第二章 算法分析基础
- 格式:ppt
- 大小:243.00 KB
- 文档页数:1
作业一学号:_____ 姓名:_____说明:1、正文用宋体小四号,1.5倍行距。
2、报告中的图片、表格中的文字均用宋体五号,单倍行距。
3、图片、表格均需要有图片编号和标题,均用宋体五号加粗。
4、参考文献用宋体、五号、单倍行距,请参照参考文献格式国家标准(GB/T 7714-2005)。
5、公式请使用公式编辑器。
P144.用伪代码写一个算法来求方程ax2+bx+c=0的实根,a,b,c 是任意实系数。
(可以假设sqrt(x)是求平方根的函数。
)算法:Equate(a,b,c)//实现二元一次方程求解实数根//输入:任意系数a,b,c//输出:方程的实数根x1,x2或无解If a≠0p←b2−4acIf p>0x1←−b+sqrt(p)2ax2←−b−sqrt(p)2areturn x1,x2else if p=0return −b2aelsereturn “no real roots”elseif b≠0return −cbelseif c≠0return “no real numbers”elsereturn “no real roots”5.写出将十进制正整数转换为二进制整数的标准算法。
a.用文字描述。
b.用伪代码描述。
a.解:输入:一个正整数n输出:正整数n相应的二进制数第一步:用n 除以2,余数赋给K[i](i=0,1,2...),商赋给n第二步:如果n=0 ,则到第三步,否则重复第一步第三步:将K[i]按照i从高到低的顺序输出b.解:算法:DecToBin(n)//实现正整数十进制转二进制//输入:一个正整数n//输出:正整数n对应的二进制数组K[0..i]i ←1while n≠0 doK[i]←n%2n←(int)n/2i ++while i≠0doprint K[i]i - -p462.请用O,Ω 和θ的非正式定义来判断下列断言是真还是假。
a. n(n+1)/2∈O(n3)b. n(n+1)/2∈O(n2)c. n(n+1)/2∈θ(n3)d. n(n+1)/2∈Ω(n)解:断言为真:a,b,d断言为假:cP535.考虑下面的算法。
算法分析第2章范文算法分析是计算机科学中的一个重要分支,它主要研究算法的性能和效率。
在这一章中,我们将介绍一些常见的算法分析技术,包括复杂度分析和递归关系求解。
同时,我们还将介绍一些常用的算法设计技巧,如迭代和递归。
首先,我们来介绍复杂度分析。
复杂度分析是衡量算法性能的主要指标,它主要关注算法的时间复杂度和空间复杂度。
时间复杂度表示算法执行所需的时间量级,常用的时间复杂度有常数阶O(1)、对数阶O(log n)、线性阶O(n)、平方阶O(n2)等。
空间复杂度表示算法所需的额外存储空间量级,常用的空间复杂度有常数阶O(1)、线性阶O(n)等。
通过对算法的复杂度进行分析,我们可以选择最优的算法来解决问题。
接下来,我们介绍递归关系求解。
递归关系是一种描述递归算法复杂度的数学表达式,它通常用于分析递归算法的时间复杂度。
求解递归关系的方法有递归树法和主定理法。
递归树法通过绘制递归算法的运行过程形成一棵递归树,然后通过对递归树进行求和来求解递归关系。
主定理法是一种通用的求解递归关系的方法,它基于分治算法的思想,通过比较递归关系与基本情况的复杂度来求解整个递归算法的复杂度。
然后,我们介绍一些常用的算法设计技巧。
迭代是一种基本的算法设计技巧,它通过循环结构来重复执行一段代码,从而解决问题。
迭代通常用于解决需要重复操作的问题,如数组遍历和排序。
递归是一种高级的算法设计技巧,它通过调用自身的方式来解决问题。
递归通常用于解决需要反复分解的问题,如树的遍历和图的。
除了迭代和递归,还有一些其他的算法设计技巧,如分治算法、贪心算法和动态规划算法。
最后,我们讨论了算法的优化和改进。
算法的优化和改进是一个迭代的过程,它通过对算法进行深入分析和调整来提高算法的性能。
算法的优化和改进可以从多个角度入手,如减少时间复杂度、减少空间复杂度、消除重复操作等。
在进行算法优化和改进时,我们还需要考虑算法的可读性、可维护性和可扩展性。
总之,算法分析是计算机科学中的重要内容,它对于理解和设计高效的算法至关重要。
《计算机算法基础》教学大纲计算机算法基础教学大纲课程简介本课程作为计算机科学与技术专业必修课,旨在让学生掌握计算机算法的基础知识和基本应用,为后续深入研究算法提供基础。
教学目标通过本课程的研究,学生将能够:- 熟练掌握常用的计算机算法- 理解各种算法的基本思想和运行原理- 能够运用算法进行简单的问题求解和程序设计- 培养编写高效算法的能力教学内容第一章算法基础1.1 算法的定义和特性1.2 算法的分类1.3 时间复杂度和空间复杂度第二章常用算法2.1 排序算法(冒泡排序、快速排序、归并排序)2.2 查找算法(顺序查找、折半查找、哈希查找)2.3 图算法(最短路径算法、最小生成树算法)第三章算法应用3.1 算法在智能搜索、机器研究等领域的应用3.2 算法在计算机游戏、网络安全等领域的应用3.3 算法在大数据处理中的应用教学方法本课程采用讲授和实践相结合的教学方法。
教师将通过课堂讲解、板书演示、案例分析等方式向学生介绍算法基础原理和应用技巧,并通过实例编程和练巩固学生的实际应用能力。
考核方式本课程考核方式包括课堂作业、实验报告、期中考试和期末考试。
其中,期中考试占30%的成绩,期末考试占50%的成绩,课堂作业和实验报告占20%的成绩。
教材与参考书目教材《数据结构与算法分析》,作者:Mark Allen Weiss,出版社:机械工业出版社参考书目《算法导论》,作者:Thomas H. Cormen,出版社:机械工业出版社《算法设计与分析基础》,作者:Sun Limin,出版社:高等教育出版社实验环境本课程实验环境为Windows操作系统,使用Java语言进行编程实现。
教学进度。
算法分析基础——主定理
对于形为T(n) = aT(n / b) + f(n)的递推⽅程,我们有如下结论:
主定理(MasterTheorem)设a≥1,b>1 为常数,f(n)为函数,n为⾮负整数,且 T(n) = aT(n / b) + f(n),则有以下结果:
1. 若存在ε>0,使得f(n) = O(n log b a-ε),则T(n) = Θ(n log b a)
2. 若f(n) = Θ(n log b a),则T(n) = Θ(n log b a logn)
3. 若存在ε>0,使得f(n) = Ω(n log b a+ε),并且对于某个常数c<1和所有充分⼤的n,有af(n / b)≤cf(n),则T(n) = Θ(f(n))
证明:详见教材(推导过程略复杂,不想写了qwq)。
由主定理可以直接得到下述推论:
推论1 依主定理条件,递推⽅程为T(n)= aT(n / b) + c,则
1. 当a≠1时,T(n) = Θ(n log b a)
2. 当a=1时,T(n) = Θ(logn)
推论2 依主定理条件,递推⽅程为T(n) = aT(n / b) + cn,则
1. 当a>b时,T(n) = Θ(n log b a)
2. 当a=b时,T(n) = Θ(nlogn)
3. 当a<b时,T(n) = Θ(n)
例根据主定理及其推论,我们可以直接得到⼆分检索算法的平均时间复杂度为Θ(logn),⽽⼆分归并排序的平均时间复杂度为Θ(nlogn)。
算法分析知识点总结一、算法的基本概念1.1 算法的定义:算法是一个有限指令序列,用于解决特定问题或执行特定任务的描述。
1.2 算法的特性:有穷性、确定性、可行性、输入输出和有效性。
1.3 算法的表示:伪代码和流程图是常见的算法表示方式。
1.4 算法的复杂度:算法的时间复杂度和空间复杂度是衡量算法性能的重要指标。
二、算法分析的基本方法2.1 时间复杂度:描述算法所需的运行时间与输入规模之间的关系。
2.2 空间复杂度:描述算法所需的内存空间与输入规模之间的关系。
2.3 最好情况、平均情况和最坏情况:算法复杂度分析通常考虑这三种情况的复杂度。
2.4 渐进复杂度分析:通过增长数量级的方式描述算法的复杂度。
2.5 复杂度函数的求解:基于递推关系和分析法求解算法的复杂度函数。
三、常见的时间复杂度分析方法3.1 常数阶O(1):所有输入规模下,算法的运行时间是固定的。
3.2 线性阶O(n):算法的运行时间与输入规模成线性关系。
3.3 对数阶O(log n):算法的运行时间与输入规模的对数成关系。
3.4 平方阶O(n^2)及以上阶:算法的运行时间与输入规模呈指数或多项式关系。
3.5 指数阶O(2^n):算法的运行时间与输入规模成指数关系。
四、常见的空间复杂度分析方法4.1 常数空间复杂度O(1):算法所需的内存空间与输入规模无关。
4.2 线性空间复杂度O(n):算法所需的内存空间与输入规模成线性关系。
4.3 对数空间复杂度O(log n):算法所需的内存空间与输入规模的对数成关系。
4.4 平方空间复杂度O(n^2)及以上阶:算法所需的内存空间与输入规模呈指数或多项式关系。
4.5 指数空间复杂度O(2^n):算法所需的内存空间与输入规模成指数关系。
五、常见的复杂度函数分析方法5.1 基于递推关系求解:通过递推关系式及其解的求解方法分析算法的复杂度。
5.2 基于分析法求解:通过数学分析和极限运算等方法求解算法的复杂度函数。