连续驱动摩擦焊资料
- 格式:doc
- 大小:60.50 KB
- 文档页数:3
文件编号:__________版号:________生效日期:________编制人:________日期:_________审核人:________日期:_________批准人:________日期:_________受控印章:_______分发号:________目录(一)、九种摩擦焊接类型原理及特点: (3)1、惯性摩擦焊接: (3)2、直接驱动摩擦焊接: (3)3、线性摩擦焊接: (3)4、搅拌摩擦焊: (4)5、轨道摩擦焊接: (4)6、连续驱动摩擦焊: (4)7、相位摩擦焊: (5)8、径向摩擦焊: (5)9、搅拌摩擦焊: (6)(二)、摩擦焊的特点: (6)(三)、摩擦焊接头形式: (8)(四)、适用范围: (8)(五)、摩擦焊焊接过程分析: (8)(一)、九种摩擦焊接类型原理及特点:1、惯性摩擦焊接:⑴、惯性摩擦焊接具有固定在卡盘和主轴上的不同尺寸的飞轮。
⑵、电机连接到主轴以旋转零件。
⑶、在焊接循环开始时,电机连接到主轴,并将零件旋转到所需的转速。
⑷、一旦达到所需的速度,就将电机从主轴上断开。
⑸、根据零件,主轴,卡盘和飞轮的重量,自由旋转部件会产生旋转惯性。
⑹、将进行如上所述的摩擦焊接过程,利用旋转惯性将零件放在一起时产生摩擦热。
2、直接驱动摩擦焊接:⑴、在此过程中,主轴驱动电机永久固定在主轴上。
⑵、当两个部件放在一起时,电动机继续驱动旋转部件,从而产生摩擦热。
⑶、根据定义的程序,随着焊接过程的进行,主轴会持续减速,从而将主轴停在预定位置。
⑷、当希望在焊接部件之间有特定的方向时,这种类型的摩擦焊接是有益的。
3、线性摩擦焊接:⑴、这个过程类似于惯性摩擦焊接。
但是,移动的卡盘不会旋转。
相反,它以横向运动振荡。
⑵、在整个过程中,两个工件均保持在压力下。
⑶、与惯性焊接相比,该过程要求工件具有高剪切强度并涉及更复杂的机械。
⑷、这种方法的一个好处是它可以连接任何形状的零件(而不仅仅是圆形界面)。
双金属气门连续驱动摩擦焊焊接工艺分析李金民周东:双金属气门连续驱动摩擦焊焊接工艺分析25双金属气门连续驱动摩擦焊焊接工艺分析Weldingprocessanalysisofbimetalvalvefrictionwielding李金民周东(石家庄金刚内燃机零部件集团有限公司)【摘要)对于双金属摩擦焊接气门,通过采取合理的摩擦焊接的工艺流程和合理摩擦焊接参数,使产品的质量最优,生产成本降到最低.(关键词】摩擦焊工艺流程热量计算焊接质量1前言随着内燃机的不断进步,双金属摩擦焊接气门的不断普及,摩擦焊接的质量的要求也越来越高,选择合理的摩擦焊接的工艺流程和合理摩擦焊接参数就显得特别重要.合理的摩擦焊接的工艺流程可以减少原材料的消耗,减少热处理的成本;合理摩擦焊接参数可以提高焊接处的强度,甚至可以大于基体的强度,从而提高气门的可靠性.本文分析了焊接前热处理和焊接后热处理的工艺的利弊,连续驱动摩擦焊的产热原理和热量的计算.2双金属摩擦焊气门的工艺流程1,方案A—————_-J崭目棒料摩擦焊接热年t边一一一3,方案C瓣卜_.J察擦接—热车飞边—一消除应处理L—校直3双金属摩擦焊气门的工艺方案分析上三方案,对于热处理来说,实质上是两种方案,工艺方案A是先焊接后热处理,而工艺方案B 和C是头,杆分别进行热处理后再焊接.现以4Cr5)Si2与5Cr21Mn9Ni4N焊接气门进行分析.1先焊接后热处理工艺方案此工艺方案的优点是节约能源,简化热处理工序.其难点在于恰当选择同时能保证不同材料使用性能的热处理工艺参数.因为5Cr21Mn9Ni4N固溶和时效温度比4Cr9Si2调质工艺中的淬火,回火温度高得多.所以,不能简单的选用5Cr21Mn9Ni4N或4Cr9Si2的热处理工艺参数.只能根据气门的使用要求,图纸的技术条件,同时兼顾头杆的性能来确定热处理工艺参数.实际上除了参照一些成熟的经验外,还应反复进行工艺性能试验, 来选择合适的工艺参数.1,焊接后消除应力处理工艺焊接后的焊缝存在很大的应力,焊缝附近的4Cr9Si2段是淬火马氏体组织,硬而脆,不利于以后的校直工序.所以必须在焊接后及时采取消除应力的热处理.这种热处理工艺参数的选择要考虑两个方面:一是消除焊接应力;二是使4Cr9Si2段焊缝及其影响区的淬火马氏体转变回火索氏体,降低该区域的硬度,便于校直.一般采用的消除应力处理的工艺为700℃保温90min空冷.2,最终热处理(1)淬火(固溶)温度的选择对于钢厂供应的5Cr21Mn9Ni4N钢是不完全固溶状态,所以淬火温度主要考虑4Cr9Si2的淬火温度.温度过高将使4Cr9Si2的晶粒度粗大,室温性能下降,且不利于以后的杆端高频淬火.因而把加热温度定为1050℃.由于两种材料的传热系数不同,为使淬火时加热均匀,一般在装入淬火炉前, 26内燃机配件2009年第3期先在82013进行预热.(2)回火(时效)温度的选择按5Cr21Mn9Ni4N时效温度,应在75013最佳,但对于4Cr9Si2段,如果采用75013回火,其机械性能将下降很多.为不使4Cr9Si2的性能下降,采用65013回火.圆火后的冷却,为防止4Cr9Si2的第二回火脆性,采用水冷.(3)对于先焊接后热处理的较合适的工艺是:820E预热15分钟+105013保温l0分钟油淬+ 65013保温90分钟水冷.2先热处理后焊接的工艺方案对于5Cr21Mn9NN和4Cr9Si2各自进行最佳的热处理,然后进行焊接,焊接后进行消除应力处理. l,5Cr21Mn9Ni4N固溶一时效处理:试验得到适宜工艺参数115013~119013固溶加热保温0.5~1小时,水冷至室温,74013~78013时效10~14小时,时效后空冷.2,4Cr9Si2调质处理:82013预热14min+1050℃保温10min油冷+650℃保温90rain水冷. 3,焊接后消除应力处理:先热处理后焊接,在焊缝区0.5mm左右范围内有明显的热影响区.此区对5Cr21Mn9Ni4N没有什么影响,只是晶粒度发生变形,而对于4Cr9Si2影响较大.由于摩擦焊接已达4Cr9Si2的淬火温度,随后空冷时转变为马氏体组织,硬度达到HRC56—59.因此焊接后必须进行消除应力处理.同时使热影响区的4Cr9Si2部分的淬火马氏体组织转变为回火索氏体.消除应力处理工艺参数650℃保温90min水冷.通过上述工艺方案分析可看出,为了达到同时发挥两种材料的最佳性能值,各自先进行热处理再焊接的工艺方案比较合理,但有的钢厂的5Cr21Mn9Ni4N已经不完全固溶处理,性能已达到图纸技术要求,那么先焊接后热处理的工艺方案也是可行的.4双金属摩擦焊气门的连续驱动摩擦焊工艺1,连续驱动摩擦焊原理焊前,待焊接的一对工件中,一件夹持于旋转夹具,称为旋转工件,另一件夹持于移动夹具,称为移动工件.焊接时,旋转工件在电机驱动下开始高速旋转,移动工件在轴向力作用下逐步向旋转工件靠拢,两侧工件接触并压紧后,摩擦界面上一些微凸体首先发生粘接与剪切,并产生摩擦热.随着实际接触面积的不断增大,摩擦扭矩迅速升高,摩擦界面处温度也随之上升,摩擦界面逐渐被一层高温粘塑性金属所覆盖.此时,两侧工件的相对运动实际上已发生在这层粘塑性金属内部,产热机制已由初期的摩擦产热转变为粘塑性金属层内的塑性变形产热. 在热激活作用下,这层粘塑性金属发生动态再结晶, 使变形抗力降低,故摩擦扭矩升高到一定程度(前峰值扭矩)后逐渐降低.随着摩擦热量向两侧工件的传导,焊接面两侧温度亦逐渐升高,在轴向压力作用下,焊合区金属发生径向塑性流动,从而形成飞边, 轴向缩短量逐渐增大.随摩擦时间延长,摩擦界面温度与摩擦扭矩基本恒定,温度分布区逐渐变宽,飞边逐渐增大,此阶段称之为准稳定摩擦阶段.在此阶段,摩擦压力与转速保持恒定.当摩擦焊接区的温度分布,变形达到一定程度后,开始刹车制动并使轴向力迅速升高到所设定的顶锻压力此时轴向缩短量急骤增大,并随着界面温度降低,摩擦压力增大, 摩擦扭矩出现第二个峰值,即后峰值扭矩.在顶锻过程中及顶锻后保压过程中,焊合区金属通过相互扩散与再结晶,使两侧金属牢固焊接在一起,从而完成整个焊接过程.在整个焊接过程中,摩擦界面温度一般不会超过熔点,故摩擦焊是固态焊接.2,连续驱动摩擦焊重要参数:摩擦量F(加热量规格)摩擦时间t1(时间规格)摩擦压力P,——焊接时,在摩擦加热过程中,轴向给的压力;顶锻压力P2——焊接时,在顶锻过程中,轴向给的压力;刹车延时t2——焊接时,开始顶锻到开始刹车的时间间隔;保压时间t3——焊接时,顶锻压力保持的时间;3,气门的材料多是奥氏体和马氏体材料,两者属于变形抗力较大的高强材料,在焊接时宜采用先顶锻后刹车的工艺.4,气门摩擦焊接时的热量计算:在焊接的过程中,产生热量的主要是周向摩擦力,其次是轴向的压力(摩擦压力P,);但前者远大于后者,摩擦力的大小主要取决于轴向压力.,=S=2~pPlr①=fL②L=刑f③注:厂摩擦力;W,摩擦力做的功;cc,角速度;李金民周东:双金属气门连续驱动摩擦焊焊接工艺分析27由①②③得2l~nPlwR.t——一=2,×删=④由④得出摩擦力的功率Pr:2/~rP1wR3⑤轴向摩擦压力P1的功率P轴=P1V台⑥;台工作台速度由⑤⑥得出加热总功率P总=(Ps+P轴)=17(十2P.V台)⑦叩效率由⑦知在孙∞一定的前提下,P总主要和Pl,R,y台有关;由材料的所需能量公式Q=CMT整;C材料的比热,M质量,T差温度的差值;在摩擦焊接的过程中,单位时间内的所需的能量为:Q=(C马氏体p马氏体cIV马氏体+c奥氏体p奥氏体'dV奥氏体) =T差(C马氏体p马氏体V马氏体+C奥氏体P奥氏体V臭氏体)( V马氏体+V奥氏体=V台(在摩擦焊的过程中,材料半径R一定,通过调节摩擦压力Pl和工作台速度V台使在摩擦时间tl内⑦与⑧平衡是摩擦焊参数调节的关键.5,刹车延时t2一般在0.1S~0.25S之间,直径大的刹车延时也就相应的长;保压时间b越长越好,一般在2S~5S,直径大的保压时间也就相应的长.5摩擦焊接质量的检测1,通过抗拉强度试验,通过强度值来反映焊接质量,如果参数调节到最佳,可以实现不从焊缝处断裂; 2,通过100%超声波探伤来检验焊接处的缺陷;3,通过100%旋转弯曲试验来检验焊接处的质量.工件在旋转过程中,在垂直工件的方向上,一定的位置上,施加一定的力使工件发生弯曲,通过弯曲来检测焊接处的质量.6摩擦焊接处的微观组织的变化'通过连续驱动摩擦焊接的原理可知,工件经过摩擦过程后,在顶锻过程及顶锻后保压过程中,焊合区金属通过相互扩散与再结晶,使两侧金属牢固焊接在一起,从而完成整个焊接过程.焊合区金属通过相互扩散与再结晶,晶粒度发生明显变化,通过金相图片可以看出焊缝处晶粒度明显偏细(见图1). 豳17结论1,不同摩擦焊接的工艺流程,摩擦焊接的参数不同;采取什么样的工艺流程要根据图纸的要求和原材料的状态而定.2,通过计算和试验选择合理的摩擦焊接参数对焊接的质量有至关重要.参考文献1王中平,张立军,周正航,陈永平.摩擦焊接工艺及设备的技术提升.(上接第20页)3)气门软氮化的弯曲和变形,除了同热处理后的组织与性能,存在校直应力有关外,更应关注机械加工应力的影响,假如经过氮化前去应力退火后,杆部直线度,盘锥面或底面跳动等变形较小,则证明气门的车削或磨削工艺参数是合理的,反之则证明其工艺参数是需要调整的.气门软氮化后出现弯曲或变形则应重点分析整个软氮化工艺与操作的正确性.4)对于需要抛丸的软氮化气门,应进行其变形量(直线度)与盘锥面跳动的检查,同时应确保气门整体的清洁,检验手段是采用湿布进行气门表面的擦拭,重点在锁夹槽,烟槽等凹部区域,如果有黑灰, 则表明抛丸频率低或时间短.5)光饰或抛丸后的煮油可以用防锈水代替,这样可避免油脏吸附磨削砂粒,杂物或粉尘等,有助于提高气门的清洁度,同时也可减少清洗工序,是有比较明显效果的.。
低碳钢Q 235连续驱动摩擦焊接头性能的研究李建军员,李青哲圆,邱然锋圆(1.—拖(洛阳)福莱格车身有限公司,河南洛阳471004; 2.河南科技大学材料科学与工程学院,河南洛阳471003)摘要:采用连续驱动摩擦焊方法对低碳钢进行摩擦焊接。
探讨了摩擦压力和顶锻压力对接头形貌和抗拉强度的影响,利 用光学显微镜和扫描电镜分别对接头区和接头断口进行了观察。
研究表明接头的焊缝区晶粒大小明显细化。
接头断裂的 方式为解理断裂和韧窝断裂的混合断裂方式。
关键词:低碳钢;连续驱动摩擦焊;组织;性能中图分类号:TG 407 文献标志码:A文章编号:1002-2333(2016)07-0124-03〇引言随着科学技术的进步,人们对焊接质量、接头质量和 焊接性能提出了更高的要求,而摩擦焊作为一种典型的 固相焊接方法,与传统焊接方法相比,摩擦焊具有以下优 点:自动化程度高;摩擦焊的热影响区小;不会产生熔化 焊的焊接缺陷;焊接过程清洁、无烟雾,可实现钢、铝、铜 等同种或异种金属的焊接。
目前被广泛应用到阀门、钻 杆、轴承、双金属气门等金属的制造中[1]。
低碳钢Q 235的含碳量低,同时含锰、硅的量也较少。
一般情况下,焊接过程中不会生成严重的淬火或硬化组 织。
低碳钢的焊接性最好,几乎所有的焊接方法均可实现 低碳钢的有效连接[2]。
本试验对低碳钢连续驱动摩擦焊焊基金项目:河南省科技攻关项目(112102210176)接接头的组织和性能进行研究,由于摩擦焊[3-]是利用金 属的相对运动摩擦生热,金属产生塑性变形和原子间的 扩散,在轴向压力作用下实现黏结和焊接的新型焊接连 接技术。
因此结合金相组织观察、力学性能试验,分析不 同摩擦压力和顶端压力对Q 235低碳钢摩擦焊接头组织性 能的影响以及拉伸断口的形貌。
1试验材料与方法试验用焊材为Q 235低碳钢棒材,母材组织主要为灰 白色的铁素体,其组织形态为多边形。
材料的化学成分如 表1所示,棒材尺寸为准14 mmxl 45 mm 和准14 mmxl 25 mm 。
连续驱动摩擦焊基本原理1.焊接过程连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。
此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。
当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。
对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s摩擦时间和161M Pa的顶锻压力下,整个摩擦焊接过程如图10所示。
从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。
摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。
顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。
(1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加热功率显著增大的b点止。
摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。
随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~300℃左右。
在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。
塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。
金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。
因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。
挖掘机液压油缸活塞杆连续驱动摩擦焊工艺研究液压油缸是工程机械的核心零部件之一,其性能优劣直接决定着工程机械产品的可靠性和使用寿命。
目前,液压油缸活塞杆的耳环与杆体之间主要采用气体保护方式进行焊接。
这种焊接方法不仅效率低下,而且还会经常出现焊缝熔合不良、气孔、夹杂等质量问题。
为了保证活塞杆的焊接质量,提高产品的合格率及其使用寿命,徐州徐工液压件有限公司引进了液压油缸活塞杆摩擦焊接技术并进行了深入的研究。
摩擦焊技术是通过摩擦热使接头母材熔化,然后迅速施加顶锻力从而获得合格焊缝的一种焊接方法。
母材状态、焊接参数、有无镀层和焊后热处理方式都会对焊口性能产生一定的影响。
因此本文主要从焊材准备、参数选择、焊后热处理等三个方面对活塞杆摩擦焊工艺进行了研究。
在焊接参数方面,主要研究了摩擦压力,摩擦时间,顶锻压力和保压时间等参数对焊接接头力学性能的影响;在焊材状态方面,主要研究了电镀镀层、端面结构等对接头力学性能的影响;最后针对部分焊件焊后冲击强度偏低的情况,进行了热处理探究。
对于直径为85 mm的活塞杆,当采用镀前焊,摩擦压力为7.6MPa、摩擦时间为19s、顶锻压力为14.3MPa、顶锻时间为16s,焊后采用870℃零时淬火、520℃回火、回火保温时间为140min的热处理工艺时,经过一系列的实验可以发现,活塞杆焊接接头抗拉强度达到800MPa以上,断面收缩率达到50%以上,实现了接头合格率100%的目标。
同时,主机在使用过程中未发生任何焊接质量问题,达到了预期的研究目标。
为工程液压油缸活塞杆的制造,乃至整个液压装备制造技术的提升和技术的创新奠定了理论研究和工程实践的基础。
调质处理后,通过对焊件进行拉伸测试、金相组织显微观察、拉伸断口的宏观及微观形貌分析可以发现采用“零保温”淬火热处理工艺可以细化晶粒、提高焊件综合力学性能,即焊接试样接口在经过上述调质处理以后其强度和塑性韧性较热处理前有明显的改善。
在诸多影响摩擦焊焊接接头抗拉强度的因素中,主摩擦压力、主摩擦时间、顶锻压力以及顶锻保压时间等四个因素对其影响较大。
摩擦焊相关知识点总结一、摩擦焊的原理摩擦焊的原理是利用摩擦热效应和机械压力使焊件表面发生塑性变形,从而实现焊接。
摩擦焊的工作原理可以概括为以下几个步骤:1. 接触阶段:两个焊件通过机械压力贴合在一起,形成接触面。
同时,旋转摩擦焊工具,使摩擦热由焊接接触面产生,达到加热的效果。
2. 加热阶段:摩擦焊工具将焊接接触面加热至塑性变形温度,使接触面材料软化并产生塑性变形。
3. 搅拌阶段:通过机械压力和旋转摩擦焊工具使焊接接触面产生搅拌效应,使焊件之间的金属颗粒混合在一起,实现焊接。
4. 冷却阶段:停止摩擦热效应,等待焊接接触面冷却固化,形成坚固的焊接接头。
摩擦焊的原理可以表述为摩擦热效应、塑性变形和搅拌效应的综合作用。
通过控制摩擦焊的工艺参数,可以达到理想的焊接效果和焊缝质量。
二、摩擦焊的工艺参数摩擦焊的工艺参数是影响焊接质量和性能的重要因素,包括摩擦焊工具的转速、轴向压力、径向力、加热时间和冷却时间等。
下面分别对这些工艺参数进行详细介绍:1. 转速:摩擦焊工具的转速是影响摩擦热效应的重要参数。
较高的转速可以产生更多的摩擦热,加热焊接接触面更快,但也可能导致过高的焊接温度和金属流动速度,导致焊接质量下降。
因此,在实际操作中需要根据焊接材料的性质和厚度选择合适的转速。
2. 轴向压力:轴向压力是通过摩擦焊工具施加在焊接接触面上的压力,是实现摩擦焊的关键参数。
适当的轴向压力可以保证焊接接触面的紧密贴合,增加金属材料的接触面积,有利于摩擦热的传递和焊接质量的提高。
3. 径向力:对于摩擦搅拌焊接,径向力是对工件施加垂直于焊缝方向的压力。
通过施加适当的径向力可以保证焊接接触面的搅拌效果,防止焊接接触面出现空隙和气孔,提高焊接质量。
4. 加热时间:加热时间是摩擦焊加热阶段的持续时间,通过控制加热时间可以控制焊接接触面的温度和软化程度,影响焊接质量和强度。
5. 冷却时间:冷却时间是摩擦焊冷却阶段的持续时间,通过控制冷却时间可以保证焊接接触面充分冷却和固化,形成坚固的焊接接头。
连续驱动摩擦焊资料
一、焊接工艺
㈠.熔焊
1.电弧焊
2.气焊
3.电子束焊
4.激光焊
5.电渣焊
6.铝热焊
传统的汽车传动轴焊接方式,一般都是采用CO₂气体保护焊,成本高、效率低
㈡.压焊
1.锻焊
2.摩擦焊
3.冷压焊
4.电阻焊 ---电焊 / 缝焊 / 对焊
5.超声波焊
6.扩散焊
7.高频焊
8.爆炸焊
㈢.钎焊
1.火焰钎焊
2.烙铁钎焊
3.感应钎焊
4.电阻钎焊
5.盐浴钎焊
6.炉中钎焊
高压电触头普遍采用真空钎焊,电子束焊等工艺,成本高、效率低
二、连续驱动摩擦焊原理
利用工件端面相互摩擦产生的热量使之达到塑性状态,然后顶锻完成焊接的方法。
在压力作用下,是在恒定或递增压力以及扭矩的作用下,利用焊接接触端面之间的相对运动在摩擦面及其附近区域产生摩擦热和塑形变形热,使及其附近区域温度上升到接近但一般低于熔点的温度区间,材料的变形抗力降低、塑性提高、界面的氧化膜破碎,在顶锻压力的作用下,伴随材料产生塑性变形及流动,通过界面的分子扩散和再结晶而实现焊接的固态焊接方法。
三、摩擦焊机工作过程
(1)初始摩擦阶段(t1)
(2)不稳定摩擦阶段(t2)
(3)稳定摩擦阶段(t3)
(4)停车阶段(t4)
(5)纯顶锻阶段(t5)
(6)顶锻维持阶段(t6)
在整个摩擦焊接过程中,待焊的金属表面经历了从低温到高温摩擦加热,连续发生了塑性变形、机械挖掘、粘接和分子连接的过程变化,形成了一个存在于全过程的高速摩擦塑性变形层,摩擦焊接时的产热、变形和扩散现象都集中在变形层中。
在停车阶段和顶锻焊接过程中,摩擦表面的变形层和高温区金属被部分挤碎排出,焊缝金属经受锻造,形成了质量良好的焊接接头。
四、连续驱动摩擦焊机优点
1、接头质量好且稳定。
焊接过程由机器自动控制,参数设定后容易监控,重复性好,不依赖于操作人员的技术水平和
工作态度。
焊缝不会出现气孔、偏析和夹杂,裂纹等铸造组织的结晶缺陷,焊接接头强度远大于熔焊、钎焊的强度,达到甚至超过母材的强度。
2、效率高。
对焊件准备通常要求不高,焊接设备自动化程度高,可在流水线上生产,每件焊接时间以秒计,一般只需零点几秒至几十秒,是其它焊接方法如熔焊、钎焊不能相比的。
3、节能、节材、低耗。
所需功率仅及传统焊接工艺的1/5~1/15,不需焊条、焊剂、钎料、保护气体,不需填加金属,也不需消耗电极;可改变传统一体化锻造切削方式。
4、焊接性好。
特别适合异种材料的焊接,与其它焊接方法相比,摩擦焊有得天独厚的优势,如钢和紫铜、钢和铝、钢和黄铜等等;同种材料焊接后强度可胜母材。
5、环保、无污染。
焊接过程中不产生烟尘或有害气体,不产生飞溅,没有弧光和火花,没有放射线。
6、可焊接材料范围广。
可采用摩擦焊接的异种材料范围广,钢+铸铁、铝+铜、铜+钢、钛+铝、奥式体钢+铁素体钢、铁基(镍基、钴基)超合金钢+钢或铸造超合金等;异种高活性、难熔材料(含粉末合金,陶瓷材料)及功能材料的焊接,如钨+铌、钨+钽、钨+铜。
记忆合金等;金属与陶瓷的焊接,如:Ni+ZrO、Cn+SiO等
五、摩擦焊机的主体结构
主轴系统,液压系统,机身,夹头,控制系统,辅助装置
六、摩擦焊机适用行业、产品
1.汽配行业:球笼轴瓦气门拨叉涡轮增压器半轴减震器活塞杆
2.农机配件:连杆齿轮轴类
3.电器行业:铜铝接头高压触头线夹电机轴
4.工具工业:扳手钻头丝锥
5.纺机配件:锭子管绕线管轴。