连续驱动摩擦焊原理简介
- 格式:doc
- 大小:159.00 KB
- 文档页数:6
文件编号:__________版号:________生效日期:________编制人:________日期:_________审核人:________日期:_________批准人:________日期:_________受控印章:_______分发号:________目录(一)、九种摩擦焊接类型原理及特点: (3)1、惯性摩擦焊接: (3)2、直接驱动摩擦焊接: (3)3、线性摩擦焊接: (3)4、搅拌摩擦焊: (4)5、轨道摩擦焊接: (4)6、连续驱动摩擦焊: (4)7、相位摩擦焊: (5)8、径向摩擦焊: (5)9、搅拌摩擦焊: (6)(二)、摩擦焊的特点: (6)(三)、摩擦焊接头形式: (8)(四)、适用范围: (8)(五)、摩擦焊焊接过程分析: (8)(一)、九种摩擦焊接类型原理及特点:1、惯性摩擦焊接:⑴、惯性摩擦焊接具有固定在卡盘和主轴上的不同尺寸的飞轮。
⑵、电机连接到主轴以旋转零件。
⑶、在焊接循环开始时,电机连接到主轴,并将零件旋转到所需的转速。
⑷、一旦达到所需的速度,就将电机从主轴上断开。
⑸、根据零件,主轴,卡盘和飞轮的重量,自由旋转部件会产生旋转惯性。
⑹、将进行如上所述的摩擦焊接过程,利用旋转惯性将零件放在一起时产生摩擦热。
2、直接驱动摩擦焊接:⑴、在此过程中,主轴驱动电机永久固定在主轴上。
⑵、当两个部件放在一起时,电动机继续驱动旋转部件,从而产生摩擦热。
⑶、根据定义的程序,随着焊接过程的进行,主轴会持续减速,从而将主轴停在预定位置。
⑷、当希望在焊接部件之间有特定的方向时,这种类型的摩擦焊接是有益的。
3、线性摩擦焊接:⑴、这个过程类似于惯性摩擦焊接。
但是,移动的卡盘不会旋转。
相反,它以横向运动振荡。
⑵、在整个过程中,两个工件均保持在压力下。
⑶、与惯性焊接相比,该过程要求工件具有高剪切强度并涉及更复杂的机械。
⑷、这种方法的一个好处是它可以连接任何形状的零件(而不仅仅是圆形界面)。
双金属气门连续驱动摩擦焊焊接工艺分析李金民周东:双金属气门连续驱动摩擦焊焊接工艺分析25双金属气门连续驱动摩擦焊焊接工艺分析Weldingprocessanalysisofbimetalvalvefrictionwielding李金民周东(石家庄金刚内燃机零部件集团有限公司)【摘要)对于双金属摩擦焊接气门,通过采取合理的摩擦焊接的工艺流程和合理摩擦焊接参数,使产品的质量最优,生产成本降到最低.(关键词】摩擦焊工艺流程热量计算焊接质量1前言随着内燃机的不断进步,双金属摩擦焊接气门的不断普及,摩擦焊接的质量的要求也越来越高,选择合理的摩擦焊接的工艺流程和合理摩擦焊接参数就显得特别重要.合理的摩擦焊接的工艺流程可以减少原材料的消耗,减少热处理的成本;合理摩擦焊接参数可以提高焊接处的强度,甚至可以大于基体的强度,从而提高气门的可靠性.本文分析了焊接前热处理和焊接后热处理的工艺的利弊,连续驱动摩擦焊的产热原理和热量的计算.2双金属摩擦焊气门的工艺流程1,方案A—————_-J崭目棒料摩擦焊接热年t边一一一3,方案C瓣卜_.J察擦接—热车飞边—一消除应处理L—校直3双金属摩擦焊气门的工艺方案分析上三方案,对于热处理来说,实质上是两种方案,工艺方案A是先焊接后热处理,而工艺方案B 和C是头,杆分别进行热处理后再焊接.现以4Cr5)Si2与5Cr21Mn9Ni4N焊接气门进行分析.1先焊接后热处理工艺方案此工艺方案的优点是节约能源,简化热处理工序.其难点在于恰当选择同时能保证不同材料使用性能的热处理工艺参数.因为5Cr21Mn9Ni4N固溶和时效温度比4Cr9Si2调质工艺中的淬火,回火温度高得多.所以,不能简单的选用5Cr21Mn9Ni4N或4Cr9Si2的热处理工艺参数.只能根据气门的使用要求,图纸的技术条件,同时兼顾头杆的性能来确定热处理工艺参数.实际上除了参照一些成熟的经验外,还应反复进行工艺性能试验, 来选择合适的工艺参数.1,焊接后消除应力处理工艺焊接后的焊缝存在很大的应力,焊缝附近的4Cr9Si2段是淬火马氏体组织,硬而脆,不利于以后的校直工序.所以必须在焊接后及时采取消除应力的热处理.这种热处理工艺参数的选择要考虑两个方面:一是消除焊接应力;二是使4Cr9Si2段焊缝及其影响区的淬火马氏体转变回火索氏体,降低该区域的硬度,便于校直.一般采用的消除应力处理的工艺为700℃保温90min空冷.2,最终热处理(1)淬火(固溶)温度的选择对于钢厂供应的5Cr21Mn9Ni4N钢是不完全固溶状态,所以淬火温度主要考虑4Cr9Si2的淬火温度.温度过高将使4Cr9Si2的晶粒度粗大,室温性能下降,且不利于以后的杆端高频淬火.因而把加热温度定为1050℃.由于两种材料的传热系数不同,为使淬火时加热均匀,一般在装入淬火炉前, 26内燃机配件2009年第3期先在82013进行预热.(2)回火(时效)温度的选择按5Cr21Mn9Ni4N时效温度,应在75013最佳,但对于4Cr9Si2段,如果采用75013回火,其机械性能将下降很多.为不使4Cr9Si2的性能下降,采用65013回火.圆火后的冷却,为防止4Cr9Si2的第二回火脆性,采用水冷.(3)对于先焊接后热处理的较合适的工艺是:820E预热15分钟+105013保温l0分钟油淬+ 65013保温90分钟水冷.2先热处理后焊接的工艺方案对于5Cr21Mn9NN和4Cr9Si2各自进行最佳的热处理,然后进行焊接,焊接后进行消除应力处理. l,5Cr21Mn9Ni4N固溶一时效处理:试验得到适宜工艺参数115013~119013固溶加热保温0.5~1小时,水冷至室温,74013~78013时效10~14小时,时效后空冷.2,4Cr9Si2调质处理:82013预热14min+1050℃保温10min油冷+650℃保温90rain水冷. 3,焊接后消除应力处理:先热处理后焊接,在焊缝区0.5mm左右范围内有明显的热影响区.此区对5Cr21Mn9Ni4N没有什么影响,只是晶粒度发生变形,而对于4Cr9Si2影响较大.由于摩擦焊接已达4Cr9Si2的淬火温度,随后空冷时转变为马氏体组织,硬度达到HRC56—59.因此焊接后必须进行消除应力处理.同时使热影响区的4Cr9Si2部分的淬火马氏体组织转变为回火索氏体.消除应力处理工艺参数650℃保温90min水冷.通过上述工艺方案分析可看出,为了达到同时发挥两种材料的最佳性能值,各自先进行热处理再焊接的工艺方案比较合理,但有的钢厂的5Cr21Mn9Ni4N已经不完全固溶处理,性能已达到图纸技术要求,那么先焊接后热处理的工艺方案也是可行的.4双金属摩擦焊气门的连续驱动摩擦焊工艺1,连续驱动摩擦焊原理焊前,待焊接的一对工件中,一件夹持于旋转夹具,称为旋转工件,另一件夹持于移动夹具,称为移动工件.焊接时,旋转工件在电机驱动下开始高速旋转,移动工件在轴向力作用下逐步向旋转工件靠拢,两侧工件接触并压紧后,摩擦界面上一些微凸体首先发生粘接与剪切,并产生摩擦热.随着实际接触面积的不断增大,摩擦扭矩迅速升高,摩擦界面处温度也随之上升,摩擦界面逐渐被一层高温粘塑性金属所覆盖.此时,两侧工件的相对运动实际上已发生在这层粘塑性金属内部,产热机制已由初期的摩擦产热转变为粘塑性金属层内的塑性变形产热. 在热激活作用下,这层粘塑性金属发生动态再结晶, 使变形抗力降低,故摩擦扭矩升高到一定程度(前峰值扭矩)后逐渐降低.随着摩擦热量向两侧工件的传导,焊接面两侧温度亦逐渐升高,在轴向压力作用下,焊合区金属发生径向塑性流动,从而形成飞边, 轴向缩短量逐渐增大.随摩擦时间延长,摩擦界面温度与摩擦扭矩基本恒定,温度分布区逐渐变宽,飞边逐渐增大,此阶段称之为准稳定摩擦阶段.在此阶段,摩擦压力与转速保持恒定.当摩擦焊接区的温度分布,变形达到一定程度后,开始刹车制动并使轴向力迅速升高到所设定的顶锻压力此时轴向缩短量急骤增大,并随着界面温度降低,摩擦压力增大, 摩擦扭矩出现第二个峰值,即后峰值扭矩.在顶锻过程中及顶锻后保压过程中,焊合区金属通过相互扩散与再结晶,使两侧金属牢固焊接在一起,从而完成整个焊接过程.在整个焊接过程中,摩擦界面温度一般不会超过熔点,故摩擦焊是固态焊接.2,连续驱动摩擦焊重要参数:摩擦量F(加热量规格)摩擦时间t1(时间规格)摩擦压力P,——焊接时,在摩擦加热过程中,轴向给的压力;顶锻压力P2——焊接时,在顶锻过程中,轴向给的压力;刹车延时t2——焊接时,开始顶锻到开始刹车的时间间隔;保压时间t3——焊接时,顶锻压力保持的时间;3,气门的材料多是奥氏体和马氏体材料,两者属于变形抗力较大的高强材料,在焊接时宜采用先顶锻后刹车的工艺.4,气门摩擦焊接时的热量计算:在焊接的过程中,产生热量的主要是周向摩擦力,其次是轴向的压力(摩擦压力P,);但前者远大于后者,摩擦力的大小主要取决于轴向压力.,=S=2~pPlr①=fL②L=刑f③注:厂摩擦力;W,摩擦力做的功;cc,角速度;李金民周东:双金属气门连续驱动摩擦焊焊接工艺分析27由①②③得2l~nPlwR.t——一=2,×删=④由④得出摩擦力的功率Pr:2/~rP1wR3⑤轴向摩擦压力P1的功率P轴=P1V台⑥;台工作台速度由⑤⑥得出加热总功率P总=(Ps+P轴)=17(十2P.V台)⑦叩效率由⑦知在孙∞一定的前提下,P总主要和Pl,R,y台有关;由材料的所需能量公式Q=CMT整;C材料的比热,M质量,T差温度的差值;在摩擦焊接的过程中,单位时间内的所需的能量为:Q=(C马氏体p马氏体cIV马氏体+c奥氏体p奥氏体'dV奥氏体) =T差(C马氏体p马氏体V马氏体+C奥氏体P奥氏体V臭氏体)( V马氏体+V奥氏体=V台(在摩擦焊的过程中,材料半径R一定,通过调节摩擦压力Pl和工作台速度V台使在摩擦时间tl内⑦与⑧平衡是摩擦焊参数调节的关键.5,刹车延时t2一般在0.1S~0.25S之间,直径大的刹车延时也就相应的长;保压时间b越长越好,一般在2S~5S,直径大的保压时间也就相应的长.5摩擦焊接质量的检测1,通过抗拉强度试验,通过强度值来反映焊接质量,如果参数调节到最佳,可以实现不从焊缝处断裂; 2,通过100%超声波探伤来检验焊接处的缺陷;3,通过100%旋转弯曲试验来检验焊接处的质量.工件在旋转过程中,在垂直工件的方向上,一定的位置上,施加一定的力使工件发生弯曲,通过弯曲来检测焊接处的质量.6摩擦焊接处的微观组织的变化'通过连续驱动摩擦焊接的原理可知,工件经过摩擦过程后,在顶锻过程及顶锻后保压过程中,焊合区金属通过相互扩散与再结晶,使两侧金属牢固焊接在一起,从而完成整个焊接过程.焊合区金属通过相互扩散与再结晶,晶粒度发生明显变化,通过金相图片可以看出焊缝处晶粒度明显偏细(见图1). 豳17结论1,不同摩擦焊接的工艺流程,摩擦焊接的参数不同;采取什么样的工艺流程要根据图纸的要求和原材料的状态而定.2,通过计算和试验选择合理的摩擦焊接参数对焊接的质量有至关重要.参考文献1王中平,张立军,周正航,陈永平.摩擦焊接工艺及设备的技术提升.(上接第20页)3)气门软氮化的弯曲和变形,除了同热处理后的组织与性能,存在校直应力有关外,更应关注机械加工应力的影响,假如经过氮化前去应力退火后,杆部直线度,盘锥面或底面跳动等变形较小,则证明气门的车削或磨削工艺参数是合理的,反之则证明其工艺参数是需要调整的.气门软氮化后出现弯曲或变形则应重点分析整个软氮化工艺与操作的正确性.4)对于需要抛丸的软氮化气门,应进行其变形量(直线度)与盘锥面跳动的检查,同时应确保气门整体的清洁,检验手段是采用湿布进行气门表面的擦拭,重点在锁夹槽,烟槽等凹部区域,如果有黑灰, 则表明抛丸频率低或时间短.5)光饰或抛丸后的煮油可以用防锈水代替,这样可避免油脏吸附磨削砂粒,杂物或粉尘等,有助于提高气门的清洁度,同时也可减少清洗工序,是有比较明显效果的.。
摩擦焊相关知识点总结一、摩擦焊的原理摩擦焊的原理是利用摩擦热效应和机械压力使焊件表面发生塑性变形,从而实现焊接。
摩擦焊的工作原理可以概括为以下几个步骤:1. 接触阶段:两个焊件通过机械压力贴合在一起,形成接触面。
同时,旋转摩擦焊工具,使摩擦热由焊接接触面产生,达到加热的效果。
2. 加热阶段:摩擦焊工具将焊接接触面加热至塑性变形温度,使接触面材料软化并产生塑性变形。
3. 搅拌阶段:通过机械压力和旋转摩擦焊工具使焊接接触面产生搅拌效应,使焊件之间的金属颗粒混合在一起,实现焊接。
4. 冷却阶段:停止摩擦热效应,等待焊接接触面冷却固化,形成坚固的焊接接头。
摩擦焊的原理可以表述为摩擦热效应、塑性变形和搅拌效应的综合作用。
通过控制摩擦焊的工艺参数,可以达到理想的焊接效果和焊缝质量。
二、摩擦焊的工艺参数摩擦焊的工艺参数是影响焊接质量和性能的重要因素,包括摩擦焊工具的转速、轴向压力、径向力、加热时间和冷却时间等。
下面分别对这些工艺参数进行详细介绍:1. 转速:摩擦焊工具的转速是影响摩擦热效应的重要参数。
较高的转速可以产生更多的摩擦热,加热焊接接触面更快,但也可能导致过高的焊接温度和金属流动速度,导致焊接质量下降。
因此,在实际操作中需要根据焊接材料的性质和厚度选择合适的转速。
2. 轴向压力:轴向压力是通过摩擦焊工具施加在焊接接触面上的压力,是实现摩擦焊的关键参数。
适当的轴向压力可以保证焊接接触面的紧密贴合,增加金属材料的接触面积,有利于摩擦热的传递和焊接质量的提高。
3. 径向力:对于摩擦搅拌焊接,径向力是对工件施加垂直于焊缝方向的压力。
通过施加适当的径向力可以保证焊接接触面的搅拌效果,防止焊接接触面出现空隙和气孔,提高焊接质量。
4. 加热时间:加热时间是摩擦焊加热阶段的持续时间,通过控制加热时间可以控制焊接接触面的温度和软化程度,影响焊接质量和强度。
5. 冷却时间:冷却时间是摩擦焊冷却阶段的持续时间,通过控制冷却时间可以保证焊接接触面充分冷却和固化,形成坚固的焊接接头。
摩擦焊机工作原理摩擦焊是一种金属焊接技术,通过在摩擦产生的热量和机械力的作用下,使两个金属工件在接触面产生塑性变形,并最终完成焊接过程。
摩擦焊机是用来实现这一焊接过程的设备,它不仅在工业生产中被广泛使用,也在实验室中被用来进行研究。
摩擦焊机的工作原理可以简单概括为以下几个步骤:预压、摩擦加热、塑性变形和压力保持。
首先是预压阶段。
在进行摩擦焊接之前,需要将两个金属工件精确对位并施加一定的压力。
这个压力可以确保接触面之间的良好接触,为后续的摩擦加热创造条件。
接下来是摩擦加热阶段。
摩擦焊机通过旋转一个工件或者同时旋转两个工件,使工件之间的摩擦产生热量。
这个旋转速度和施加的压力通常是根据具体焊接材料和尺寸来确定的。
通过摩擦加热,工件表面的温度会迅速升高,但内部温度变化较小。
在摩擦加热过程中,金属工件的塑性发生变化,进而引起塑性变形。
这是摩擦焊的关键步骤之一。
通过旋转和施加压力,工件表面的金属被“搅拌”在一起,从而使金属之间发生融合。
摩擦加热导致金属表面氧化膜的破裂和清除,从而增加了金属之间的接触面积,促进了融合的发生。
最后是压力保持阶段。
在金属工件发生塑性变形后,需要保持一定的压力使焊接接头冷却并形成结合。
这个压力的大小取决于焊接材料和焊接接头的尺寸。
压力的保持时间通常是根据焊接接头的大小和材料来确定的。
总的来说,摩擦焊机工作原理是通过摩擦加热和机械力作用于金属工件,使金属发生塑性变形和融合,从而完成焊接过程。
摩擦焊机广泛应用于各个领域,包括汽车制造、航空航天等。
它具有焊接速度快、焊缝强度高、无需外部焊接材料等优点,因此在现代工业生产中发挥着重要作用。
连续驱动摩擦焊基本原理1.焊接过程连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。
此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。
当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。
对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s 摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。
从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。
摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。
顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。
(1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加热功率显著增大的b点止。
摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。
随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~300℃左右。
在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。
塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。
金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。
因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。
但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化膜,因此,对接头的影响不大。
当焊件断面为实心圆时,其中心的相对旋转速度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。
连续驱动摩擦焊资料一、焊接工艺㈠.熔焊1.电弧焊2.气焊3.电子束焊4.激光焊5.电渣焊6.铝热焊传统的汽车传动轴焊接方式,一般都是采用CO₂气体保护焊,成本高、效率低㈡.压焊1.锻焊2.摩擦焊3.冷压焊4.电阻焊---电焊/ 缝焊/ 对焊5.超声波焊6.扩散焊7.高频焊8.爆炸焊㈢.钎焊1.火焰钎焊2.烙铁钎焊3.感应钎焊4.电阻钎焊5.盐浴钎焊6.炉中钎焊高压电触头普遍采用真空钎焊,电子束焊等工艺,成本高、效率低二、连续驱动摩擦焊原理利用工件端面相互摩擦产生的热量使之达到塑性状态,然后顶锻完成焊接的方法。
在压力作用下,是在恒定或递增压力以及扭矩的作用下,利用焊接接触端面之间的相对运动在摩擦面及其附近区域产生摩擦热和塑形变形热,使及其附近区域温度上升到接近但一般低于熔点的温度区间,材料的变形抗力降低、塑性提高、界面的氧化膜破碎,在顶锻压力的作用下,伴随材料产生塑性变形及流动,通过界面的分子扩散和再结晶而实现焊接的固态焊接方法。
三、摩擦焊机工作过程(1)初始摩擦阶段(t1)(2)不稳定摩擦阶段(t2)(3)稳定摩擦阶段(t3)(4)停车阶段(t4)(5)纯顶锻阶段(t5)(6)顶锻维持阶段(t6)在整个摩擦焊接过程中,待焊的金属表面经历了从低温到高温摩擦加热,连续发生了塑性变形、机械挖掘、粘接和分子连接的过程变化,形成了一个存在于全过程的高速摩擦塑性变形层,摩擦焊接时的产热、变形和扩散现象都集中在变形层中。
在停车阶段和顶锻焊接过程中,摩擦表面的变形层和高温区金属被部分挤碎排出,焊缝金属经受锻造,形成了质量良好的焊接接头。
四、连续驱动摩擦焊机优点1、接头质量好且稳定。
焊接过程由机器自动控制,参数设定后容易监控,重复性好,不依赖于操作人员的技术水平和工作态度。
焊缝不会出现气孔、偏析和夹杂,裂纹等铸造组织的结晶缺陷,焊接接头强度远大于熔焊、钎焊的强度,达到甚至超过母材的强度。
2、效率高。
对焊件准备通常要求不高,焊接设备自动化程度高,可在流水线上生产,每件焊接时间以秒计,一般只需零点几秒至几十秒,是其它焊接方法如熔焊、钎焊不能相比的。
摩擦焊摩擦焊是利用焊件相对摩擦运动产生的热量来实现材料可靠连接的一种压力焊方法。
其焊接过程是在压力的作用下,相对运动的待焊材料之间产生摩擦,使界面及其附近温度升高并达到热塑性状态,随着顶锻力的作用界面氧化膜破碎,材料发生塑性变形与流动,通过界面元素扩散及再结晶冶金反应而形成接头。
连续驱动摩擦焊基本原理1.焊接过程连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。
此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。
当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。
2.摩擦焊接产热摩擦焊接过程中,两工件摩擦表面的金属质点,在摩擦压力和摩擦扭矩的作用下,沿工件径向与切向力的合成方向作相对高速摩擦运动,在界面形成了塑性变形层。
该变形层是把摩擦的机械功转变成热能的发热层,它的温度高、能量集中,具有很高的加热效率。
3.摩擦焊焊接参数主要参数有转速、摩擦压力、摩擦时间、摩擦变形量、停车时间、顶锻时间、顶锻压力、顶锻变形量。
其中,摩擦变形量和顶锻变形量(总和为缩短量)是其他参数的综合反应。
1) 转速与摩擦压力。
转速和摩擦压力直接影响摩擦扭矩、摩擦加热功率、接头温度场、塑性层厚度以及摩擦变形速度等。
转速和摩擦压力的选择范围很宽,它们不同的组合可得到不同的规范,常用的组合有强规范和弱规范。
强规范时,转速较低,摩擦压力较大,摩擦时间短;弱规范时,转速较高,摩擦压力小,摩擦时间长。
2) 摩擦时间。
摩擦时间影响接头的加热温度、温度场和质量。
如果时间短,则界面加热不充分,接头温度和温度场不能满足焊接要求;如果时间长,则消耗能量多,热影响区大,高温区金属易过热,变形大,飞边也大,消耗的材料多。
Φ15 45钢+45钢连续驱动摩擦焊焊接工艺一、目的《特种焊接设备使用与维护》是三年制高职焊接技术及自动化专业的一门专业主干课程。
其任务主要是讲述各种特种焊接方法的过程本质、质量控制、相应焊接设备的构成、工件原理、焊接参数的合理选择及设备使用维护的技术知识。
为了巩固所学常用特种焊接方法与设备的知识,熟悉有关资料,掌握焊接工艺参数的选择和焊接设备的使用维护,安排了为期一周的课程设计。
通过本次焊接工艺设计,锻炼学生们的分析问题与解决问题的能力,提高焊接操作技能。
二、摩擦焊接技术概况摩擦焊接是利用焊件接触的端面相对运动中相互摩擦所产生的热,使端面达到热塑性状态,然后迅速顶锻,完成焊接的一种固相焊接方法。
摩擦焊以其优质、高效、节能、无污染等优势受到制造业的重视,使其在航天、核能、海洋开发等技术领域及电力、机械、石化、汽车制造等产业部门得到了越来越广泛的应用。
摩擦焊的基本原理:摩擦焊焊接过程是在压力的作用下,相对运动的待焊材料之间产生摩擦,使界面及附近温度升高并达到热塑性状态,随着顶锻力的作用,界面氧化膜破碎,材料发生塑性变形与流动,通过界面元素扩散及再结晶冶金反应而形成接头。
焊接过程不加填充金属,不需焊剂,也不用保护气体,全部焊接过程只需几秒钟。
两焊件结合面之间在较高的压力下高速旋转相互摩擦产生了两个重要的效果:一是破坏了结合面的氧化膜或其他污物,使纯净金属暴露出来;另一个是摩擦生热,使结合面很快形成热塑性层。
在随后的摩擦扭矩和轴向压力作用下这些破碎的氧化物和部分塑性层被挤出结合面外形成飞边,剩余的塑性变形金属就构成了焊缝金属,最后的顶锻使焊缝金属获得进一步锻造,形成了质量良好的焊接.三、摩擦焊的优缺点1、焊接质量好而稳定。
由于摩擦焊是一种热压焊接法,摩擦不仅能消除焊接表面的氧化膜, 同时在较大的顶锻压力作用下, 还能挤碎和挤出由于高速摩擦而产生的塑性变形层中氧化了的部分和其它杂质, 并使焊缝金属得到锻造组织。
摩擦焊的原理关键信息项:1、摩擦焊的定义2、摩擦焊的分类3、摩擦加热过程4、顶锻过程5、摩擦焊的优点6、摩擦焊的应用领域11 摩擦焊的定义摩擦焊是利用工件接触面摩擦产生的热量为热源,使工件在压力作用下产生塑性变形而进行焊接的方法。
111 摩擦焊的工作原理在摩擦焊过程中,两个待焊接的工件相对旋转或移动,通过摩擦产生热量,使接触面上的材料达到塑性状态。
然后,施加轴向压力,使材料在塑性状态下相互扩散和连接,形成牢固的焊接接头。
112 摩擦焊与传统焊接方法的区别与传统的电弧焊、气保焊等焊接方法相比,摩擦焊具有焊接过程中热输入较小、焊接接头质量高、变形小等优点。
12 摩擦焊的分类121 惯性摩擦焊惯性摩擦焊是通过飞轮储存能量,然后在焊接过程中释放能量,使工件摩擦生热。
这种方法适用于焊接大直径、高强度的工件。
122 连续驱动摩擦焊连续驱动摩擦焊是通过电机等驱动装置使工件持续旋转或移动,从而产生摩擦热。
它适用于焊接较小尺寸和较低强度的工件。
123 搅拌摩擦焊搅拌摩擦焊是通过搅拌头在工件的连接处旋转和移动,产生摩擦热和塑性变形,实现焊接。
这种方法特别适用于焊接铝合金等轻金属。
13 摩擦加热过程131 摩擦起始阶段在摩擦起始阶段,两个工件表面开始接触,摩擦力逐渐增大,温度开始上升。
132 稳定摩擦阶段随着摩擦的进行,进入稳定摩擦阶段,此时摩擦系数基本稳定,产生的热量使接触面的材料迅速升温至塑性状态。
133 停车阶段当达到预定的摩擦时间或温度时,停止摩擦运动,准备进入顶锻阶段。
14 顶锻过程141 顶锻的作用顶锻是在摩擦停止后,立即对工件施加轴向压力,使接触面的塑性材料紧密结合,挤出界面的氧化物和杂质,形成牢固的焊接接头。
142 顶锻力的大小和持续时间顶锻力的大小和持续时间对焊接接头的质量有重要影响。
顶锻力过小或持续时间过短,可能导致焊接不牢固;顶锻力过大或持续时间过长,可能会使工件过度变形。
15 摩擦焊的优点151 焊接质量高摩擦焊能够获得高质量的焊接接头,焊缝强度接近或达到母材强度,焊缝组织均匀、致密,无气孔、夹渣等缺陷。
摩擦焊机工作原理摩擦焊是一种常用的焊接方法,其工作原理基于材料表面摩擦引起的局部热量和压力。
该方法通常用于焊接金属材料,可以实现高强度、高效率的焊接过程。
本文将深入探讨摩擦焊机的工作原理,并介绍其在实际应用中的优点。
一、摩擦焊机概述摩擦焊机是一种专门用于摩擦焊接的设备。
它由摩擦头、焊接头、传动系统和控制系统等组成。
摩擦头通过旋转产生摩擦力,将工件表面加热至熔点以上的温度。
焊接头施加压力,使两块工件在高温和高压下实现焊接。
二、摩擦焊的工作原理摩擦焊的工作原理基于摩擦引起的热和机械能转化为焊接过程的能量。
具体步骤如下:1. 接触阶段:摩擦头与工件表面接触,施加压力。
由于摩擦力的作用,工件表面开始局部加热。
2. 加热阶段:连续旋转的摩擦头引起工件表面的高速摩擦,将机械能转化为热能。
热量的积累将局部区域加热到熔点以上,形成摩擦焊区。
3. 压力阶段:摩擦头停止旋转,施加持续的压力。
工件表面的塑性材料被挤出,形成焊接界面。
4. 固化阶段:焊接界面冷却并固化,形成坚固的焊缝。
三、摩擦焊的优点摩擦焊作为一种高效率、高质量的焊接方法,具有许多优点:1. 能耗低:摩擦焊不需要额外的热源,减少了能源消耗。
相较于传统焊接方法,摩擦焊的能耗更低。
2. 焊接速度快:由于摩擦头高速旋转,摩擦焊的焊接速度比传统焊接方法快很多。
这使得生产效率大幅提高。
3. 无需填充材料:摩擦焊不需要使用额外的填充材料。
焊接过程中,材料的塑性使得焊接部位形成强固的焊缝。
4. 厚薄板均可焊接:摩擦焊适用于焊接各种厚度的金属板材,具有较强的适应性。
5. 焊接强度高:由于焊接过程中金属表面的塑性变形,摩擦焊形成的焊缝强度较高。
四、摩擦焊的应用领域摩擦焊广泛应用于航空航天、汽车制造、管道连接等领域。
以下列举几个实际应用:1. 轨道交通领域:摩擦焊可以用于连接轨道、制造列车轮轴等,确保高强度和安全性。
2. 汽车制造:摩擦焊用于车辆零部件的焊接,如发动机连杆、油底壳等。
连续驱动摩擦焊基本原理1.焊接过程连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。
此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。
当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。
对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s 摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。
从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。
摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。
顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。
(1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加热功率显著增大的b点止。
摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。
随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~300℃左右。
在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。
塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。
金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。
因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。
但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化膜,因此,对接头的影响不大。
当焊件断面为实心圆时,其中心的相对旋转速度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。
连续驱动摩擦焊基本原理1.焊接过程连续驱动摩擦焊接时,通常将待焊工件两端分别固定在旋转夹具和移动夹具内,工件被夹紧后,位于滑台上的移动夹具随滑台一起向旋转端移动,移动至一定距离后,旋转端工件开始旋转,工件接触后开始摩擦加热。
此后,则可进行不同的控制,如时间控制或摩擦缩短量(又称摩擦变形量)控制。
当达到设定值时,旋转停止,顶锻开始,通常施加较大的顶锻力并维持一段时间,然后,旋转夹具松开,滑台后退,当滑台退到原位置时,移动夹具松开,取出工件,至此,焊接过程结束。
对于直径为16mm的45号钢,在2000r/min转速、8.6MPa摩擦压力、0.7s 摩擦时间和161MPa的顶锻压力下,整个摩擦焊接过程如图10所示。
从图中可知,摩擦焊接过程的一个周期可分成摩擦加热过程和顶锻焊接过程两部分。
摩擦加热过程又可以分成四个阶段,即初始摩擦、不稳定摩擦、稳定摩擦和停车阶段。
顶锻焊接过程也可以分为纯顶锻和顶锻维持两个阶段。
(1)初始摩擦阶段(t1)此阶段是从两个工件开始接触的a点起,到摩擦加热功率显著增大的b点止。
摩擦开始时,由于工件待焊接表面不平,以及存在氧化膜、铁锈、油脂、灰尘和吸附气体等,使得摩擦系数很大。
随着摩擦压力的逐渐增大,摩擦加热功率也慢慢增加,最后摩擦焊接表面温度将升到200~300℃左右。
在初始摩擦阶段,由于两个待焊工件表面互相作用着较大的摩擦压力和具有很高的相对运动速度,使凸凹不平的表面迅速产生塑性变形和机械挖掘现象。
塑性变形破坏了界面的金属晶粒,形成一个晶粒细小的变形层,变形层附近的母材也沿摩擦方向产生塑性变形。
金属互相压入部分的挖掘,使摩擦界面出现同心圆痕迹,这样又增大了塑性变形。
因摩擦表面不平,接触不连续,以及温度升高等原因,使摩擦表面产生振动,此时空气可能进入摩擦表面,使高温下的金属氧化。
但由于t1时间很知,摩擦表面的塑性变形和机械挖掘又可以破坏氧化膜,因此,对接头的影响不大。
当焊件断面为实心圆时,其中心的相对旋转速度为零,外缘速度最大,此时焊接表面金属处于弹性接触状态,温度沿径向分布不均匀,摩擦压力在焊接表面上呈双曲线分布,中心压力最大,外缘最小。
在压力和速度的综合影响下,摩擦表面的加热往往从距圆心半径2/3左右的地方首先开始。
(2)不稳定摩擦阶段(t2)不稳定摩擦阶段是摩擦加热过程的一个主要阶段,该阶段从摩擦加热功率显著增大的b点起,越过功率峰值c点,到功率稳定值的d点为止。
由于摩擦压力较初始摩擦阶段增大,相对摩擦破坏了焊接金属表面,使纯净的金属直接接触。
随着摩擦焊接表面的温度升高,金属的强度有所降低,而塑性和韧性却有很大的提高,增大了摩擦焊接表面的实际接触面积。
这些因素都使材料的摩擦系数增大,摩擦加热功率迅速提高。
当摩擦焊接表面的温度继续增高时,金属的塑性增高,而强度和韧性都显著下降,摩擦加热功率也迅速降低到稳定值d点。
因此,摩擦焊接的加热功率和摩擦扭矩都在c点呈现出最大值。
在45号钢的不稳定摩擦阶段,待焊表面的温度由200~300℃升高到1200~1300℃,而功率峰值出现在600~700℃左右。
这时摩擦表面的机械挖掘现象减少,振动降低,表面逐渐平整,开始产生金属的粘结现象。
高温塑性状态的局部金属表面互相焊合后,又被工件旋转的扭力矩剪断,并彼此过渡。
随着摩擦过程的进行,接触良好的塑性金属封闭了整个摩擦面,并使之与空气隔开。
(3)稳定摩擦阶段(t3)稳定摩擦阶段是摩擦加热过程的主要阶段,其范围从摩擦加热功率稳定值的d点起,到接头形成最佳温度分布的e点为止,这里的e点也是焊机主轴开始停车的时间点(可称为e′点),也是顶锻压力开始上升的点(图10的ƒ点)以及顶锻变形量的开始点。
在稳定摩擦阶段中,工件摩擦表面的温度继续升高,并达到1300℃左右。
这时金属的粘结现象减少,分子作用现象增强。
稳定摩擦阶段的金属强度极低,塑性很大,摩擦系数很小,摩擦加热功率也基本上稳定在一个很低的数值。
此外,其它连接参数的变化也趋于稳定,只有摩擦变形量不断增大,变形层金属在摩擦扭矩的轴向压力作用下,从摩擦表面挤出形成飞边,同时,界面附近的高温金属不断补充,始终处于动平衡状态,只是接头的飞边不断增大,接头的热影响区变宽。
(4)停车阶段(t4)停车阶段是摩擦加热过程至顶锻焊接过程的过渡阶段,是从主轴和工件一起开始停车减速的e′点起,到主轴停止转动的g点止。
从图10可知,实际的摩擦加热时间从a点开始,到g点结束,即tƒ=t1+t2+t3+t4。
尽管顶锻压力从ƒ点施加,但由于工件并未完全停止旋转,所以g′点以前的压力,实质上还是属于摩擦压力。
顶锻开始后,随着轴向压力的增大,转速降低,摩擦扭矩增大,并再次出现峰值,此值称为后峰值扭矩。
同时,在顶锻力的作用下,接头中的高温金属被大量挤出,工件的变形量也增大。
因此,停车阶段是摩擦焊接的重要过程,直接影响接头的焊接质量,要严格控制。
(5)纯顶锻阶段(t5)从主轴停止旋转的g(或g′)点起,到顶锻压力上升至最大位的h点止。
在这个阶段中,应施加足够大的顶锻压力,精确控制顶锻变形量和顶锻速度,以保证获得优异的焊接质量。
(6)顶锻维持阶段(t6)该阶段从顶锻压力的最高点h开始,到接头温度冷却到低于规定值为止。
在实际焊接控制和自动摩擦焊机的程序设计时,应精密控制该阶段的时间tu(tu=t3+t4)。
在顶锻维持阶段,顶锻时间、顶锻压力和顶锻速度应相互配合,以获得合适的摩擦变形量△Iƒ和顶锻变形量△Iu。
在实际计算时,摩擦变形速度一般采用平均摩擦变形速度(△Iƒ/tƒ),顶锻变形速度也采用其平均值〔△Iu/(t4+t5)〕。
总之,在整个摩擦焊接过程中,待焊的金属表面经历了从低温到高温摩擦加热,连续发生了塑性变形、机械挖掘、粘接和分子连接的过程变化,形成了一个存在于全过程的高速摩擦塑性变形层,摩擦焊接时的产热、变形和扩散现象都集中在变形层中。
在停车阶段和顶锻焊接过程中,摩擦表面的变形层和高温区金属被部分挤碎排出,焊缝金属经受锻造,形成了质量良好的焊接接头。
2.摩擦焊接产热摩擦焊接过程中,两工件摩擦表面的金属质点,在摩擦压力和摩擦扭矩的作用下,沿工件径向与切向力的合成方向作相对高速摩擦运动,在界面形成了塑性变形层。
该变形层是把摩擦的机械功转变成热能的发热层,它的温度高、能量集中,具有很高的加热效率。
(1)摩擦加热功率摩擦加热功率的大小及其随摩擦时间的变化,决定了焊接温度及其温度场的分布,直接影响接头的加热过程、焊接生产率和焊接质量,同时也关系到摩擦焊机的设计与制造。
摩擦加热功率就是焊接热源的功率,它的计算与分布如下:对圆形的焊接工件,假设沿摩擦表面半径方向的摩擦压力pƒ和摩擦系数μ为常数。
为了求出功率分布,在摩擦表面上取一半径为r的圆环,该环的宽度为dr (图11),其面积为dA,则dA=2πrdr,则作用在圆环上的摩擦力为dF=pƒμdA=2πpƒμrdr (4)以O点为圆心的摩擦扭矩为dM=rdF=2πpƒμr2dr (5)圆环上的摩擦加热功率为dP≈1.02dM×10-3n (6)摩擦加热功率沿接合面半径R方向上的分布dP/dr如图11所示。
加热功率在圆心处为零,在外边缘最大。
将式(5)、式(6)积分,可以得到摩擦焊接表面上总的摩擦扭矩和加热功率为M=2πpƒμR3/3 (7)P=2×10-3πpƒnμR3/3(8)式中M——摩擦扭矩;P——摩擦加热功率;pƒ——摩擦压力;n——工件转速;μ——摩擦系数;r——圆环半径;R——待焊工件半径。
实际上pƒ(r)不是常数,在初始摩擦阶段和不稳定摩擦阶段的前期,摩擦表面还没有全面产生塑性变形,主要是弹性接触,摩擦压力在中心高,外圆低。
因此沿摩擦焊接表面半径R的摩擦加热功率最大值不在外圆,而在距圆心2/3R左右的地方,这一点不仅符合计算结果,也被试验所证实。
在稳定摩擦阶段,摩擦表面全部产生塑性变形,成为塑性接触时,pƒ(r)才可以认为等于常数。
此外,μ(r)在初始摩擦阶段和不稳定摩擦阶段也不是常数,由高温金属组成的高速塑性变形层热源,在距圆心1/2~1/3半径处形成环状加热带,随着摩擦加热的进行,环状加热带向圆心和外圆迅速展开,当进入稳定摩擦阶段时,摩擦表面的温度才趋于平衡,此时可以认为μ(r)是常数。
摩擦表面上总的加热热量为式中Q——接合面总的摩擦加热热量;t——摩擦时间;to——摩擦加热开始时间(设to=0);tn——实际摩擦加热时间;k——常数。
(2)摩擦焊接表面温度摩擦焊接表面的温度会直接影响接头的加热温度、温度分布、摩擦系数、接头金属的变形与扩散。
其加热面的温度由摩擦加热功率和散热条件所决定。
在焊接圆断面工件时,摩擦焊接热源被认为是一个线性传播的连续均布的面状热源。
如果不考虑向周围空间的散热,根据雷卡林的焊接热过程计算公式,同种金属摩擦焊接表面的温度为式中T(O,t)——摩擦焊接表面温度(O表面热源中心,t是摩擦加热时间);q2——单位面积上的加热热量;λ——焊件热导率;c——焊件热容。
在式(10)中,如果选定焊接所需要的温度为Tw,热源温度升高到Tw所需要的摩擦加热时间为tƒ′,则该式可以写成tƒ′q22=cπλT2w=常数(11)从式(11)可以看出,当Tw和tƒ′确定以后,能够计算出q2的数值,并可以根据q2的要求选择焊接参数。
式(10)和式(11)适合于计算以稳定摩擦阶段为主的摩擦加热过程。
实际上,不论何种材料的摩擦焊接,摩擦表面的最高温度是有限制的,不能超过焊件材料的熔点,此外,在采用式(10)和式(11)进行运算时,还应该考虑到摩擦焊接表面温度与加热功率之间的内在联系、相互制约及摩擦加热功率随摩擦时间变化的特殊规律。