⼼⾊素为叶绿素a P700,PS Ⅱ的中⼼⾊素为叶绿素a P680。
植物生理学题库(含答案)第三章植物的光合作用一、名词解释1、爱默生效应:如果在长波红光(大于685nm)照射时,再加上波长较短的红光(650nm),则量子产额大增,比分别单独用两种波长的光照射时的总和还要高。
2、光合作用:绿色植物吸收阳光的能量,同化CO2和H2O,制造有机物质,并释放O2的过程。
3、荧光现象:指叶绿素溶液在透射光下呈绿色,在反射光下呈红色,这种现象就叫荧光现象。
4、磷光现象:当去掉光源后,叶绿素溶液还能继续辐射出极微弱的红光,它是由三线态回到基态时所产生的光。
这种发光现象称为磷光现象。
5、光反应:光合作用的全部过程包括光反应和暗反应两个阶段,叶绿素直接依赖于光能所进行的一系列反应,称光反应,其主要产物是分子态氧,同时生成用于二氧化碳还原的同化力,即ATP和NADPH。
6、碳反应:是光合作用的组成部分,它是不需要光就能进行的一系列酶促反应。
7、光合链:亦称光合电子传递链、Z—链、Z图式。
它包括质体醌、细胞色素等。
当然还包括光系统I和光系统II的反应中心,其作用是传递将水在光氧化时所产生的电子,最终传送给NADP+。
8、光合磷酸化:指叶绿体在光下把有机磷和ADP转为A TP,并形成高能磷酸键的过程。
9、光呼吸:植物的绿色细胞依赖光照,吸收O2和放出CO2的过程。
10、景天科酸代谢:植物体在晚上的有机酸含量十分高,而糖类含量下降;白天则相反,有机酸下降,而糖分增多,这种有机物酸合成日变化的代谢类型,称为景天科酸代谢。
11、光合速率:指光照条件下,植物在单位时间单位叶面积吸收CO2的量(或释放O2的量)12、光补偿点:指同一叶子在同一时间内,光合过程中吸收的CO2和呼吸过程中放出的CO2等量时的光照强度。
13、光饱和现象:光合作用是一个光化学现象,其光合速率随着光照强度的增加而加快,这种趋势在一定范围的内呈正相关的。
但是超过一定范围后光合速率的增加逐渐变慢,当达到某一光照强度时,植物的光合速率就不会继续增加,这种现象被称为光饱和现象。
植物生理学第三章植物的光合作用植物的光合作用是指植物利用光能将二氧化碳和水转化成有机物质(如葡萄糖)和氧气的过程。
其反应方程式为:6CO2+6H2O+光能→C6H12O6+6O2光合作用是植物最重要的生理过程之一,它不仅是植物能够生存和生长的基础,还能为其他生物提供氧气和有机物质。
光合作用通过光合色素和叶绿体等生理结构,具有高效和专一性的特点。
植物的光合作用可以分为两个阶段:光能捕获和光化学反应、以及碳固定和假单胞菌循环。
在光能捕获和光化学反应阶段,植物的光合色素(如叶绿素)能够捕获太阳光,并将其转化为化学能。
光合作用发生在叶绿体内,主要以叶绿体膜的光合作用单位,光系统(PSI和PSII)为中心。
光系统中的光合色素吸收太阳光,并将其能量传递给反应中心,激发电子。
通过光合色素的电子传递链,电子在PSII和PSI之间进行转移,最终转移到还原辅酶NADP+上,形成还原辅酶NADPH。
在碳固定和假单胞菌循环阶段,植物利用还原辅酶NADPH和ATP的能量,将二氧化碳转化为有机化合物。
这个过程称为Calvin循环,也叫柠檬酸循环。
Calvin循环包括三个主要步骤:碳固定、还原和再生。
首先,二氧化碳与从光合作用过程中产生的核酮糖五磷酸(RuBP)结合,形成不稳定的六碳中间体。
然后,该中间体通过一系列酶的作用,将其分解为两个三碳化合物,3-磷酸甘油醇醛(3-PGA)。
最后,3-PGA经过一系列的加氢还原反应和磷酸化反应,合成出葡萄糖和其他有机物质。
光合作用的速率受到光照、温度、二氧化碳浓度和水分等环境条件的影响。
光合速率随着光照强度的增大而增加,但达到一定的饱和点后,光合速率趋于稳定。
温度对光合作用的影响是复杂的。
在适宜温度下,光合速率随着温度的升高而增加,因为反应速率加快。
然而,当温度超过一定范围时,光合作用会受到抑制,因为高温会破坏光系统和酶的结构。
二氧化碳浓度越高,光合速率越快。
水分对光合作用的影响主要是通过调节植物的气孔进行的。
光合作用-植物生理-图文第三章植物的光合作用碳素营养是植物的生命基础,这是因为,第一,植物体的干物质中90%以上是有机化合物,而有机化合物都含有碳素(约占有机化合物重量的45%),碳素成为植物体内含量较多的一种元素;第二,碳原子是组成所有有机化合物的主要骨架,好象建筑物的栋梁支柱一样。
碳原子与其他元素有各种不同形式的结合,由此决定了这些化合物的多样性。
按照碳素营养方式的不同,植物可分为两种:1)只能利用现成的有机物作营养,这类植物称为异养植物(heterophyte),如某些微生物和少数高等植物;2)可以利用无机碳化合物作营养,并且将它合成有机物,这类植物称为自养植物(autophyte),如绝大多数高等植物和少数微生物。
异养植物与自养植物相比,后者在植物界中最普遍,而且非常重要。
这里我们着重讨论自养植物。
自养植物吸收二氧化碳,将其转变成有机物质的过程,称为植物的碳素同化作用(carbonaimilation)。
植物碳素同化作用包括细菌光合作用、绿色植物光合作用和化能合成作用3种类型。
在这3种类型中,绿色植物光合作用最广泛,合成的有机物质最多,与人类的关系也最密切,因此,本章重点阐述绿色植物光合作用(以下简称光合作用)。
第一节光合作用的重要性绿色植物吸收阳光的能量,同化二氧化碳和水,制造有机物质并释放氧气的过程,称为光合作用(photoynthei)。
光合作用所产生的有机物质主要是糖类,贮藏着能量。
光合作用的过程,光合作用的重要性,可概括为下列3个方面:1.把无机物变成有机物植物通过光合作用制造有机物的规模是非常巨大的。
据估计,地球上的自养植物每年约同化2某lOt碳素,其中40%是由浮游植物同化的,余下60%是由陆生植物同化的(图3-1)。
如以葡萄糖计算,整个地球每年同化的碳素相当于四五千亿吨有机物质,难怪人们把绿色植物喻为庞大的合成有机物的绿色工厂。
绿色植物合成的有机物质,可直接或间接作为人类和全部动物界的食物(如粮、油、糖、牧草饲料、鱼饵等),也可作为某些工业的原料(如棉、麻、橡胶、糖等)。
第三章植物的光合作用_植物生理学第三章:植物的光合作用植物的光合作用是植物生理学中一个非常重要的过程,通过光合作用,植物能够将光能转化为化学能,并且产生出氧气和有机物质,为植物自身生长和发育提供能量和养分,也间接地为其他生物提供能源。
植物的光合作用是在叶绿体中进行的。
叶绿体是植物细胞中的一种细胞器,它含有叶绿素,可以吸收太阳光中的能量。
光合作用主要包括光能的吸收、光能的转换和产物的合成三个过程。
首先,光能的吸收过程。
植物的叶绿体中含有多种不同类型的叶绿素,它们能够吸收不同波长的光。
叶绿素中的色素分子吸收光子后激发,成为激发态叶绿素。
不同的叶绿素吸收不同波长的光,其中最主要的是吸收红光和蓝光的叶绿素a,然后是辅助叶绿素如叶绿素b和叶黄素等。
叶绿体中的叶绿素主要吸收短波长的光,因此植物呈现出绿色。
其次,光能的转换过程。
当叶绿素吸收光子之后,其中的电子被激发出来,并且通过一系列的电子传递过程,在两个光化学反应中最终形成高能态分子ATP和NADPH。
这两种高能物质是植物光合作用最重要的产物,它们为植物提供了能量和电子。
ATP是一种能量通货,它可以通过释放磷酸基团的能量来驱动其他细胞活动。
NADPH是一种电子载体,它可以将电子传递给碳固定反应中的酶,驱动二氧化碳的还原反应。
最后,产物合成过程。
产生的ATP和NADPH被用来驱动碳固定反应,也就是光合作用的第二阶段。
在这个阶段中,植物利用ATP和NADPH将二氧化碳还原成有机物质。
这个过程中最重要的酶是光合酶RuBisCO,它将二氧化碳与一种五碳糖RuBP反应生成六碳糖,然后分解成两个三碳糖PGA。
PGA在一系列酶催化作用下转化为三碳糖G3P,部分G3P能够通过其他途径转化为其他有机物质,但大部分会再次参与碳固定反应生成更多的RuBP。
总结起来,植物的光合作用是植物生理学中的一个重要过程,通过光合作用植物能够利用太阳能将二氧化碳和水转化为有机物质并产生氧气。
第三章植物的光合作用一、名词解释1. 光合作用2. 荧光现象3. 原初反应4. 同化力5. Hill 反应6. 红降现象7. 爱默生效应8. PQ 穿梭9. 聚光(天线)色素10. 光合磷酸化11. C3植物12. C4植物13. 光呼吸14. 温室效应15. 光饱和点16. 光补偿点17. 代谢源18. 代谢库二、填空题1. 根据功能的不同叶绿体色素可以分为 ______________ 和 _____________ 两大类。
2. 叶绿素从第一单线态回到基态所放出的光称为 _________ ,从第一三线态回到基态所放出的光称为 ________ 。
3.C3植物、C4植物和CAM 植物所共有的CO2受体是 ___________ 。
4.PSI 为 ______ 波光反应,其主要特征是 ______ 。
5. 维持植物正常的生长所需的最低日照强度应 ______ 于光补偿点。
6. 叶绿体色素吸收光能后,其光能主要以_____ 方式在色素分子之间传递。
在传递过程中,其波长逐渐_____ ,能量逐渐 _____。
7. 植物体内的有机物是通过 ______ 进行长距离运输的,其中含量最高的有机物是______ 。
8.______ 现象和 ______ 证明了光合作用可能包括两个光系统。
9.PSII ______ 波光反应,其主要特征是 ______ 。
10. 影响韧皮部运输的主要环境因素是_____ 和_____ (举主要 2 种)。
11.CAM 植物,夜间其液泡的 pH_____ ,这是由于积累了大量 _____引起的。
12.PSI 中,电子的原初供体是_____ ,电子原初受体是_____ 。
13. 在光合链中,电子的最终供体是_____ ,电子最终受体是_____ 。
14. 光合链上的 PC ,中文叫_____ ,它是通过元素_____ 的变价来传递电子的。
15. 筛管汁液中,阳离子以_____ 最多,阴离子以_____ 为主。
16. 环割试验证明有机物是通过_____ 运输的,这种方法应用于果树的枝条上可促进_____ 。
17. 叶绿体色素吸收光能后,其激发能主要以_____ 的方式在色素间传递,传递过程中能量_____ ,波长_____ 。
18. 在光合作用中,同化力中的 ATP 用于_____ 和_____ , NADPH 则用于_____ 。
19. 与三碳植物相比,四碳植物的二氧化碳补偿点_____ ,主要是因为 _____。
三、选择题1. 类囊体膜上能够跨膜转运 H+的电子传递体是()A.OECB. PCC.PQD.Fd2. 植物正常发育的光照强度应是()。
A. 等于光补偿点B. 小与光补偿点C. 大于光补偿点D. 大于光饱和点3.P-蛋白是()特有的一种蛋白质。
A. 初生壁B. 柱头表面C. 筛管内D. 分生组织4. 部分植物筛管内运输的光合产物主要是以()进行的。
A. 山梨糖醇B. 葡萄糖C. 果糖D. 蔗糖5. 为防止黄化现象,应注意()。
A. 增施氮肥B. 防止干旱C. 改善光照D. 防治病虫害6. 叶绿素分子的叶醇基是()化合物。
A. 饱和脂肪醇B. 倍半萜C. 二萜D. 萜7. 玉米、高粱植物在 400μl/L 的CO2浓度下,理论上其光合速率比大气CO2下()。
A. 增强B. 下降C. 基本相等D. 变化无常8. 光合碳循环中的 CO2受体是()。
A.PEPB.PGAC.Ru5PD.RuBP9. 光合细胞是在()内合成淀粉的。
A. 叶绿体B. 过氧化物体C. 线粒体D. 细胞质10. 缺水影响光合作用,与成熟叶相比,幼叶受到的影响()。
A. 更严重B. 比较轻C. 差异不大D. 无一定规律11. 夜间, CAM 植物的液泡内积累大量的()。
A. 氨基酸B. 糖类C. 有机酸D.CO212.C 4 植物中光合产物形成的部位是()。
A. 叶肉细胞线粒体B. 叶肉细胞叶绿体C. 维管束鞘细胞线粒体D. 维管束鞘细胞叶绿体13. 已知高等植物中类胡萝卜素具有()的功能。
A. 吸收和传递光能B. 吸收和传递光能及保护叶绿素C. 光能转化为电能D. 吸收和传递光能及光能转化为电能14.PSII 的原初电子受体应为()。
A.Pheo( 去镁叶绿素 )B.QC.PQD.Fd15.C4植物维管束鞘细胞中固定 CO2的受体是()。
A.PEPB.PGAC.Ru5PD.RuBP16.C3植物在日趋严重的温室效应下,其光合速率与现在相比()。
A. 增强B. 下降C. 基本相等D. 没有统一定论17. 已知高等植物中叶绿素 a 可具有()的功能。
A. 吸收和传递光能B. 吸收和传递光能及保护类胡萝卜素C. 光能转化为电能D. 吸收和传递光能及光能转化为电能18. 能进行 Hill 反应的叶绿体是()。
A. 被膜完好的叶绿体B. 被膜破损的叶绿体或类囊体C. 叶绿体间D. 叶绿体被膜19. 光合产物是以()从叶绿体转移到细胞质去的。
A. 核酮糖B. 葡萄糖C. 蔗糖D. 磷酸丙糖20. 在其他条件适宜而温度偏低时,如提高温度,光合作用的光补偿点()。
A. 明显上升B. 有所下降C. 不变化不大D. 与温度无关21.PSII 的光化学反应完成式为()。
A.ZP680 + A0-B.PC + P700A0-C.Z+P680Pheo-D.PC+P680Pheo22. 增加空气中的 CO2浓度, C4 植物的光合作用()。
A. 继续增加B. 反而下降C. 不再增加D. 先增后降23. 早春,作物叶色常呈浅绿色,主要是()引起的。
A. 吸收氮肥困难B. 光照不足C. 气温偏低D. 细胞内缺水24. 影响叶绿素合成和叶绿体发育的最主要外界因素是()。
A. 水分B. 温度C. 光照D. 氧气25. 在最适的环境条件下,C3植物固定 1 分子 CO2需要()个光量子。
A.4-6B.16-18C.8-10D.12-1426. 蔗糖向筛管装载是()进行的。
A. 顺浓度梯度B. 逆浓度梯度C. 等浓度D. 无一定浓度规律27 植物根部吸收的无机离子向植物地上部运输时主要通过()。
A. 筛管B. 导管C. 转运细胞D. 薄壁细胞。
28. 光合作用合成蔗糖是在()里进行的。
A. 叶绿体间质B. 线粒体间质C. 细胞质D. 液泡29. 水稻、棉花等植物在 400μl/L 的 CO2浓度下,其光合速率比大气 CO2浓度下()。
A. 增强B. 下降C. 不变D. 变化无常30.C3途径中的 CO2受体是()。
A.PEPB.PGAC.Ru5PD.RuBP31. 叶绿素分子的头部是()化合物。
A. 萜类B. 脂类C. 吡咯D. 卟啉32. 光合作用的电子传递是()的过程。
A. 光能吸收传递B. 光能变电能C. 光能变化学能D. 电能变化学能33. 叶绿素磷光是由其()态产生的。
A. 三线B. 第一单线激发C. 第二单线激发D. 还原34. 剪去枝上的一部分叶片,保留下来的叶片其光合速率()。
A. 有所增强B. 随之减弱C. 变化不大D. 变化无规律35. 光合作用放氧是在叶绿体的()部位发生的。
A. 被膜B. 间质C. 光合膜上D. 类囊体腔36. 夜间, CAM 植物的液泡内积累大量的()。
A. 氨基酸B. 柠檬酸C. 苹果酸D.CO237. 在 400-700nm 光波长中,对植物生长发育不大重要的波长段是()。
A. 远红光区B. 红光区C. 绿光区D. 蓝紫光区38. 已知高等植物中叶绿素 b 具有()的功能。
A. 吸收和传递光能B. 吸收和传递光能及保护类胡萝卜素C. 光能转化为电能D. 吸收和传递光能及光能转化为电能39. 禾谷类灌浆期,其生长中心是()。
A. 旗叶B. 茎秆C. 穗D. 根系40. 叶绿素提取液,在反射光下呈()。
A. 暗红色B. 橙黄色C. 绿色D. 蓝色41.CAM 途径中最先固定 CO2的产物是()。
A.MalB.OAAC.AspD.Glu42. 光合碳循环中最先缩合的6C 糖是()。
A.Ru5PB.E4PC.G6PD.F1,6P43. 光合作用中原初反应在()。
A. 叶绿体膜上B. 类囊体膜上C. 叶绿体间质中D. 类囊体腔中44.Rubisco 是双功能酶,在 CO2 /O2比值相对较高时,主要发生()反应。
A. 加氧反应大于羧化反应B. 加氧反应C. 羧化反应45. 落叶树春天萌芽时,根内贮藏的有机物主要通过()向上运输。
A. 木质部导管B. 薄壁细胞C. 韧皮部筛管D. 木质部和韧皮部46. 光合作用中 O2的释放发生在()。
A. 叶绿体基质中B. 叶绿体内膜上C. 类囊体膜外侧D. 类囊体膜内侧四、问答题1. 试述光合作用的重要意义。
2. 光合色素的结构、性质与光合作用有何关系 ?3. 如何证明光合作用中释放的 O2来源于水 ?4. 如何证明光合电子传递由两个光系统参与,并接力进行 ?5. C3途径分为哪三个阶段,各阶段的作用是什么 ?C3植物, C4植物和 CAM 植物在碳代谢上各有何异同点 ?6. 光呼吸是如何发生的 ? 有何生理意义 ?7. 绘制一般植物的光强-光合曲线,并对曲线的特点加以说明。
8. 目前大田作物光能利用率不高的原因有哪些 ? 如何提高作物的光能利用率达到增产的目的 ?9. “光合速率高,作物产量一定高”,这种观点是否正确 ? 为什么 ?10. C4植物光合速率为什么在强光高温和低 CO2浓度条件下比 C3植物的高 ?11. 如何证明植物同化物长距离运输是通过韧皮部的 ?12. 同化物在韧皮部的装载与卸出机制如何 ?13. 简述压力流动学说的要点、实验证据及遇到的难题。
14. 试述同化物运输与分配的特点和规律。
15. 提高作物产量的途径有哪些 ?。