辅助角公式ppt课件
- 格式:ppt
- 大小:364.50 KB
- 文档页数:9
辅助角公式sin cos )a b θθθϕ+=+在三角函数中,有一种常见而重要的题型,即化sin cos a b θθ+为一个角的一个三角函数的形式,进而求原函数的周期、值域、单调区间等.为了帮助学生记忆和掌握这种题型的解答方法,教师们总结出公式sin cos a b θθ+)θϕ+或sin cos a b θθ+cos()θϕ-,让学生在大量的训练和考试中加以记忆和活用.但事与愿违,半个学期不到,大部分学生都忘了,教师不得不重推一遍.到了高三一轮复习,再次忘记,教师还得重推!本文旨在通过辅助角公式的另一种自然的推导,体现一种解决问题的过程与方法,减轻学生的记忆负担;同时说明“辅助角”的范围和常见的取角方法,帮助学生澄清一些认识;另外通过例子说明辅助角公式的灵活应用,优化解题过程与方法;最后通过例子说明辅助公式在实际中的应用,让学生把握辅助角与原生角的范围关系,以更好地掌握和使用公式. 一.教学中常见的的推导方法 教学中常见的推导过程与方法如下 1.引例 例1α+cos α=2sin (α+6π)=2cos (α-3π). 其证法是从右往左展开证明,也可以从左往右“凑”,使等式得到证明,并得出结论: 可见,α+cos α可以化为一个角的三角函数形式.一般地,asin θ+bcos θ 是否可以化为一个角的三角函数形式呢? 2.辅助角公式的推导例2 化sin cos a b θθ+为一个角的一个三角函数的形式.解: asin θ+bcos θsin θcos θ),①=cos ϕϕ,则asin θ+bcos θθcos ϕ+cos θsin ϕ)θ+ϕ),(其中tan ϕ=b a) ②=sin ϕ=cos ϕ,则asin θ+bcos θθsin ϕ+cos θcos ϕ(θ-ϕ),(其中tan ϕ=a b) 其中ϕ的大小可以由sin ϕ、cos ϕ的符号确定ϕ的象限,再由tan ϕ的值求出.或由tan ϕ=ba和(a,b)所在的象限来确定.推导之后,是配套的例题和大量的练习. 但是这种推导方法有两个问题:一是为什么要令=cos ϕϕ?让学生费解.二是这种 “规定”式的推导,学生难记易忘、易错! 二.让辅助角公式sin cos a b θθ+)θϕ+来得更自然能否让让辅助角公式来得更自然些?这是我多少年来一直思考的问题.2009年春.我又一次代2008级学生时,终于想出一种与三角函数的定义衔接又通俗易懂的教学推导方法.首先要说明,若a=0或b=0时,sin cos a b θθ+已经是一个角的一个三角函数的形式,无需化简.故有ab ≠0. 1.在平面直角坐标系中,以a 为横坐标,b 为纵坐标描一点P(a,b)如图1所示,则总有一个角ϕ,它的终边经过点P .设OP=r,r=由三角函数的定义知sin ϕ=b rcos ϕ=a r=.所以asin θ+bcos θϕ sin θϕcos θ)θϕ+.(其中tan ϕ=ba)2.若在平面直角坐标系中,以b 为横坐标,以a 为纵坐标可以描点P(b,a),如图2所示,则总有一个角ϕ的终边经过点P(b,a),设OP=r,则由三角函数的定义知sin ϕ=ar,cos ϕ=br.asin θ+bcos θsin cos ϕθϕθ+s()θϕ-. (其中tan ϕ=ab)例3cosθθ+为一个角的一个三角函数的形式.解:在坐标系中描点P(,1),设角ϕ的终边过点P,则OPϕ=12,cosϕ=2.∴cosθθ+=2cosϕsinθ+2sinϕcosθ=2sin(θϕ+).tanϕ=3.26kπϕπ=+,cosθθ+=2sin(6πθ+).经过多次的运用,同学们可以在教师的指导下,总结出辅助角公式asinθ+bcosθ=(sinθ+cosθ)=)θϕ+,(其中tanϕ=ba).或者asinθ+bcosθ=(sinθ+cosθ)=)θϕ-,(其中tanϕ=ab)我想这样的推导,学生理解起来会容易得多,而且也更容易理解asinθ+bcosθsinθcosθ)的道理,以及为什么只有两种形式的结果.例4 化sinαα-为一个角的一个三角函数的形式.解法一:点(1,-)在第四象限.OP=2.设角ϕ过P点.则sin2ϕ=-,1cos2ϕ=.满足条件的最小正角为53π,52,.3k k Z ϕππ=+∈1sin 2(sin cos )2(sin cos cos sin )22552sin()2sin(2)2sin().33k αααααϕαϕαϕαππαπ∴-=-=+=+=++=+解法二:点P(-,1)在第二象限,OP=2,设角ϕ过P 点.则1sin 2ϕ=,cos 2ϕ=-.满足条件的最小正角为56π,52,.6k k Z ϕππ=+∈1sin 2(sin cos )2(sin sin cos cos )22552cos()2cos(2)2cos().66k αααααϕαϕαϕαππαπ∴-=-=+=-=--=-三.关于辅助角的范围问题由sin cos )a b θθθϕ+=+中,点P(a,b)的位置可知,终边过点P(a,b)的角可能有四种情况(第一象限、第二象限、第三象限、第四象限).设满足条件的最小正角为1ϕ,则12k ϕϕπ=+.由诱导公式(一)知1sin cos ))a b θθθϕθϕ+=+=+.其中1(0,2)ϕπ∈,1tan baϕ=,1ϕ的具体位置由1sin ϕ与1cos ϕ决定,1ϕ的大小由1tan baϕ=决定.类似地,sin cos )a b θθθϕ+=-,ϕ的终边过点P(b,a),设满足条件的最小正角为2ϕ,则22.k ϕϕπ=+由诱导公式有2sin cos cos())a b θθθϕθϕ+=-=-,其中2(0,2)ϕπ∈,2tan abϕ=,2ϕ的位置由2sin ϕ和2cos ϕ确定,2ϕ的大小由2tan abϕ=确定. 注意:①一般地,12ϕϕ≠;②以后没有特别说明时,角1ϕ(或2ϕ)是所求的辅助角.四.关于辅助角公式的灵活应用引入辅助角公式的主要目的是化简三角函数式.在实际中结果是化为正弦还是化为余弦要具体问题具体分析,还有一个重要问题是,并不是每次都要化为1sin cos )a b θθθϕ+=+的形式或2sin cos )a b θθθϕ+=-的形式.可以利用两角和与差的正、余弦公式灵活处理.例5 化下列三角函数式为一个角的一个三角函数的形式.cos αα-;(2)sin()cos()6363ππαα-+-. 解:(1)1cos sin cos )222(sin coscos sin )2sin()666ααααπππααα-=-=-=-(2)sin()cos()63631[sin()cos()]32323[sin()cos cos()sin ]333332sin()33ππααππααππππααπα-+-=-+-=-+-=-在本例第(1)小题中,a =1b =-1),而取的是点P1).也就是说,当a 、b 中至少有一个是负值时.我们可以取P(a ,b ),或者P(b ,a ).这样确定的角1ϕ(或2ϕ)是锐角,就更加方便.例6 已知向量(cos(),1)3ax π=+,1(cos(),)32b x π=+-,(sin(),0)3c x π=+,求函数()h x =2a b b c ⋅-⋅+的最大值及相应的x的值.解:21()cos ()sin()cos()23233h x x x x πππ=+--+++=21cos(2)1233sin(2)2232x x ππ++-++=1212cos(2)sin(2)22323x x ππ+-++=22[cos(2)sin(2)]222323x x ππ+-++=11cos(2)2212x π++max()22h x ∴=+这时111122,.1224x k x k k Z ππππ+==-∈.此处,若转化为两角和与差的正弦公式不仅麻繁,而且易错,请读者一试. 五.与辅助角有关的应用题与辅助角有关的应用题在实际中也比较常见,而且涉及辅角的范围,在相应范围内求三角函数的最值往往是个难点.例7 如图3,记扇OAB 的中心角为45︒,半径为1,矩形PQMN 内接于这个扇形,求矩形的对角线l 的最小值.解:连结OM,设∠AOM=θ.则MQ=sin θ,OQ=cos θ,OP=PN=sin θ.PQ=OQ-OP=cos sin θθ-.222l MQ PQ =+=22sin (cos sin )θθθ+-=31(sin 2cos 2)22θθ-+=13sin(2)22θϕ-+,其中11tan 2ϕ=,1(0,)2πϕ∈,11arctan 2ϕ=. 04πθ<<,111arctan2arctan .222πθϕ∴<+<+2min322l∴=-,min 12l -=. θNBMAQPO图3所以当11arctan 422πθ=-时, 矩形的对角线l的最小值为12-.。