第一章 算法问题求解基础 (2)
- 格式:ppt
- 大小:388.00 KB
- 文档页数:28
高中数学第一部分必备知识点第二部分学习难点必修1知识点重难点高考考点第一章:集合与函数1.1.1、集合1.1.2、集合间的基本关系1.1.3、集合间的基本运算1.2.1、函数的概念1.2.2、函数的表示法1.3.1、单调性与最大(小)值1.3.2、奇偶性重点:1、集合的交、并、补等运算。
2、函数定义域的求法3、函数性质难点:函数的性质1、集合的交、并、补等运算。
2、集合间的基本关系3、函数的概念、三要素及表示方法4、分段函数5、奇偶性、单调性和周期性第二章:基本初等函数(Ⅰ)2.1.1、指数与指数幂的运算2.1.2、指数函数及其性质2.2.1、对数与对数运算2..2.2、对数函数及其性质2.3、幂函数重点:1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算难点:1、指数函数与对数函数相结合2、指数对数与不等式、导数、三角函数等结合1、指数函数的图像与性质2、对数函数的图像与性质3、特殊的幂函数的图像与性质4、指数、对数的运算5、数值大小的比较6、习惯与不等式、导数、三角函数等结合,难度较大第三章:函数的应用3.1.1、方程的根与函数的零点3.1.2、用二分法求方程的近似解3.2.1、几类不同增长的函数模型3.2.2、函数模型的应用举例重点:1、零点的概念2、二分法求方程近似解的方法难点:1、函数模型2、函数零点与导数,含有字母的参数相结合1、零点的概念2、二分法必修2知识点重难点高考考点第一章:空间几何体1、空间几何体的结构2、空间几何体的三视图和直观图3、空间几何体的表面积与体积重点:1、认识柱、锥、台、球及其简单组合体的结构特征2、几何体的三视图和直观图3、会利用公式求一些简单几何体的表面积和体积难点:空间想象能力1、几何体的三视图和直观图2、空间几何体的表面积与体积第二章:点、直线、平面之间的位置关系(重点)1、空间点、直线、平面之间的位置关系2、直线、平面平行的判定及其性质3、直线、平面垂直的判定及其性质重点:1、线面平行、面面平行的有关性质和判定定理2、证明线面垂直3、点到平面的距离难点:1、线面垂直2、点到平面的距离1、以选择填空的形式考查线与面、面与面的平行关系,考查线面位置的关系2、以解答的形式考查线与面、面与面的位置3、证明线面垂直4、点到平面的距离第三章:直线与方程1、直线的倾斜角与斜率2、直线方程3、直线的交点坐标与距离公式重点:1、初步建立代数方法解决几何问题的观念2、正确将几何条件与代数表示进行转化3、掌握直线方程并会用于定理地研究点与直线、直线与直线的位置关系。
第一章的题目填空题1、常见的机器学习算法有_________、___________、___________(随意列举三个)答:逻辑回归、最大熵模型、k-近邻模型、决策树、朴素贝叶斯分类器、支持向量机、高斯混合模型、隐马尔可夫模型、降维、聚类、深度学习2、sklearn.model_selection中的train_test_split函数的常见用法为______,______,______,______ = train_test_split(data,target)(填写测试集和训练集名称,配套填写,例如x_train,x_test)答:x_train x_test y_train y_test3、根据机器学习模型是否可用于生成新数据,可以将机器学习模型分为_________和_________。
答:生成模型判别模型4、训练一个机器学习模型往往需要对大量的参数进行反复调试或者搜索,这一过程称为______。
其中在训练之前调整设置的参数,称为_________。
答:调参超参数5、根据样本集合中是否包含标签以及半包含标签的多少,可以将机器学习分为____________、____________和______________。
答:监督学习半监督学习无监督学习判断题1、根据模型预测输出的连续性,可以将机器学习算法适配的问题划分为分类问题和线性问题。
(F)(回归问题)2、决策树属于典型的生成模型。
(F)(判别模型)3、降维、聚类是无监督学习算法(T)4、当我们说模型训练结果过拟合的时候,意思是模型的泛化能力很强(F)(很差)5、训练误差和泛化误差之间的差异越小,说明模型的泛化性能越好。
(T)选择题1、以下属于典型的生成模型的是(D)A、逻辑回归B、支持向量机C、k-近邻算法D、朴素贝叶斯分类器2、以下属于解决模型欠拟合的方法的是(C)A、增加训练数据量B、对模型进行裁剪C、增加训练过程的迭代次数D、正则化3、构建一个完整的机器学习算法需要三个方面的要素,分别是数据、模型、(A)。
大学计算机基础知识点第一章计算思维与计算机1、三大科学思维——理论思维(以数学为基础的理论思维)、实验思维以物理为基础的实验思维、计算思维2、计算思维是运用计算机科学的基础概念进行问题求解、系统设计、以及人类行为理解等涵盖计算机科学之广度的一系列思维活动.3、计算思维的本质:抽象+自动化4、计算机是一种能存储程序和数据,自动执行程序、快速而精确地完成对各种数字化信息处理的电子设备5、1946年(美)宾夕法尼亚大学第一台数字电子计算机 ENIAC诞生。
6、按照计算机所使用的逻辑部件将计算机的发展分为四代:第一代:(1946-1957) 电子管时代第二代:(1958-1964) 晶体管时代第三代:(1965-1970) 中小规模集成电路第四代:(1971-至今) 大规模、超大规模集成电路(出现网络,使用面日益广泛)7、存储程序的工作原理是:在计算机中设置存储器,将程序和数据存放到存储器中,计算机按照程序指定的逻辑顺序依次取出存储器中的内容进行处理,直到得出结果。
计算机有两个基本能力:一是能够存储程序和数据二是能够自动地执行程序程序(Program) :是指可以连续执行的一条条指令的集合指令(Instruction) :是指计算机完成某一种操作的命令指令是一组二进制代码操作码:指出进行什么操作地址码:是规定操作数的值或地址、操作结果的地址及下一条指令的地址等计算机硬件系统第二章⏹数制(Numbering System)即表示数值的方法,有进位计数制和非进位计数制两种⏹进位计数制的基本特点如下:☐使用固定个数的数码表示数值的大小☐逢R进一☐采用位权表示法数制的转换二进制、八进制、十六进制和十进制之间的转换信息的存储单位(位、字节)除字节外,还有千字节(KB)、兆字节(MB)、吉字节(GB)、太字节(TB),拍字节(PB)。
它们的换算关系原码、反码、补码之间的转换ASCII(American Standard Code for Information Interchange)码,即美国标准信息交换代码。
一、选择题1.杨辉是我国南宋末年的一位杰出的数学家.在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角形数阵(如图所示),称做“开方做法本源”,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果.它比西方的“帕斯卡三角形”早了393年.若用i j a -表示三角形数阵的第i 行第j 个数,则1003a -=( )A .5050B .4851C .4950D .50002.10个人排队,其中甲、乙、丙、丁4人两两不相邻的排法A .5457A A 种 B .1010A -7474A A 种 C .6467A A 种D .6466A A 种3.下列四个组合数公式:对,n k N ∈,约定0001C ==!,有(1)(0)!kk n nP C k n k =≤≤(2)(0)k n kn n C C k n -=≤≤ (3)11(1)k k n n k C C k n n--=≤≤ (4)111(1)kkk n n n C C C k n ---=+≤≤ 其中正确公式的个数是( ) A .4个B .3个C .2个D .1个4.将红、黄、蓝三种颜色的三颗棋子分别放入33⨯方格图中的三个方格内,如图,要求任意两颗棋子不同行、不同列,则不同方法共有几种( )A .12B .16C .24D .365.若2020220200122020(12)x a a x a x a x -=+++⋯+,则下列结果不正确的是( )A .01220201a a a a +++⋯+=B .20201352019132a a a a -++++⋯+=C .20200242020132a a a a ++++⋯+=D .202012220201222a a a ++⋯+=- 6.从20名同学中选派3人分别参加数学、物理学科竞赛,要求每科竞赛都有人参加,而且每人只能参加一科竞赛.记不同的选派方式有n 种,则n 的计算式可以是( ) A .3203CB .3206CC .3202AD .3203A ÷7.5250125(21)(1)(1)(1)x a a x a x a x -=+-+-+⋯+-,则2a =( )A .40B .40-C .80D .80-8.有5位同学参加青少年科技创新大赛的3个不同项目,要求每位同学参加一个项目且每个项目至少有一位同学,则不同的参加方法种数为( ) A .80B .120C .150D .3609.甲、乙、丙、丁4人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是( ) A .840B .2226C .2100D .235210.5(3)(2)x x -+的展开式中3x 的系数为( ) A .10B .40-C .200D .24011.已知5250125(12)...x a a x a x a x +=++++,则512025...222a a a a ++++的值为( ) A .32 B .1 C .81D .6412.为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为( ) A .18B .24C .30D .36二、填空题13.函数()y f x =的定义域D 和值域A 都是集合{12,3},的非空真子集,如果对于D 内任意的x ,总有()()x f x xf x ++的值是奇数,则满足条件的函数()y f x =的个数是_____;14.A ,B ,C ,D ,E ,F 六名同学参加一项比赛,决出第一到第六的名次.A ,B ,C 三人去询问比赛结果,裁判对A 说:“你和B 都不是第一名”;对B 说:“你不是最差的”;对C 说:“你比A ,B 的成绩都好”,据此回答分析:六人的名次有_____________种不同情况.15.有5本不同的书,全部借给3人,每人至少1本,共有______种不同的借法.16.6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项是_______________. 17.将编号为1,2,3,4,5,6,7的七个小球放入编号为1,2,3,4,5,6,7的七个盒中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为______.18.六位同学坐在一排,现让六位同学重新坐,恰有两位同学坐自己原来的位置,则不同的坐法有________种(用数字回答). 19.若212626xx C C -=,则x =__________.20.甲、乙、丙等7人排成一排,甲站最中间,乙丙相邻,且乙、丙与丁均不相邻,共有______种不同排法.(用数字作答)三、解答题21.用数字1,2,3,4,5组成没有重复数字的数,问 (1)能够组成多少个五位奇数? (2)能够组成多少个正整数?(3)能够组成多少个大于40000的正整数?22.若2nx⎛+ ⎝展开式的二项式系数之和是64.(1)求n 的值;(2)求展开式中的常数项.23.一场小型晚会有3个唱歌节目和2个相声节目,要求排出一个节目单. (1)2个相声节目要排在一起,有多少种排法? (2)2个相声节目彼此要隔开,有多少种排法?(3)第一个节目和最后一个节目都是唱歌节目,有多少种排法? (4)前3个节目中要有相声节目,有多少种排法? (要求:每小题都要有过程,且计算结果都用数字表示) 24.已知数列{}n a 的首项为1,记()()()()120122123, 111nn n n nn F x n a C x a C x x a C x x --=-+-+-()11111n n n nn n n n a C x x a C x --+++-+.(1)若数列{}n a 是公比为3的等比数列,求()1, 2020F -的值;(2)若数列{}n a 是公差为2的等差数列,求证:(), 2020F x 是关于x 的一次多项式.25.已知21nx x ⎛⎫- ⎪⎝⎭展开式的二项式系数的和比()732a b +展开式的二项式系数的和大128.(1)求n 的值.(2)求21nx x ⎛⎫- ⎪⎝⎭展开式中的系数最大的项和系数最小的项26.3名男生,4名女生,按照不同的要求排队,求不同的排队方案的方法种数.(要求每问要有适当的分析过程,列式并算出答案) (1)选其中5人排成一排;(2)排成前后两排,前排3人,后排4人; (3)全体站成一排,男、女各站在一起;(4)全体站成一排,男生不能站在一起; (5)全体站成一排,甲不站排头也不站排尾.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】依据二项展开式系数可知,得到第i 行第j 个数应为11j i C --,即可求得1003a -的值.【详解】依据二项展开式系数可知,第i 行第j 个数应为11j i C --, 故第100行第3个数为299999848512C ⨯== 故选:B . 【点睛】本题考查二项展开式的应用,其中解答中得出第i 行第j 个数应为11j i C --是解答的关键,着重考查推理与运算能力,属于基础题.2.C解析:C 【分析】不相邻问题采用“插空法”. 【详解】解:∵10个人排成一排,其中甲、乙、丙、丁4人两两不相邻排成一排, ∴采用插空法来解,另外六人,有66A 种结果,再在排列好的六人的七个空档里,排列甲、乙、丙、丁, 有47A 种结果,根据分步计数原理知共有66A •47A , 故选C . 【点睛】本题考查排列组合及简单计数问题,在题目中要求元素不相邻,这种问题一般采用插空法,先排一种元素,再在前面元素形成的空档,排列不相邻的元素.3.A解析:A 【分析】分别将组合数和排列数写成阶乘的形式,计算每个等式的两边并判断等式是否成立. 【详解】A .()0!k kk n n nk k P P C k n P k ==≤≤,等式成立;B .()()!0!!!k k n nP n C k n k n k k ==≤≤-⨯,()()()()()()!!0!!!!!n k n k n nP n n Ck n n k k n k n n k n k --===≤≤-⨯---⨯-, 所以(0)kn kn n C C k n -=≤≤成立;C .()()()()1!!(1)!!!!1!k k n n n P k k k n C k n n n k n n k k n k k -=⋅=⋅=≤≤-⨯-⨯-, ()()()()1111(1!1!!1)!1k n k n n P k n k k Ck n -----==-≤-≤⨯-,所以11(1)k k n n k C C k n n --=≤≤成立; D .()()()()()()1111111!1!!1!1!!!1!k k k k n n n n n n P P k k n k k Cn k k C--------=+=+=---⨯-⨯-+ ()()()()1!(1!!!)!!k n n n n k k C n k k n k k n k ⎡⎤-⎡⎤=-+==⎢⎥⎣⎦-⨯-⨯⎢≤⎥≤⎣⎦,所以111(1)k k k n n n C C C k n ---=+≤≤成立.故选A. 【点睛】本题考查排列数、组合数公式的运算化简,难度一般.注意排列组合中两个计算公式的使用:()()()!!,!!!!!n m mmn n nn P P n n P C n m n m m n m m ====---⨯. 4.D解析:D 【分析】直接利用乘法原理计算得到答案. 【详解】第一颗棋子有339⨯=种排法,第二颗棋子有224⨯=种排法,第三颗棋子有1种排法, 故共有94136⨯⨯=种排法. 故选:D. 【点睛】本题考查了乘法原理,意在考查学生的应用能力.5.B解析:B 【分析】令1x =,得到0120201a a a ++⋯+=,令1x =-,求得202001220203a a a a =-++⋯+,令0x =,求得01a =,进而逐项判定,即可求解.【详解】由题意,二项展开式2020220200122020(12)x a a x a x a x -=+++⋯+,令1x =,可得01220202020(12)1a a a a +++⋯+-==,①令1x =-,可得2020012202020203(123)a a a a a -=+-++⋯+=,②令0x =,可得20020(10)1a =-=,③由①-②,可得20201352019132a a a a -+++⋯+=, 由①+②,可得2020024*******a a a a ++++⋯+=, 令12x =,可得20202020120220201(12)12222a a a a +++⋯+=-⨯=, 所以202012220201222a a a ++⋯+=-. 综上可得,A 、C 、D 是正确的,B 是错误的. 故选:B. 【点睛】本题主要考查了二项展开式的系数问题的求解,其中解答中合理利用二项展开式的形式,合理赋值是解答的关键,着重考查推理与计算能力.6.B解析:B 【分析】先从20名同学中选派3人,再分为两类:第一类:2人参加数学,1人参加物理竞赛,第二类:1人参加数学,2人参加物理竞赛,结合分步计数原理,即可求解. 【详解】由题意,从20名同学中选派3人,共有320C 种不同的选法, 又由要求每科竞赛都有人参加,而且每人只能参加一科竞赛, 可分为两类:第一类:2人参加数学,1人参加物理竞赛,共有233C =中不同的选法; 第二类:1人参加数学,2人参加物理竞赛,共有133C =中不同的选法, 综上可得,不同的选派方式共有332020(33)6C C +⋅=⋅. 故选:B. 【点睛】本题主要考查了分步计数原理,以及排列、组合的综合应用,其中解答中选出3人后,合理分类求解是解答的关键,着重考查分析问题和解答问题的能力.7.A解析:A 【分析】易得[]55(21)2(1)1x x --=+,求出展开式通项后可得55152(1)rrr r T C x --+=⋅⋅-,令3r =可得出2a 的值. 【详解】由于[]55(21)2(1)1x x --=+,所以展开式的通项为:[]5551552(1)12(1)rrr r r r r T C x C x ---+=⋅-⋅=⋅⋅-,令3r =可得:322352(1)T C x =⋅⋅-,则3225240a C =⋅=. 故选:A . 【点睛】本题考查二项式定理的应用,解题关键是得出[]55(21)2(1)1x x --=+进而进行计算,考查逻辑思维能力和计算能力,属于常考题.8.C解析:C 【分析】根据题意,分清楚有两种情况,利用公式求得结果. 【详解】根据题意,可知有两种情况,一种是有三位同学去参加同一个项目,一种是有两个项目是两位同学参加,所以不同的参加方法种数为22333535332210310661502C C C A A A ⋅⨯⋅+⋅=⨯+⨯=种, 故选:C. 【点睛】该题考查的是有关排列组合的综合题,涉及到的知识点有分类计数加法计数原理,排列组合综合题,属于中档题目.9.B解析:B 【分析】分成三类:一类每个台阶站1人;二类一个台阶站2人,一个台阶1人,一个台阶1人;三类一个台阶站2人,一个台阶站2人,分类用加法原理可得. 【详解】每个台阶站1人有47840A =,一个台阶站2人,一个台阶1人,一个台阶1人有23471260C A , 一个台阶站2人,一个台阶站2人有273126A 所以共有840+1260+126=2226故选:B. 【点睛】本题考查使用两个计数原理进行计数的基本思想:对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.10.B解析:B 【分析】首先将5(3)(2)x x -+拆开得到555((2)3(23))(2)x x x x x =+-+-+,得到5(3)(2)x x -+的展开式中3x 的系数与5(2)x +展开式中2x 项和3x 项的系数有关,化简求得结果. 【详解】555((2)3(23))(2)x x x x x =+-+-+,5(2)x +展开式中2x 项的系数为335280C ⋅=, 5(2)x +展开式中3x 项的系数为225240C ⋅=, 所以5(3)(2)x x -+的展开式中3x 的系数为8034040-⨯=-, 故选:B. 【点睛】该题考查的是有关二项式定理的问题,涉及到的知识点有求两个二项式乘积展开式的系数问题,在解题的过程中,注意分析与哪些项有关,属于简单题目.11.A解析:A 【分析】根据所求与已知的关系,令12x =,即可求得答案. 【详解】5250125(12)...x a a x a x a x +=++++,∴令12x =,即可得555120251...122322222a a a a ⎛⎫++++=+⨯== ⎪⎝⎭.故选:A 【点睛】本题考查二项式定理的应用,考查理解辨析能力与运算求解能力,属于基础题.12.C解析:C 【分析】由甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,再去掉丙、丁两名专家在同一地工作的排列数,即可得到答案. 【详解】因为甲、乙两名专家必须安排在同一地工作,此时甲、乙两名专家 看成一个整体即相当于一个人,所以相当于只有四名专家,先计算四名专家中有两名在同一地工作的排列数,即从四个中选二个和 其余二个看成三个元素的全排列共有:2343C A ⋅种; 又因为丙、丁两名专家不能安排在同一地工作,所以再去掉丙、丁两名专家在同一地工作的排列数有33A 种, 所以不同的分配方法种数有:23343336630C A A ⋅-=-= 故选:C 【点睛】本题考查了排列组合的应用,考查了间接法求排列组合应用问题,属于一般题.二、填空题13.【分析】化简得因此中至少一个为奇数再分两种情况讨论得解【详解】因为所以中至少一个为奇数定义域为的都可以有种;定义域为的函数所以有种;所以共种故答案为:29【点睛】关键点睛:解答本题有两个关键:其一是 解析:29【分析】化简得()()(1)(()1)1,x f x xf x x f x ++=++-因此(),f x x 中至少一个为奇数,再分两种情况讨论得解. 【详解】因为()()(1)(()1)1,x f x xf x x f x ++=++- 所以(),f x x 中至少一个为奇数,定义域为{1},{3},{1,3}的都可以,有3333=15++⨯种; 定义域为{}{}{}2,1,2,2,3的函数(2){1,3}f ∈, 所以有23223=14+⨯+⨯种; 所以共29种. 故答案为:29 【点睛】关键点睛:解答本题有两个关键:其一是分析出(),f x x 中至少一个为奇数,其二是合理分类讨论.14.【分析】根据裁判所说对的名次分两类:第一类是获最后一名再考虑且在前面最后排剩下3人;第二类是没有获得最后一名此时可同时考虑获得前5名根据加法原理即可得到答案【详解】根据裁判所说对的名次分两类:第一类 解析:180【分析】根据裁判所说,对A 的名次分两类:第一类是A 获最后一名,再考虑B ,C 且C 在B 前面,最后排剩下3人;第二类是A 没有获得最后一名,此时可同时考虑A ,B ,C 获得前5名,根据加法原理即可得到答案. 【详解】根据裁判所说,对A 的名次分两类:第一类是A 获最后一名,再考虑B ,C ,从前5名中选2两个名次给B ,C 且C 在B 前面有25C 种,最后排D ,E ,F 有33A 种,根据分步计数原理,共有235360C A =种;第二类是A 没有获得最后一名,此时可同时考虑A ,B ,C 获得前5名中的3个名次 且C 名次在A ,B 之前有3252C A 种,最后排D ,E ,F 有33A 种,根据分步计数原理, 共有323523120C A A =种;根据分类计数原理,六人的名次共有60120180+=种不同情况. 故答案为:180 【点睛】本题主要考查分类计数原理和分步计数原理,注意对同学A 进行分类讨论,属于中档题.15.150【分析】将5本不同的书分成满足题意的3组有113与221两种分别计算可得分成113与分成221时的分组情况种数相加可得答案【详解】解:将5本不同的书分成满足题意的3组有113与221两种分成1解析:150 【分析】将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分别计算可得分成1、1、3与分成2、2、1时的分组情况种数,相加可得答案. 【详解】解:将5本不同的书分成满足题意的3组有1,1,3与2,2,1两种,分成1、1、3时,有3353C A 种分法,分成2、2、1时,有22353322C C A A 种分法,所以共有223335353322150C C C A A A +=种分法, 故答案为:150. 【点睛】本题考查组合、排列的综合运用,解题时,注意加法原理与乘法原理的使用.16.60【分析】由题意可得二项展开式的通项要求展开式的常数项只要令可求代入可求【详解】解:由题意可得二项展开式的通项为:令可得:此时即的展开式中的常数项为60故答案为:60【点睛】本题考查了二项展开式项解析:60 【分析】由题意可得,二项展开式的通项26161(2)()(1)2r r r rr T C x x-+=-=-61236rr r C x --,要求展开式的常数项,只要令1230r -=可求r ,代入可求 【详解】解:由题意可得,二项展开式的通项为: 2661231661(2)()(1)2r r r r r r rr T C x C x x---+=-=-,令1230r -=,可得:4r =,此时2456260T C ==,即6212x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为60. 故答案为:60. 【点睛】本题考查了二项展开式项的通项公式的应用,考查解题运算能力.17.315【分析】根据题意有且只有三个盒子的编号与放入的小球的编号相同再由排列组台及计数原理即可求解【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同共种不同取法;第二步:再将剩下的个小球放入到解析:315 【分析】根据题意,有且只有三个盒子的编号与放入的小球的编号相同,再由排列组台及计数原理,即可求解. 【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同,共3735C =种不同取法; 第二步:再将剩下的4个小球放入到4个盒子中,且小球编号与放入的小球的编号不相同,共()113219C C +=种不同放法;因而有且只有三个盒子的编号与放入的小球的编号相同的不同放法种数为359315⨯=种. 故答案为:315 【点睛】本题考查了排列组合及计数原理,考查理解辨析能力与运算求解能力,属中档题.18.135【分析】根据题意先确定2个人位置不变共有种选择再确定4个人坐4个位置但是不能坐原来的位置计算得到答案【详解】根据题意先确定2个人位置不变共有种选择再确定4个人坐4个位置但是不能坐原来的位置共有解析:135 【分析】根据题意先确定2个人位置不变,共有2615C =种选择,再确定4个人坐4个位置,但是不能坐原来的位置,计算得到答案. 【详解】根据题意先确定2个人位置不变,共有2615C =种选择.再确定4个人坐4个位置,但是不能坐原来的位置,共有33119⨯⨯⨯=种选择, 故不同的坐法有159135⨯=. 故答案为:135. 【点睛】本题考查了分步乘法原理,意在考查学生的计算能力和应用能力.19.1或9【分析】由再根据组合的互补性质可得即可解得的值【详解】解:由可得:解得:又根据组合的互补性质可得可得:解得:故答案为:1或9【点睛】本题考查了组合及组合数公式的应用掌握组合数的性质和组合数公式解析:1或9 【分析】由212626x x C C -=,再根据组合的互补性质可得26(21)2626x x C C --=,即可解得x 的值.【详解】解:由212626x x C C -=,可得:21x x =-,解得:1x =,又根据组合的互补性质可得26(21)2626x x C C --=,可得:26(21)x x =--,解得:9x =. 故答案为:1或9. 【点睛】本题考查了组合及组合数公式的应用,掌握组合数的性质和组合数公式是解题的关键.20.【分析】根据乙丙相邻所以捆在一起有种排法又因为乙丙与丁均不相邻且甲站最中间则剩余3人全排列从产生的4个空中选2个将乙丙与丁排列再用分类乘法计数原理求解【详解】因为乙丙相邻所以捆在一起有种排法又因为乙 解析:144【分析】根据乙丙相邻,所以捆在一起有22A 种排法,又因为乙、丙与丁均不相邻,且甲站最中间,则剩余3人全排列,从产生的4个空中选2个,将乙、丙与丁排列,再用分类乘法计数原理求解. 【详解】因为乙丙相邻,所以捆在一起有22A 种排法,又因为乙、丙与丁均不相邻,因为甲站最中间,则剩余3人全排列有33A 种排法,,从产生的4个空中选2个,将乙、丙与丁排列,有24A 种排法,所以共有232234144A A A ⨯⨯=种排法故答案为:144本题主要考查分类乘法计数原理,还考查了运算求解的能力,属于中档题.三、解答题21.(1)72;(2)325;(3)48; 【分析】(1)首先排个位,从3个奇数中选1个排在个位,再将其余4个数全排列即可; (2)根据题意,按数字的位数分5种情况讨论,求出每种情况下数字的数目,由加法原理计算可得答案;(3)大于40000的正整数,即最高位为4或5,其余数字全排列即可; 【详解】解:(1)首先排最个位数字,从1、3、5中选1个数排在个位有133A =种,其余4个数全排列有4424A =种,按照分步乘法计数原理可得有143472A A =个五位奇数; (2)根据题意,若组成一位数,有5种情况,即可以有5个一位数; 若组成两位数,有2520A =种情况,即可以有20个两位数; 若组成三位数,有3560A =种情况,即可以有60个三位数; 若组成四位数,有45120A =种情况,即可以有120个四位数; 若组成五位数,有55120A =种情况,即可以有120个五位数; 则可以有52060120120325++++=个正整数;(3)根据题意,若组成的数字比40000大的正整数,其首位数字为5或4,有2种情况; 在剩下的4个数,安排在后面四位,共有142448C A =种情况, 则有48个比40000大的正整数; 【点睛】本题考查排列组合的应用,涉及分步、分类计数原理的应用,属于基础题. 22.(1)6;(2)60 【分析】由二项式系数和求出指数n ,再写出展开式通项后可得常数项. 【详解】(1)由题意得,二项式系数之和为012264n n n n n n C C C C ++++==,6n ∴=;(2)通项公式为366622166(2)2r r rrrr r T C x xC x----+==,令3602r-=,得4r = ∴展开式中的常数项为4464256(2)60T C x x --==.该题主要考查二项式定理,在()na b +展开式中二项式系数为2n ,只与指数n 有关,求特定项时要注意通项的正确应用.23.(1)48;(2)72;(3)36;(4)108. 【分析】(1)将2个相声节目进行捆绑,与其它3个节目形成4个元素,利用捆绑法可求得排法种数;(2)将2个相声节目插入其它3个节目所形成的空中,利用插空法可求得排法种数; (3)第一个节目和最后一个节目都是唱歌节目,则3个节目排在中间,利用分步乘法计数原理可求得排法种数;(4)在5个节目进行全排的排法种数中减去前3个节目中没有相声节目的排法种数,由此可求得结果. 【详解】(1)将2个相声节目进行捆绑,与其它3个节目形成4个元素,然后进行全排, 所以,排法种数为242448A A =种;(2)将2个相声节目插入其它3个节目所形成的4个空中,则排法种数为323472A A =种; (3)第一个节目和最后一个节目都是唱歌节目,则其它3个节目排在中间,进行全排, 由分步乘法计数原理可知,排法种数为233336A A =种;(4)在5个节目进行全排的排法种数中减去前3个节目中没有相声节目的排法种数, 可得出前3个节目中要有相声节目的排法种数为53253212012108A A A -=-=. 【点睛】本题考查排列组合综合问题,考查捆绑法、插空法、分步乘法计数原理以及间接法的应用,考查计算能力,属于中等题. 24.(1)1(2)证明见解析; 【分析】(1)根据13-=n n a ,得到()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n n nn nn n C x x C x x x x --++-+=-+=+求解.(2)易得21n a n =-,则(),F x n ()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C xx ,再转化为(),F x n ()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x ()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,利用二项式定理及组合数公式求解.【详解】(1)由题意得:13-=n n a ,∴()()()()()1220012,313131nn n n nn F x n C x C x x C x x --=-+-+-()()()()()1113131312n n nnn nn n C x x C x x x x --++-+=-+=+,∴()()20201,2020121F -=-=;(2)证明:若数列{}n a 是公差为2的等差数列,则21n a n =-.()()()()10111121,111---+=-+-++-+nn n n n nn n n n n n F x n a C x a C x x a C x x a C x ,()()()()()101222112114(1)12--=-++-++-+++nn n n n nn nn C x C x x C x n C x x ,()()10122211(1)--⎡⎤=-+-+-+++⎣⎦n n n n n n n n n C x C x x C x x C x()11222212(1)n n n n n n n C x x C x x nC x --⎡⎤-+-++⎣⎦,由二项式定理知,()()()10122211(1)11---+-+-=-+=⎡⎤⎣++⎦nn n n n nn n nnC x C x x C x x x x C x ,因为()()()()111!!!!1!!kk nn n n kC k n C k n k k n n k --⋅-=⋅=⋅=---,所以()1122212(1)---+-++n n n n n nn C x x C x nC x x ()112211111(1)------=-+-++n n n n n n n nC x x n x x nC x C()1012111111(1)n n n n n n n nx C x C x x C x -------=⎦-+-++⎡⎤⎣()11-=-+=⎡⎤⎣⎦n nx x x nx ,所以(),12F x n nx =+.(),202014040F x x =+.【点睛】本题主要考查二项式定理及其展开式以及组合数公式,等差数列,等比数列的通项公式,还考查了运算求解的能力,属于中档题.25.(1)8;(2)系数最大项,4570T x =,系数最小项656T x =-和7456T x =-【分析】(1)21nx x ⎛⎫- ⎪⎝⎭展开式的二项式系数和为2n ,()732a b +展开式的二项式系数和为72,根据条件可得到关于n 的等式求解出n 的值;(2)根据二项式系数的性质求得当r 为何值时,展开式的系数最大或最小,从而求解出对应的系数最大和最小的项. 【详解】(1)由条件可知:722128n -=,所以822n =,所以8n =;(2)因为21nx x ⎛⎫- ⎪⎝⎭的通项为:()163181r r rr T C x -+=⋅-⋅,由二项式系数的性质可知:当4r =时,21nx x ⎛⎫- ⎪⎝⎭展开式的系数最大,所以系数最大的项为4445870T C x x =⋅=, 当3r =或5时,21nx x ⎛⎫- ⎪⎝⎭展开式的系数最小,所以系数最小的项为3774856T C x x =-⋅=-和56856T C x x =-⋅=-. 【点睛】本题考查二项式定理的综合运用,难度一般.对于二项式系数kn C ,若n 为偶数时,中间一项2nn C 取得最大值;当n 为奇数时,中间两项1122,n n nnC C-+同时取得最大值.26.(1)2520;(2)5040;(3)288;(4)1440;(5)3600.【分析】相邻问题一般看作一个整体处理,利用捆绑法,不相邻问题一般用插空法,特殊位置优先考虑,即可求解. 【详解】解:(1)从7人中选其中5人排成一排,共有55752520C A =种排法; (2)排成前后两排,前排3人,后排4人,共有775040A =种排法; (3)全体站成一排,男、女各站在一起,属于相邻问题, 男生必须站在一起,则男生全排列,有33A 种排法, 女生必须站在一起,则女生全排列,有44A 种排法, 男生女生各看作一个元素,有22A 种排法;由分布乘法的计数原理可知,共有234234288A A A =种方法;(4)全体站成一排,男生不能站在一起,属于不相邻问题,先安排女生,有44A 种排法,把3个男生插在女生隔成的5个空位中,有35A 种排法, 由分布乘法的计数原理可知,共有43451440A A =种方法; (5)全体站成一排,男不站排头也不站排尾,则优先安排甲, 从除去排头和排尾的5个位置中安排甲,有15A 种排法, 再对剩余的6人进行全排列,有66A 种排法, 所以共有16563600A A =种方法. 【点睛】本题考查排列和组合的实际应用,涉及相邻和不相邻问题,利用了捆绑法、插空法和特殊位置优先考虑的方法,考查分析和计算能力.。
高考数学 选择题专题研究理科、文科通用(第一版)谢昌鹏 编著2008年2月第一章 选择题解法研究 1前言在高考数学试题中,选择题共12题,分值60分,占总分的40%。
高考选择题注重多个知识点的小型综合,渗透各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。
同时它又在全卷的开始部分,因此解选择题的快慢和成功率的高低对于能否进入最佳状态,以至于整个考试的成败起着举足轻重的作用。
赢得时间是高考获取高分的必要条件。
高考中快速准确解决选择题是取得高分的关键。
近年高考选择题的命题特点是:“多考一点想,少考一点算”。
因此,必须从解题法入手,才能提高选择题的解题效率。
每道选择题所考查的知识点一般为2~5个,以3~4个居多,故选择题组共考查知识点可达到近50个之多。
若每题均使用常规方法求解,按3分钟/题的最快速度计算,至少也需半个小时。
而使用解题技巧,可将时间缩短一半,效率提高一倍以上。
我们来看以下两个例子:【引例1】化简cos sin 44cos sin 44x x x x ππππ⎛⎞⎛⎞+−+⎜⎟⎜⎟⎝⎠⎝⎠⎛⎞⎛⎞+++⎜⎟⎜⎟⎝⎠⎝⎠的结果是( )。
(A )tan x − (B )tan2x(C )tan 2x (D )cot x 如果用常规方法计算,解法如下:解:原式coscos sin sin sin cos sin cos 4444coscos sinsin sincos sin cos4444x x x x x x x x ππππππππ−−−=−++cos sin cos sin tan 2222x x x xx −−−===−故选(A )。
按照常规方法,该题考查的是三角函数和差化积的应用。
先将原式展开,再合并同类项得出答案。
耗时约2~3分钟。
但使用选择题速解法,仅需半分钟!(解答过程见【例10】。
)【引例2】已知函数1xy x =−,那么( )。
一、选择题1.将甲、乙、丙、丁四位辅导老师分配到A 、B 、C 、D 四个班级,每个班级一位老师,且甲不能分配到A 班,丁不能分配到B 班,则共有分配方案的种数为( ) A .10B .12C .14D .242.杨辉是我国南宋末年的一位杰出的数学家.在他著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角形数阵(如图所示),称做“开方做法本源”,现在简称为“杨辉三角”,它是杨辉的一大重要研究成果.它比西方的“帕斯卡三角形”早了393年.若用i j a -表示三角形数阵的第i 行第j 个数,则1003a -=( )A .5050B .4851C .4950D .50003.新冠疫情期间,为支援社区抗疫工作,现将6名医护人员安排到4个社区,每个社区至少安排1名医护人员,则不同的安排方案共有( ) A .2640种B .4800种C .1560种D .7200种4.排一张5个独唱和3个合唱的节目单,如果合唱不排两头,且任何两个合唱不相邻,则这种事件发生的概率是( ) A .14B .1144C .18D .1145.1180被9除的余数为( ) A .1- B .1 C .8 D .8-6.若2020220200122020(12)x a a x a x a x -=+++⋯+,则下列结果不正确的是( )A .01220201a a a a +++⋯+=B .20201352019132a a a a -++++⋯+=C .20200242020132a a a a ++++⋯+=D .202012220201222a a a ++⋯+=- 7.从5名学生中选出4名分别参加数学、物理、化学、外语竞赛,其中A 不参加物理、化学竞赛,则不同的参赛方案种数为( ) A .720B .360C .72D .以上都不对8.某校高二年级共有六个班,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为( )A .2264A CB .22642A CC .2264A AD .262A9.现有甲、乙、丙、丁、戌5人参加社区志愿者服务活动,每人从事团购、体温测量、进出人员信息登记、司机四项工作之一,每项工作至少有一人参加.若甲、乙不会开车但能从事其他三项工作,丙、丁、戌都能胜任四项工作,则不同安排方案的种数是( ) A .234 B .152C .126D .10810.有4个不同的小球放入3个盒子中,每个盒子至少放一个小球,则不同的放法共有( ) A .12种 B .18种 C .24种 D .36种 11.现有6位同学站成一排照相,甲乙两同学必须相邻的排法共有多少种?( ) A .720 B .360C .240D .12012.从1,2,3,4,…,9这9个整数中同时取出4个不同的数,其和为奇数,则不同取法种数有( ) A .60B .66C .72D .126二、填空题13.某学校安排5名高三教师去3个学校进行交流学习,且每位教师只去一个学校,要求每个学校至少有一名教师进行交流学习,则不同的安排方式共有______种.14.北京《财富》全球论坛期间,某高校有8名志愿者参加接待工作.若每天排早、中、晚三班,每班至少2人,每人每天必须值一班且只值一班,则开幕式当天不同的排班种数为______.15.若将五本不同的书全部分给三个同学,每人至少一本,则有________种不同的分法. 16.《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E 、F 必须排在一起,则这六项任务的不同安排方案共有_____种.17.如图所示的五个区域中,中心区E 域是一幅图画,现要求在其余四个区域中涂色.........,有四种颜色可供选择.要求每个区域只涂一种颜色且相邻区域所涂颜色不同,则不同的涂色方法种数为______.18.设{}1234,,,1,0,2x x x x ∈-,那么满足123423x x x x ≤+++≤的所有有序数组()1234,,,x x x x 的组数为_________.19.将编号为1,2,3,4,5,6,7的七个小球放入编号为1,2,3,4,5,6,7的七个盒中,每盒放一球,若有且只有三个盒子的编号与放入的小球的编号相同,则不同的放法种数为______.20.若212626xx C C -=,则x =__________.三、解答题21.从1到7的七个数字中取二个偶数三个奇数,排成一个无重复数字的五位数试问:(先列式,再计算,用数字作答) (1)共有多少个五位数?(2)其中偶数排在一起的有几多少个?(3)其中偶数排在一起、奇数也排在一起的有多少个? (4)其中两个偶数不相邻有几多少个?22.现有2位男生和3位女生共5位同学站成一排.(用数字作答) (1)若2位男生相邻且3位女生相邻,则共有多少种不同的排法? (2)若男女相间,则共有多少种不同的排法?(3)若男生甲不站两端,女生乙不站最中间,则共有多少种不同的排法?23.袋中有相同的5个白球和4个黑球,从中任意摸出3个,求下列事件发生的概率. (1)摸出的全是白球或全是黑球、 (2)摸出的白球个数多于黑球个数.24.已知n 为给定的正整数,设201223nn n x a a x a x a x ⎛⎫+=++++ ⎪⎝⎭,x ∈R .(1)若4n =,求01,a a 的值;(2)若13x =,求0()nkk k n k a x =-∑的值.25.(1)把6本不同的书分给4位学生,每人至少一本,有多少种方法? (2)由0,1,2,3,4,5这6个数字组成没有重复数字的四位偶数由多少个?(3)某旅行社有导游9人,其中3人只会英语,4人只会日语,其余2人既会英语,也会日语,现从中选6人,其中3人进行英语导游,另外3人进行日语导游,则不同的选择方法有多少种?26.已知n 为给定的正整数,t 为给定的实数,设(t +x )n =a 0+a 1x +a 2x 2+…+a n x n . (1)当n =8时.①若t =1,求a 0+a 2+a 4+a 6+a 8的值; ②若t =23,求数列{a n }中的最大值; (2)若t=23,当13x =时,求()0nkk k n k a x =-∑的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C 解析:C 【分析】分为甲分配到B 班和甲不分配到B 班两种情况来讨论分配方案种数,利用分类加法计数原理计算可得结果. 【详解】将分配方案分为甲分配到B 班和甲不分配到B 班两种情况: ①甲分配到B 班:有336A =种分配方案; ②甲不分配到B 班:有1122228A A A =种分配方案; 由分类加法计数原理可得:共有6814+=种分配方案. 故选:C . 【点睛】方法点睛:本题主要考查排列数的应用.常见求法有: (1)相邻问题采取“捆绑法”; (2)不相邻问题采取“插空法”; (3)有限制元素采取“优先法”;(4)特殊元素顺序确定问题,先让所有元素全排列,然后除以有限制元素的全排列数.2.B解析:B 【分析】依据二项展开式系数可知,得到第i 行第j 个数应为11j i C --,即可求得1003a -的值.【详解】依据二项展开式系数可知,第i 行第j 个数应为11j i C --, 故第100行第3个数为299999848512C ⨯== 故选:B . 【点睛】本题考查二项展开式的应用,其中解答中得出第i 行第j 个数应为11j i C --是解答的关键,着重考查推理与运算能力,属于基础题.3.C解析:C 【分析】本题首先可以将6名医护人员分为4组,共有65种分组方法,然后将分好的四组全排列,有24种情况,最后两者相乘,即可得出结果. 【详解】先将6名医护人员分为4组,有两种分组方法: 若分为3、1、1、1的四组,则有3620C =种分组方法;若分为2、2、1、1的四组,则有2226422245C C C A 种分组方法,则一共有204565种分组方法,再将分好的四组全排列,对应四个社区,有4424A =种情况, 则有65241560种不同的安排方式, 故选:C. 【点睛】本题考查通过排列组合求出所有的安排方案的数目,可分两步进行,先求出有多少种分组,再求出有多少种排列,考查计算能力,是中档题.4.D解析:D 【分析】首先计算所有可能的排法有88A ,再由于合唱节目不能相邻,先排列独唱节目,共有55A 种结果,合唱节目不能排在两头,在五个独唱节目形成的除去两头之外的四个空中选三个位置排列,共有34A 种结果,最后根据古典概率的概率计算公式计算出结果. 【详解】解:排一张5个独唱和3个合唱的节目单一共有8840320A =种,记合唱不排两头,且任何两个合唱不相邻的为事件M ,则由于合唱节目不能相邻,先排列独唱节目,共有55A 种结果,合唱节目不能排在两头,在五个独唱节目形成的除去两头之外的四个空中选三个位置排列,共有34A 种结果,根据分布乘法计数原理可得一共有53542880A A ⋅=种根据古典概型的概率公式得()288014032014P M == 故选:D 【点睛】本题考查古典概型的概率计算问题,分步计数原理,考查元素的不相邻问题,一般解决不相邻问题时,采用插空法,属于基础题.5.C解析:C 【分析】将1180转化为()11811-,利用二项式定理,即可得解. 【详解】()111180811=-()()()()210111210111110911111111111818118118111C C C C C =⋅+⋅⋅-+⋅⋅-++⋅⋅-+⋅-1210111110911111111181818181C C C C =-⋅+⋅++⋅-1211109111181818111811C C =-⋅+⋅++⨯-121110911118181811081811C C =-⋅+⋅++⨯+- 12111091111818181108180C C =-⋅+⋅++⨯+ 121110911118181811081728C C =-⋅+⋅++⨯++12111091111818181108172C C -⋅+⋅++⨯+可以被9整除,所以1180被9除的余数为8. 故选:C. 【点睛】本题考查利用二项式定理解决余数问题,将原式变形为()11811-是本题的解题关键,属于中档题.6.B解析:B 【分析】令1x =,得到0120201a a a ++⋯+=,令1x =-,求得202001220203a a a a =-++⋯+,令0x =,求得01a =,进而逐项判定,即可求解.【详解】由题意,二项展开式2020220200122020(12)x a a x a x a x -=+++⋯+,令1x =,可得01220202020(12)1a a a a +++⋯+-==,①令1x =-,可得2020012202020203(123)a a a a a -=+-++⋯+=,②令0x =,可得20020(10)1a =-=,③由①-②,可得20201352019132a a a a -+++⋯+=, 由①+②,可得2020024*******a a a a ++++⋯+=, 令12x =,可得20202020120220201(12)12222a a a a +++⋯+=-⨯=, 所以202012220201222a a a ++⋯+=-. 综上可得,A 、C 、D 是正确的,B 是错误的. 故选:B. 【点睛】本题主要考查了二项展开式的系数问题的求解,其中解答中合理利用二项展开式的形式,合理赋值是解答的关键,着重考查推理与计算能力.7.C解析:C 【分析】因为A 不参加物理、化学竞赛,它是一个特殊元素,故对A 参加不参加竞赛进行讨论,利用分类的思想方法解决,最后结果结合加法原理相加即可. 【详解】 解:根据题意,若选出4人中不含A ,则有44A 种;若选出4人中含有A ,则有313423C C A 种. 4313442372A C C A ∴+=.故选:C . 【点睛】本题主要考查排列、组合及简单计数问题,解排列、组合及简单计数问题时遇到特殊元素时,对特殊元素要优先考虑,属于中档题.8.B解析:B 【分析】先将4名学生均分成两组,注意重合的部分要去掉,再从6个班级中选出2个班进行排列,最后根据分步计数原理得到合要求的安排方法数. 【详解】解:先将4名学生均分成两组方法数为2412C , 再分配给6个年级中的2个分配方法数为26A ,∴根据分步计数原理合要求的安排方法数为224612C A .故选:B . 【点睛】本题先考查的是平均分组问题,是一个易出错的问题,解题的关键是看清题目的实质,把实际问题转化为数学问题,解出结果以后再还原为实际问题.9.C解析:C 【分析】分情况进行讨论,先计算“甲乙一起参加除了开车的三项工作之一”有多少种情况,再计算“甲和乙分别承担一份工作,丙、丁、戌三人中有两人承担同一份工作”和“甲或乙与丙、丁、戌三人中的一人承担同一份工作”的情况,相加即得. 【详解】由题,分情况讨论,甲乙一起参加除了开车的三项工作之一:133318C A =种; 甲乙不同时参加一项工作,又分为两种情况:①甲和乙分别承担一份工作,丙、丁、戌三人中有两人承担同一份工作,有:222 323323236C A A=⨯⨯⨯=种;②甲或乙与丙、丁、戌三人中的一人承担同一份工作:2112332272A C C A=种.由分类计数原理,可得共有183672126++=种.故选:C【点睛】本题考查计数原理,考查学生的逻辑推理能力.10.D解析:D【分析】先把小球分3组共有24C种分法,再将3组小球全排列,放入对应3个盒子即可.【详解】根据题意,分2步安排,第一步,把4个小球分成3组,其中1组2只,剩余2组各1只,分组方法有246C=种,第二步,把这3组小球全排列,对应3个盒子,有336A=种,根据分步计数原理可得所有的不同方法共有6636⨯=种.故选:D【点睛】本题主要考查了计数原理,排列与组合的应用,属于中档题.11.C解析:C【分析】6名同学排成一排,其中甲、乙两人必须排在一起,这是相邻问题,一般用“捆绑法”.将甲乙两名同学“捆绑”在一起,看成一个元素,再与剩下的4人一起全排列,根据分步计数原理即可得出结果.【详解】将甲乙“捆绑”在一起看成一个元素,与其余4人一起排列,而甲和乙之间还有一个排列,共有5252240A A=.故选:C.【点睛】本题考查了排列组合、两个基本原理的应用,相邻问题“捆绑法”求解,属于基础题. 12.A解析:A【分析】要使四个数的和为奇数,则取数时奇数的个数必须是奇数个,再根据排列组合及计数原理知识,即可求解.【详解】从1,2,3,4,…,9这9个整数中同时取出4个不同的数,其和要为奇数,则取数时奇数的个数必须是奇数个:所以共有1331545460C C C C+=种取法.故选:A【点睛】本题考查了排列组合及简单的计数问题,属于简单题.二、填空题13.150【分析】分2步分析:先将5名高三教师分成3组分2种情况分类讨论再将分好的三组全排列对应三个学校由分步计数原理计算可得答案;【详解】解:分2步分析:先将5名高三教师分成3组由两种分组方法若分成3解析:150【分析】分2步分析:先将5名高三教师分成3组,分2种情况分类讨论,再将分好的三组全排列,对应三个学校,由分步计数原理计算可得答案;【详解】解:分2步分析:先将5名高三教师分成3组,由两种分组方法,若分成3、1、1的三组,有3510C=种分组方法,若分成1、2、2的三组,有1225422215C C CA=种分组方法,则一共有101525+=种分组方法;再将分好的三组全排列,对应三个学校,有336A=种情况,则有256150⨯=种不同的安排方式;故答案为:150.【点睛】(1)解排列组合问题要遵循两个原则:一是按元素(或位置)的性质进行分类;二是按事情发生的过程进行分步.具体地说,解排列组合问题常以元素(或位置)为主体,即先满足特殊元素(或位置),再考虑其他元素(或位置).(2)不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③部分均匀分组,注意各种分组类型中,不同分组方法的求法.14.2940【分析】根据题意有两类分配方案第一类:224三组第二类:233三组分别求得排班种数再利用分类计数原理求解【详解】由8名志愿者根据早中晚三班且每班至少2人分为3组第一类:224三组共有种第二类解析:2940【分析】根据题意,有两类分配方案,第一类:2,2,4三组,第二类:2,3,3三组,分别求得排班种数,再利用分类计数原理求解.【详解】由8名志愿者,根据早、中、晚三班,且每班至少2人,分为3组.第一类:2,2,4三组,共有22438643221680C C CAA⋅=种,第二类:2,3,3三组,共有23338633221260C C CAA⋅=种,所以每人每天必须值一班且只值一班,则开幕式当天不同的排班种数168012602940+=.故答案为:2940【点睛】本题主要考查排列组合中的分组分配问题,还考查了分析求解问题的能力,属于中档题. 15.150【分析】先将五本书分成三堆有和种不同的分法再把三堆分给三个同学即得解【详解】由题意先将五本书分成三堆有和种不同的分法故有种分堆方式再分给三个同学有种不同方法故答案为:150【点睛】本题考查了排解析:150【分析】先将五本书分成三堆,有1,1,3和2,2,1种不同的分法,再把三堆分给三个同学即得解【详解】由题意,先将五本书分成三堆,有1,1,3和2,2,1种不同的分法故有1132215435312222C C C C C CA A+种分堆方式再分给三个同学,有113221354353132222()150C C C C C CAA A+=种不同方法故答案为:150【点睛】本题考查了排列组合综合应用,考查了学生综合分析,转化划归,数学运算能力,属于中档题16.【分析】由题意重点任务必须排在前三位分别讨论排在第一位第二位第三位的情况再将捆绑在一起与另外三个任务安排顺序即可得解【详解】由题意重点任务必须排在前三位必须排在一起分别讨论的位置:当排在第一位时排在解析:120【分析】由题意重点任务A必须排在前三位,分别讨论A排在第一位、第二位、第三位的情况,再将E、F捆绑在一起,与另外三个任务安排顺序即可得解.【详解】由题意重点任务A必须排在前三位,E、F必须排在一起,分别讨论A的位置:当A 排在第一位时,E 、F 排在一起则有22A 种方法,将E 、F 捆绑作为一个整体与另外三个任务全排列则有44A ,所以此时有2424=24321=48A A ⨯⨯⨯⨯种方案;当A 排在第二位时,先从另外三个任务中选一个排在第一位,则有13C ,E 、F 排在一起有22A 种方法,将E 、F 捆绑作为一个整体与另外两个任务全排列则有33A ,所以此时有123323=32321=36C A A ⨯⨯⨯⨯种方案;当A 排在第三位时,分E 、F 在A 左侧与右侧两种情况:当E 、F 在A 左侧时,E 、F二个任务全排列,另外三个任务在A 的右侧全排列,所以有2323232112A A =⨯⨯⨯=种;当E 、F 在A 右侧时,先将另外三个任务中的两个任务在左侧排列,再将E 、F 捆绑作为一个整体排列在右侧,最后与另外一个任务全排列有222322322224A A A =⨯⨯⨯=种;所以此种情况共有12+24=36种方案;综上可知,不同安排方案共有48+36+36=120种. 故答案为:120. 【点睛】本题考查了排列组合问题的实际应用,对由位置要求的元素进行优先安排,通过分离讨论的方法分析各种情况,属于中档题.17.84【分析】按照选取的颜色个数分类:(1)用四种颜色涂色颜色都不同;(2)用三种颜色或同色;(3)用两种颜色涂色同色同色根据分类甲法原理即可求出结论【详解】分三种情况:(1)用四种颜色涂色有种涂法;解析:84 【分析】按照选取的颜色个数分类:(1)用四种颜色涂色,,,,A B C D 颜色都不同;(2)用三种颜色,,A C 或,B D 同色;(3)用两种颜色涂色,,A C 同色,,B D 同色,根据分类甲法原理,即可求出结论. 【详解】 分三种情况:(1)用四种颜色涂色,有4424A =种涂法; (2)用三种颜色涂色,有34248A =种涂法; (3)用两种颜色涂色,有2412A =种涂法; 所以共有涂色方法24481284++=. 故答案为:84 【点睛】本题考查排列和分类加法原理的应用,合理分类是解题的关键,属于中档题.18.26【分析】满足的所有有序数组分为三个-1一个0两个-1两个0一个-1两个0一个2三个0一个2共四类情况分类求解【详解】所有有序数组中满足的所有有序数组分为三个-1一个0两个-1两个0一个-1两个0解析:26 【分析】满足123423x x x x ≤+++≤的所有有序数组()1234,,,x x x x ,分为三个-1一个0,两个-1两个0,一个-1两个0一个2,三个0一个2共四类情况,分类求解. 【详解】{}1234,,,1,0,2x x x x ∈-,所有有序数组()1234,,,x x x x 中,满足123423x x x x ≤+++≤的所有有序数组()1234,,,x x x x ,分为三个-1一个0,两个-1两个0,一个-1两个0一个2,三个0一个2共四类情况, 不同的种数为321234443426C C C C C +++= 故答案为:26 【点睛】此题考查计数原理的应用,涉及组合相关知识,关键在于准确进行分类处理.19.315【分析】根据题意有且只有三个盒子的编号与放入的小球的编号相同再由排列组台及计数原理即可求解【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同共种不同取法;第二步:再将剩下的个小球放入到解析:315 【分析】根据题意,有且只有三个盒子的编号与放入的小球的编号相同,再由排列组台及计数原理,即可求解. 【详解】第一步:先确定三个盒子的编号与放入的小球的编号相同,共3735C =种不同取法; 第二步:再将剩下的4个小球放入到4个盒子中,且小球编号与放入的小球的编号不相同,共()113219C C +=种不同放法;因而有且只有三个盒子的编号与放入的小球的编号相同的不同放法种数为359315⨯=种. 故答案为:315 【点睛】本题考查了排列组合及计数原理,考查理解辨析能力与运算求解能力,属中档题.20.1或9【分析】由再根据组合的互补性质可得即可解得的值【详解】解:由可得:解得:又根据组合的互补性质可得可得:解得:故答案为:1或9【点睛】本题考查了组合及组合数公式的应用掌握组合数的性质和组合数公式解析:1或9 【分析】由212626x x C C -=,再根据组合的互补性质可得26(21)2626x x C C --=,即可解得x 的值.【详解】解:由212626xx C C -=,可得:21x x =-,解得:1x =,又根据组合的互补性质可得26(21)2626x x C C --=,可得:26(21)x x =--,解得:9x =. 故答案为:1或9. 【点睛】本题考查了组合及组合数公式的应用,掌握组合数的性质和组合数公式是解题的关键.三、解答题21.(1)1440;(2)576;(3)288;(4)864. 【分析】先从七个数字中选二个偶数三个奇数共有12种情况;(1)直接5个数进行全排列;(2)把选出的偶数捆绑在一起,和奇数进行全排列;(3)把选出的偶数捆绑在一起,再把选出的奇数也捆绑在一起全排列;(4)先排三个奇数,二个偶数插空. 【详解】依题意的,从1到7的七个数字中取二个偶数三个奇数,共有233412C C =种情况; (1)共有五位数55121440A =个;(2)把选出的偶数捆绑在一起,和奇数进行全排列,所以偶数排在一起共有242412576A A =个;(3)把选出的偶数捆绑在一起,再把选出的奇数也捆绑在一起全排列,共有23223212288A A A =个;(4)先排三个奇数,二个偶数插空,故两个偶数不相邻共有323412864A A =个. 【点睛】本题主要考查排列组合的应用.属于中档题. 22.(1)24(2)12(3)60 【分析】(1)相邻问题利用捆绑法; (2)若男女相间,则用插空法;(3)若男生甲不站两端,女生乙不站最中间,则利用间接法. 【详解】解:(1)利用捆绑法,可得共有22322324A A A =种不同的排法; (2)利用插空法,可得共有232312A A =种不同的排法; (3)利用间接法,可得共有54135423360A A C A -+=种不同的排法. 【点睛】本题考查排列组合及简单的计数问题,涉及间接法和捆绑,插空等方法的应用,属于中档题. 23.(1)16(2)2542【分析】(1)从袋中任意摸出3个球有39C 种不同情况,摸出的全是白球有35C 种不同情况,摸出的全是黑球有34C 种不同情况,计算概率得到答案.(2)摸出的3个球都是白球的事件,记为M ;摸出2个白球,1个黑球的事件,记为N .计算概率得到答案. 【详解】(1)设从袋中摸出的3个球全是白球或全是黑球的事件为A , 从袋中任意摸出3个球有39C 种不同情况, 摸出的全是白球有35C 种不同情况, 摸出的全是黑球有34C 种不同情况,因为从袋中任意摸出3个球的所有情况都是等可能的,所以()3354391041846C C P A C ++===. (2)设从袋中摸出的白球个数多于黑球个数的事件为B . 事件B 包含两个基本事件:第一个,摸出的3个球都是白球的事件,记为M ; 第二个,摸出2个白球,1个黑球的事件,记为N .()3539542C P M C ==,()21543940108421C C P N C ===. 所以,()()()51025422142P B P M P N =+=+=. 【点睛】本题考查了概率的计算,意在考查学生的计算能力.24.(1)01681a =,13227a =.(2)23n 【分析】(1)利用二项式定理可求出0a 和1a 的值;(2)利用组合数公式得出11k k n n kC nC --=,可得出()00121213333n kk n kkn nnkk k k nn k k k n k a x nC nC --===⎛⎫⎛⎫⎛⎫⎛⎫-=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑,然后利用二项式定理即可求得答案. 【详解】(1)因为4n =,所以0404216C ()381a ==,1314232C ()327a ==;(2)当13x =时,21C ()()33k k n k k k n a x -=,又因为11!(1)!C C !()!(1)!()!kk n n n n k kn n k n k k n k ---===---, 当1n =时,011022()C ()33nk k k n k a x =-==∑;当2n ≥时,0021()()C ()()33nnkk n k kk n k k n k a x n k -==-=-∑∑012121C ()()C ()()3333nn k n k k k n k knnk k n k --===-∑∑ 1112121()C ()()3333n n k n k kn k n n ---==+-∑ 1111121C ()()333n k n k k n k n n ----==-∑11212()3333n n n n -=-+=,当1n =时,也符合.所以0()nkk k n k a x =-∑的值为23n .【点睛】本题考查二项式定理求指定项的系数,同时也考查了利用二项式定理化简求值,解题的关键就是二项展开式通项和二项式定理的逆用,考查计算能力,属于中等题. 25.(1)1560;(2)156;(3)92. 【解析】 【分析】(1)分为3,1,1,1和2,2,1,1两类分别计算,加和得到结果;(2)分为个位是0和个位不是0两类分别计算,加和得到结果;(3)分为只会英语的人中选了3人作英语导游、选了2人作英语导游和选了1人作英语导游三类分别计算,加和得到结果. 【详解】(1)把6本不同的书分给4位学生,每人至少一本,有3,1,1,1和2,2,1,1两类分配方式为3,1,1,1时,共有:3114632433480C C C A A ⋅=种分法 分配方式为2,2,1,1时,共有:2214642422221080C C C A A A ⋅=种分法 由分类加法计数原理可得,共有:48010801560+=种分法 (2)若个位是0,共有:3560A =个 若个位不是0,共有:11224496C C A =个由分类加法计数原理可得,共有:6096156+=个(3)若只会英语的人中选了3人作英语导游,共有:3620C =种选法 若只会英语的人中选了2人作英语导游,共有:12323560C C C =种选法 若只会英语的人中选了1人作英语导游,共有:133412C C =种选法 由分类加法计数原理可得,共有:20601292++=种选法 【点睛】本题考查排列组合的综合应用问题,涉及到分组分配问题、元素位置有限制的排列组合问题等知识,关键是能够根据题目的要求进行合理的分类,最终通过分类加法计数原理得到结果.26.(1)①128,②44827;(2)23n【分析】(1)①设f (x )=(1+x )8=a 0+a 1x +a 2x 2+…+a 8x 8,f (1)=28=a 0+a 1+a 2+…+a 8,f (-1)=0=a 0-a 1+a 2-…+a 8,a 0+a 2+a 4+a 6+a 8= [f (1)+ f (-1)] ÷2即可得解;②8823rr n a C -⎛⎫= ⎪⎝⎭,通过不等式组891888718822332233r rr r r rr r C C C C -----+⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩即可得解; (2)处理()()002133n kkn nkkk nk k n k a x n k C -==⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭∑∑0021213333n kkn kknnk k n n k k nC kC --==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑1110021*******n kk n kk nn k k n n k k n nC C -----==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑,利用二项式定理逆用即可得解.【详解】(1)设f (x )=(t +x )n =a 0+a 1x +a 2x 2+…+a n x n , 当n =8时.①若t =1,f (x )=(1+x )8=a 0+a 1x +a 2x 2+…+a 8x 8, f (1)=28=a 0+a 1+a 2+…+a 8,f (-1)=0=a 0-a 1+a 2-…+a 8, a 0+a 2+a 4+a 6+a 8= [f (1)+ f (-1)]÷2=128 ②若t =23,(23+x )n =a 0+a 1x +a 2x 2+…+a n x n ,所以8823rr n a C -⎛⎫= ⎪⎝⎭,设第r 项最大,则891888718822332233rrr r r rr r C C C C -----+⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩, ()()123921381r r r r ⎧≥⎪-⎪⎨⎪≥⎪-+⎩解得222755r ≤≤,所以=5r 数列{a n }中的最大值35582448327a C ⎛⎫==⎪⎝⎭(2)若t=23,当13x =时,求()0nkk k n k a x =-∑的值.(23+x )n =a 0+a 1x +a 2x 2+…+a n x n , 当2n ≥时,()()002133n kknnk k k n k k n k a x n k C -==⎛⎫⎛⎫-=- ⎪⎪⎝⎭⎝⎭∑∑021213333n kk n kknnk k nn k k nC kC --==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑ 1110021*******n kkn kk nn k k n n k k n nC C -----==⎛⎫⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑121333n n n -⎛⎫=-+ ⎪⎝⎭23n =, 当n =1时也满足,所以()0nkkk n k a x=-∑23n =. 【点睛】此题考查二项式定理的应用,根据展开式求解系数关系,涉及组合数计算公式,二项式定理的逆用,综合性强.。