当前位置:文档之家› 石墨烯的制备及表征

石墨烯的制备及表征

石墨烯的制备及表征
石墨烯的制备及表征

石墨烯制备及表征

摘要

本文采用液相氧化法制备氧化石墨烯,考察浓硫酸用量,高锰酸钾用量,室温氧化时间及90oC下氧化时间对氧化石墨生成的影响,初步探讨了石墨的液相氧化过程。研究结果表明:XRD可表征产物的氧化程度,氧化程度足够高的产物其XRD谱中出现尖锐的氧化石墨面的特征衍射峰。制备氧化石墨烯的原料为天然鳞片石墨,浓硫酸,高锰酸钾,双氧水。使用的设备仪器有电子分析天平,搅拌器,恒温水浴箱,真空干燥器,超声波震荡器,离心沉淀机,管式炉。

1 前言

石墨在浓硫酸,硝酸,高氯酸等强酸和少量氧化剂的共同作用下可形成最低阶为1阶的石墨层间化合物,这种低阶石墨层间化合物在过量强氧化剂如高锰酸钾,高氯酸钾等的作用下,可继续发生深度液相氧化反应,产物水解后即成为氧化石墨,在制备的过程中浓硫酸等的用量室温,高温反应的时间都对最终产物有较大影响。因此控制试剂的用量及反应的时间存在较大的难度。

本文就浓硫酸,高锰酸钾的用量,室温及90℃高温的反应时间,和节约试剂等方面对该反应进行了进一步探究,找出了一套更完美的实验方案。

2 实验

2.1 氧化石墨烯和石墨烯的制备

将10g石墨和适当量浓硫酸和高锰酸钾依次加入500 mL三口烧瓶中,室温反应1h,加入约60ml蒸馏水,再升高温度至90oC反应,反应一个半小时结束后倒出,加入40ml双氧水反应0.5h后加入大量蒸馏水终止反应。再将其洗涤至中性后再低温(45°C左右)烘干,即得氧化石墨。

将氧化石墨置于通有氩气的石英管中于560°C膨胀约10min。再将其缓慢加热(约2°C/min)至1100°C,将氧化石墨还原使其脱除含氧基团,并完全实现层间剥离,生成石墨烯片。实验流程图如下:

2.2 X射线衍射(XRD)

X射线衍射分析(XRD)采用荷兰产PHILIPS X’ PERT MPD PRO型转靶X射线衍射仪,阳极Cu靶(CuKα),工作电压为40KV,电流为30mA。采用X射线对样品晶体结构进行分析,可以得到样品组成信息。

X射线衍射分析的样本只需取干燥过的样品粉末少许即可。

3结果与讨论

3.1 浓硫酸用量对氧化石墨生成的影响

实验中,分别采用了75ml、100ml、150ml浓硫酸的用量以及15g高锰酸钾,20ml双氧水,2小时的低温反应时间,4小时高温反应时间的实验条件细粒来研究浓硫酸量对所制得的产物的影响。但氧化后的膨胀实验中这3个样都没有明显的膨胀现象。从石墨以及100ml浓硫酸用量所得的氧化石墨样品的XRD谱图(如图3.2)中也可以看到,该氧化石墨样中代表石墨的2θ≈36°的特征峰并未消失,强度减弱亦并不明显,仅现一定程度的宽化。可以推测这种情况的出现是由于石墨层间有少部分被氧化而使得部分区域的晶面间距拉大的结果。由于这3个样品膨胀现象均不明显,因而无法对此三样品进行比较。在一定范围内浓硫酸量越大则氧化程度越高。但过大的酸用量会加大生产成本和产物处理难度,因此浓硫酸用量适量即可。在实验中,150ml浓硫酸与30g高锰酸钾配比在反应过程中大部分样品附着在烧瓶壁上,导致样品无法进行搅拌,使得反应物的混合可能并不均匀,因此浓硫酸量应使反应物能够混合均匀,故而以下的实验均是使用200ml

的浓硫酸。

20

40

60

80

100

I n t e n s i t y /(a .u .)

2θ/(°)

GNFG

Oxide by 100ml sulfuric acid

图3.2低用量浓硫酸量氧化前后样品XRD 图谱比较

3.2 高锰酸钾用量对氧化石墨生成的影响

在上述实验中,高锰酸钾用量为15g 时,石墨基本无变化。为此改变了实验中高锰酸钾用量。其中,室温氧化时间和90oC 下氧化时间分别为2小时和4小时,双氧水40ml 。高锰酸钾用量为15g ,20g ,25g 时氧化后的样在膨胀实验中均没有明显反应,只有当其量增加到30g 时氧化后样品膨胀非常明显。因而可以推测,高锰酸钾量对反应效果有至关重要的影响。这从浓硫酸用量为100ml 高锰酸钾用量为15g 的实验样本与浓硫酸用量150ml 高锰酸钾用量30g 的样本亦可看出。其氧化产物的XRD 谱图(如图3.3)显示当高锰酸钾用量为15g 时,其XRD 谱图中2θ≈26°处的石墨特征峰并没有十分明显的变化,而当高锰酸钾用量增加至30g 时谱图中天然鳞片石墨在2θ≈26°处的特征峰在氧化反应以后明显减弱、拉宽,并且向低角度移动,在2θ≈11°处出现一处新的强衍射峰。根据布拉格公式:

d=λ/(2sinθ) (3.1)

其中d 是晶面间距,λ是为X 射线的波长(Cuka 波长为0.15406nm),θ是掠射角(也称布拉格角,是入射角的余角,2θ才是衍射角),可以计算此氧化产物的晶面间距约是 0.80nm 。相对于原料石墨而言,氧化后其晶面间距明显增大,表明了氧化石墨的生成。在膨胀反应中该样品有较剧烈的膨胀,那么2θ≈11°处的峰即氧化石墨的特征峰。也就是说,当高

锰酸钾用量为30g 时产物氧化程度比用量为15g 时大。并且高锰酸钾用量少于30g 的产物样本膨胀时无明显反应,那么其氧化效果应该是与高锰酸钾用量为15g 时相似。因此在该实验中30g 的高锰酸钾是比较适宜的用量。但其具体最佳用量尚待进一步研究。

020

4060

2000

4000

6000

8000

I n t e n s i t y /(a .u .)

2θ/( °)

Potassium permanganate15g

Potassium permanganate 30g

图3.3 高锰酸钾用量不同所得氧化石墨的XRD 图谱比较

3.3 室温氧化时间对氧化石墨生成的影响

表3.1 低温反应时间不同时氧化石墨膨胀现象比较

序号 低温反应时间(h) 360℃时膨胀现象

1 2 1min 后开始膨胀,有爆炸声,持续到第2min 2

1

第2min 开始有爆炸声,一直间断持续到第9min ,取样时瓷舟内有些小亮片

3

0.5

无明显现象

*其中浓硫酸用量为200ml ,高锰酸钾用量30g ,高温反应时间2小时。

从XRD 谱图(图3.4)来看,低温氧化时间为1小时的氧化石墨特征峰强度是最大的,其次是2小时和0.5小时的。这与上述膨胀时的现象可以很好的相符合:可膨胀氧化石墨含量越大,反应越剧烈。并且也说明可膨胀氧化石墨的产量与低温反应时间并不是成正比例的,并非氧化时间越长,所得可膨胀氧化石墨含量就越高,而是存在一个最佳值。对于工业生产来说,这是一个比较好的现象。 事实上,我们还可以看到,这三个样的石墨特征峰均基本消失,即氧化后的样品中已经不存在晶面间距为0.34nm 的石墨,而是已全部转化。低温反应时间

是0.5小时的样氧化石墨的特征峰最低,故而其氧化程度其实是最高的,层间剥离程度最高。但为什么会出现这种波动状况尚有待进一步的实验研究。实验中要求达到最好的氧化程度,因此可采用0.5小时的低温氧化时间。但氧化程度对膨胀生成氧化石墨烯效果的影响还有待进一步检测比较。

0102030405060

i n t e n s i t y /(a .u .)

2θ/( °)

2h 1h

0.5h

图3.4 不同低温氧化时间下生成的氧化石墨的XRD

3.4 90oC 下氧化时间对氧化石墨生成的影响

表3.2 90oC 下氧化时间不同的氧化石墨膨胀现象比较

序号 90o下氧化时间(h) 360℃时膨胀现象

1

4

1min 开始膨胀,有爆炸声,持续到第2min ,可以看到有轻微的黑烟

2 20 无明显现象

3

2

1min 时膨胀剧烈,有爆炸声,持续到第2min ,有黑烟飘出,微细粉末一直沉降到管末端

4

1

1min 后开始膨胀,有爆炸声,持续到第2min ,亦有黑烟,但反应不及8号剧烈

*其中浓硫酸用量为200ml 。高锰酸钾用量30g 。低温氧化时间2小时。

根据以上现象可以看出,90oC 下氧化时间为4小时、2小时、1小时的样本均生成了氧化石墨,90oC 下氧化时间为20小时的样本却基本没有可膨胀的氧化石墨生成。由图3.4的 XRD 谱图可得,这四个样的氧化石墨特征峰均已基本消失,证明四者都得到了不同程度的氧化。前三个样在2θ≈11°处分别都出现了不同强度的可膨胀氧化石墨的特征峰,高温反应时间为4小时的样可膨胀氧化石墨特征峰是较弱的,90oC 下氧化时间为1小时和2小时的样本则相差无几,首先这说明可膨胀氧化石墨的产量与高温反应时间不成正比。并且在一定的范围内,90oC 下氧化时间对产物氧化程度的影响并不大,其次就是90oC 下氧化时间为4小时的样氧化程度较高温氧化时间为1小时和2小时的好。90oC 下氧化时间为20小时生成的产物有一定强度的石墨特征峰,却并无可膨胀氧化石墨的特征峰。可以推测此时其层间已经实现了较好的剥离,而石墨特征峰的出现则是产物中还存在少许未能被氧化的石墨造成的。因此,综合这四个样的XRD 谱图来看,氧化时间越长,氧化程度也就越高,层间剥离程度也越高。但在工业生产中,过长的氧化时间是不利的。可以考虑选择在较短的氧化时间内先制备出氧化石墨,再利用热膨胀来实现层间剥离。

020

4060

I n t e n s i t y /(a .u .)

2θ/( °)

1h

2h 4h 20h

图3.5 90oC 下氧化时间不同所得氧化石墨的XRD 的图谱比较

经过较好条件的氧化后。其SME 图(图3.7a)中图片清晰度明显比石墨SEM 图片清晰度低,说明其导电性能变差,石墨的层间含氧官能团羟

基,羧基等的插入,束缚了其自由电子的移动。与此同时,其XRD 图谱中2θ≈26°的石墨特征峰明显降低甚至于消失,图峰左移至2θ≈11°处,形成可膨胀氧化石墨的特征峰。含氧官能团的插入使得石墨的层间距拉大。其中氧化石墨的模型如图3.6所示

图3.7 氧化石墨的SEM 图(a),氧化石墨与石墨的XRD 图谱比较

3.3 膨胀反应条件对氧化石墨烯生成的影响

在氧化完成后,为实现氧化石墨层间的完全剥离,对其进行了热膨胀。经过一定温度的热膨胀之后,含氧基团变成CO2和H2O 气体,这些气体将层间撑开,使得层间距进一步扩大,以至晶面间完全互相剥离开形成单层结构的氧化石墨烯片。

以反应条件是200ml 浓硫酸,30g 高锰酸钾,高温反应时间1小时低温反应时间也是1小时所生成的产物样品为例,从XRD 谱图来看,经过膨胀后的其可膨胀氧化石墨特征峰都已经非常低,相对于其氧化石墨来说,几乎可以认为是已消失 (如图3.8a)。而由图3.8b

又可以看到膨胀的样品较460°C 与560°C 膨胀样品氧化石墨特征峰要稍低,并且2θ≈26°处的石墨特征峰也呈现此趋势,可以推测可能并不是温度越高膨胀剥离程度就越好,一定程度的低温反而对剥离是有利的。但这种情况也有可能是另外一个原因造成:温度越高,反应越剧烈,氧化石墨烯的飘散就

20

406080

-2000

020004000600080001000012000

140001600018000I n t e n s i t y /(a .u .)

2θ/( °)

GNFG

GO

越严重,这就造成了温度较高的膨胀样品中粒度越小的氧化石墨烯飘散程度越高,石墨峰强度反而变大这种情况。具体原因则还有待改进实验条件进一步探讨。

020406080

I n t e n s i t y /(a .u .)

a

2040

0100200300400500600700800900

100011001200 I n t e n s i t y /(a .u .)

b

Expansion in 360℃

Expansion in 460℃

Expansion in 560℃

图3.8不同温度膨胀样品与氧化石墨的比较(a),不同温度膨胀样品之间的比较(b)

对于膨胀时间,通过表3.1及3.2实验现象记录的分析可以看出,2min 之后膨胀基本已经结束,因此实验初拟定的10min的膨胀时间明显过长。可根据样品的具体情况调整为略大于2min即可。

经过膨胀之后得到氧化石墨烯,其SEM图如图3.9所示。图片明显比氧化石墨的SEM图片清晰,说明样本的导电性能增强,含氧官能团减少。并且,于图中还可以明显观察到表面有剥离的层片,其厚度虽较大,但通过此剥离现象以及图3.8a中氧化石墨烯谱图中石墨以及氧化石墨图峰的消失可推测其层间的剥离及单层氧化石墨烯的生成。

图3.9 氧化石墨烯的SEM图

石墨烯量子点制备与应用

石墨烯量子点的概述 石墨烯量子点的性质 GQDs是准零维结构的纳米材料,由于其自身半径小于波尔激发半径,原子内部的电子在三维方向上的运动均受到限制,所以量子局域效应十分显着,因此具有许多独特的物理和化学性质。其与传统的半导体量子点(QDs)相比,GQDs 具有如下独特的性质:不含高毒性的金属元素如镉、铅等,属环保型量子点材料;自身结构稳定,耐强酸和强碱,耐光漂白;厚度可达到单个原子层,横向尺寸可达到几个互相联接的苯环大小,却能够保持高度的化学稳定性;带隙宽度范围可调,原则上可通过量子局域效应和边缘效应在0~5 eV 范围内调节,从而将波长范围从近红外区扩展到可见光区及深紫外区,从而满足了各种技术对材料能隙和特征波长的要求;容易实现表面功能化,可稳定分散于常用的化学试剂,满足材料低成本加工处理的需求。GQDs拥有的发光特性主要是通过光致发光和电化学发光产生,其中荧光性能是GQDs最突出的性能,GQDs的荧光性质主要包括:激发荧光稳定性高且具有抗光漂白性;荧光发射波长可以进行可控调节,有些GQDs还具有上转换荧光性质;激发光谱宽且连续,可以进行一元激发、多元发射。目前关于GQDs的光致发光机理主要有两个:(1)官能团效应,即在GQDs表面进行化学修饰,使得GQDs表面产生能量势阱,表面物理化学状态发生显着变化,导致其荧光量子产率提高;(2)尺寸效应,即GQDs的荧光性能取决于粒径尺寸的大小。GQDs还是优良的电子给体和电子受体,因此GQDs在能量存储、光电转化和电磁学领域具有重要的研究意义,同时在生物、医学、材料、新型半导体器件等领域具有重要潜在应用价值。 石墨烯量子点的制备 GQDs的合成方法可以分为两大类:自上而下法和自下而上法,如图1-1所示。自上而下法是通过简单的物理化学作用,进行热解和机械剥离块状石墨,得到尺寸较小的GQDs,是最常用的制备方法,比如改进的Hummers法,其使用的原料廉价,但是反应条件比较苛刻,制备周期比较长,通常需要经过强酸、强氧

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

石墨烯量子点的制备方法

石墨烯量子点的制备、表征与应用研究 氧化石墨(GO)的制备 本文采用改进的Hummers法对天然鳞片石墨进行氧化处理制备氧化石墨(GO),[20, 21] 具体如下:在干燥的三颈烧瓶中加入46 mL 98%浓硫酸,低温冷却至0-4℃。强力搅拌下加入2 g天然鳞片石墨和1 g硝酸钠,且控制水浴温度至4℃以下1小时。随后分几次缓慢加入6 g高锰酸钾,继续搅拌反应1 h,溶液呈墨绿色,然后将锥形瓶置于35℃的恒温水浴中,继续搅拌反应2 h,反应结束后搅拌下加入100 mL二次蒸馏水,控制温度在90℃继续搅拌1 h,用150 mL二次蒸馏水稀释反应液,再加入10 mL 30%双氧水,搅拌至溶液呈金黄色。趁热抽滤,用5%盐酸和去离子水充分洗涤棕黄色沉淀物至pH值≈7。将棕黄色沉淀物放置在60℃的烘箱中干燥12 h,得氧化石墨烯固体,保存备用。 还原石墨烯的制备 化学还原石墨烯是用水合肼还原氧化石墨烯制得。称取4.2.2得到的氧化石墨烯50 mg置于100 mL圆底烧瓶中,加入二次蒸馏水至100 mL,超声约0.5 h 使其完全溶解。取50 mL氧化石墨烯分散液于250 mL烧杯中,然后加入50 μL 35%水合肼溶液和350 μL浓氨水,混合均匀,剧烈搅拌几分钟。置于95℃水浴中反应1 h,溶液慢慢由棕褐色变为黑色。待溶液冷却至室温时,用0.22 μm的滤膜进行抽滤,将滤得的沉淀物于60℃干燥12 h,即得到所需的还原石墨烯薄膜。 石墨烯量子点(GQDs)的制备 石墨烯量子点(GQDs)的电化学制备是在0.01 mol L-1磷酸盐缓冲溶液(PBS)中进行的。用滴管向缓冲溶液中滴加两滴4 mg/mL巯基丙氨酸溶液作为分散剂,在±0.3v电压内以0.5 v s-1的扫描速率进行循环伏安(CV)扫描。由以上制得的石墨烯薄膜(5 mm×10 mm)作工作电极,Pt丝作辅助电极,甘汞电极作参比电极。过程中有石墨烯粒子从薄膜上剥落进入溶液中,溶液由无色变为黄色。将黄色溶液进一步用透析袋透析(透析袋截留分子量:3000道尔顿,袋外初始水体积为500 mL),每天换两次水,透析三天,得到石墨烯量子点水溶液。

氧化石墨烯的制备及表征

氧化石墨烯的制备及表征 文献综述 材料0802班 李琳 200822046

氧化石墨烯的制备及表征 李琳 摘要:石墨烯(又称单层石墨或二维石墨)是单原子厚度的二维碳原子晶体,被认为是富勒烯、碳纳米管和石墨的基本结构单元[1]。石墨烯可通过膨胀石墨经过超声剥离或球磨处理来制备[2,3],其片层厚度一般只能达到30~100 nm,难以得到单层石墨烯(约0.34 nm),并且不容易重复操作。所以寻求一种新的、容易和可以重复操作的实验方法是目前石墨烯研究的热点。而将石墨氧化变成氧化石墨,再在超声条件下容易得到单层的氧化石墨溶液,再通过化学还原获得,已成为石墨烯制备的有效途径[4]。通过述评氧化石墨及氧化石墨烯的制备、结构、改性及其与聚合物的复合,展望了石墨烯及其复合材料的研究前景。 关键词:氧化石墨烯,石墨烯,氧化石墨,制备,表征 Oxidation of graphite surfaces preparation and Characterization LI Lin Abstrat:Graphite surfaces (also called single graphite or 2 d graphite )is the single atoms thickness of the 2 d carbon atoms crystal, is considered fullerenes, carbon nanotubes and graphite basic structure unit [1].Graphite surfaces can through the expanded graphite after ultrasonic stripping or ball mill treatment topreparation [2,3], a piece of layer thickness normally only up to 30 to 100 nm, hard to get the single graphite surfaces (about 0.34 nm), and not easy to repeated operation. So to search a new, easy to operate and can be repeated the experiment method of the graphite surfaces is the focus of research. And will graphite oxidization into oxidation graphite, again in ultrasonic conditions to get the oxidation of the single graphite solution, again through chemical reduction get, has become an effective way of the preparation of graphite surfaces [4]. Through the review of graphite oxide and oxidation graphite surfaces of the preparation, structure, modification of polymer and the

氧化石墨烯的制备讲义

实验十、氧化石墨烯的制备实验 一、实验目的 1、掌握Hummers法制备氧化石墨烯。 2、了解氧化石墨烯结构与性能表征。 二、实验原理 1、氧化石墨烯 氧化石墨烯是石墨烯的氧化物,其颜色为棕黄色,市面上常见的产品有粉末状、片状以及溶液状的。氧化石墨烯薄片是石墨粉末经化学氧化及剥离后的产物,氧化石墨烯是单一的原子层,可以随时在横向尺寸上扩展到数十微米,因此,其结构跨越了一般化学和材料科学的典型尺度。氧化石墨烯可视为一种非传统型态的软性材料,具有聚合物、胶体、薄膜,以及两性分子的特性。氧化石墨烯长久以来被视为亲水性物质,因为其在水中具有优越的分散性,但是,相关实验结果显示,氧化石墨烯实际上具有两亲性,从石墨烯薄片边缘到中央呈现亲水至疏水的性质分布。 经过氧化处理后,氧化石墨仍保持石墨的层状结构,但在每一层的石墨烯单片上引入了许多氧基功能团。这些氧基功能团的引入使得单一的石墨烯结构变得非常复杂。鉴于氧化石墨烯在石墨烯材料领域中的地位,许多科学家试图对氧化石墨烯的结构进行详细和准确的描述,以便有利于石墨烯材料的进一步研究,虽然已经利用了计算机模拟、拉曼光谱,核磁共振等手段对其结构进行分析,但由于种种原因(不同的制备方法,实验条件的差异以及不同的石墨来源对氧化石墨烯的结构都有一定的影响),氧化石墨烯的精确结构还无法得到确定。大家普遍接受的结构模型是在氧化石墨烯单片上随机分布着羟基和环氧基,而在单片的边缘则引入了羧基和羰基。 图1 氧化石墨烯的结构 2、氧化石墨烯的制备 氧化石墨烯的制备一般有三种方法:brodie法、Staudenmaier法、hummers法。这三种方法的共同点都是利用石墨在酸性质子和氧化剂的作用下氧化而成的,但是不同的方法各有优点。Brodie 等人于1859年首次用高氯酸和发烟硝酸作为氧化剂插层制备出

石墨烯的氧化还原法制备及结构表征

实验目的: (1)了解石墨烯的结构和用途。 (2)了解氧化后的石墨烯比纯石墨烯的性能有何提升 (3)了解Hummers法的原理 一、实验原理: 天然石墨需要进行先氧化,得到氧化石墨,再经过水合肼的作用下还原,才能得到在水相条件下稳定分散的石墨烯。 石墨的氧化过程采用浓硫酸和高锰酸钾这两种强氧化剂,氧化过程中先加浓硫酸,搅拌均匀后再加高锰酸钾,氧化过程从石墨的边沿进行,然后再到中间,氧化程度与持续时间有关。氧化过程中要增加石墨的亲水性,以便于分散,分散一般使用超声分散法。 氧化后的氧化石墨烯需要进行离心处理,使得pH值在6到7之间,目的是洗去氧化石墨烯的酸性,根本原因是研究表明氧化石墨烯和石墨烯在碱性条件下可以形成稳定的悬浮液。 氧化石墨烯的还原有多种方法,化学还原和热还原等,化学还原采用水合肼,热还原采用作TGA后,加热到200℃,一般大部分的含氧官能团都能除去。 二、实验内容: 1、利用氧化还原法制备石墨烯 2、对制得的石墨烯进行结构表征 三、实验过程: 实验利用Hummers法进行实验: 1、在三颈瓶外覆盖冰块,制造冰浴环境,并在三颈瓶内放入搅拌磁石; 2、将冰状天然石墨4g和硝酸钠2g倒入三颈瓶中; 3、将92ml浓硫酸倒入三颈瓶中; 4、开启磁力搅拌器,把溶液搅拌均匀后再缓慢加入高锰酸钾12g,在冰浴环境下搅拌3h; 5、升温至35℃,保持搅拌0.5h或1h,此时是对石墨片层中间进行氧化作用,氧化程度与持续时间有关; 6、加入去离子水184ml,缓慢滴加,保持温度低于100℃,升温至90℃,保温3h,溶液变红; 7、加300ml去离子水和30%的双氧水溶液10ml,使得高锰酸钾反应掉,静置一晚,倒掉上层清液; 8、对溶液进行离心操作7-8次,使得pH值在6-7; 9、减压蒸馏,进行还原反应得到石墨烯; 10、对得到的产物进行结构表征。

综述石墨烯的制备与应用

半导体物理课程作业 石墨烯的制备与应用(材料)

目录 一、石墨烯概述 (2) 二、石磨烯的制备 (3) 1、机械剥离法 (3) 2、外延生长法 (5) 3、化学气相沉积法 (6) 4、氧化石墨-还原法 (6) 5、电弧法 (9) 6、电化学还原法 (9) 7、有机合成法 (10) 三、石墨烯的应用 (11) 1、石墨烯在电子器件领域的应用 (11) 1.1 石墨烯场效应晶体管 (11) 1.2 石墨烯基计算机芯片 (12) 1.3 石墨烯信息存储器件 (13) 2、石墨烯在能源领域的应用 (14) 2.1 石墨烯超级电容器 (14) 2.2 锂离子电池 (15) 2.3 太阳能电池 (16) 2.4 储氢/甲烷器件 (17) 3、石墨烯在材料领域的应用 (18) 3.1 特氟龙材料替代物 (18) 3.2 石墨烯聚合物复合材料 (18) 3.3 光电功能材料 (19) 4、石墨烯在生物医药领域的应用 (20) 4.1 基于氧化石墨烯的纳米载药体系 (20) 4.2 氧化石墨烯对DNA/基因/蛋白的选择性检测 (21) 4.3用于生物成像技术 (23) 4.4 石墨烯在肿瘤治疗方面的应用 (23) 四、总结及展望 (24) 参考文献 (25)

一、石墨烯概述 碳广泛存在于自然界中,是构成生命有机体的基本元素之一。碳基材料是材料界中一类非常具有魅力的物质,从无定形的碳黑到晶体结构的天然层状石墨;从零维纳米结构富勒烯到一维碳纳米管无不给人们带来炫丽多彩的科学新思路。而二维碳基材料石墨烯的发现,不仅极大地丰富了碳材料的家族,而且其所具有的特殊纳米结构和性能,使得石墨烯无论是在理论还是实验研究方面都已展示出了重大的科学意义和应用价值,从而为碳基材料的研究提供新的目标和方向。 碳的晶体结构—石墨和金刚石(三维)是自然界中最早为人们熟知的两种碳同素异构体,因化学成键方式不同而具有截然相反的特性。1985年,一种被称为“巴基 (零维)被首次发现,三位发现者于11年后, 即1996年获诺贝尔球”的足球形分子C 60 化学奖。1991年,由石墨层片卷曲而成的一维管状结构: 碳纳米管被发现,发现者饭岛澄男(Sumio Iijima)于2008年获卡弗里纳米科学奖。石墨烯(Graphene)是只有一个原子层厚的单层石墨片,是石墨的极限形式。作为碳的二维晶体结构, 石墨烯的出现最终为人类勾勒出一幅点、线、面、体(从零维到三维)相结合的完美画面(图1)。 图1 碳的晶体结构 石墨烯作为一种独特的二维晶体,有着非常优异的性能:具有超大的比表面积,理论值为2630m2/g;机械性能优异,杨氏模量达1.0TPa;热导率为5300W·m-1·K-1,是铜热导率的10多倍;几乎完全透明,对光只有2.3%的吸收;在电和磁性能方面具有很多奇特的性质,如室温量子霍尔效应、双极性电场效应、铁磁性、超导性及高

石墨烯量子点的制备方法

SooPAT 石墨烯量子点的制备方法 申请号:201410499779.6 申请日:2014-09-25 申请(专利权)人深圳粤网节能技术服务有限公司 地址518107 广东省深圳市光明新区观光路3009号招商局光明科技 园A3栋C单元501 发明(设计)人张麟德张明东 主分类号C01B31/04(2006.01)I 分类号C01B31/04(2006.01)I C01G9/02(2006.01)I 公开(公告)号104229790A 公开(公告)日2014-12-24 专利代理机构广州华进联合专利商标代理有限公司 44224 代理人生启

(10)申请公布号 (43)申请公布日 2014.12.24 C N 104229790 A (21)申请号 201410499779.6 (22)申请日 2014.09.25 C01B 31/04(2006.01) C01G 9/02(2006.01) (71)申请人深圳粤网节能技术服务有限公司 地址518107 广东省深圳市光明新区观光路 3009号招商局光明科技园A3栋C 单元 501 (72)发明人张麟德 张明东 (74)专利代理机构广州华进联合专利商标代理 有限公司 44224 代理人 生启 (54)发明名称 石墨烯量子点的制备方法 (57)摘要 本发明涉及一种石墨烯量子点的制备方法, 包括提供具有六方晶体结构、粒径为5nm ~30nm 的氧化锌作为种子晶核;将单层氧化石墨烯加入 溶剂中,配制氧化石墨烯的分散液,加入具有六方 晶体结构的氧化锌,然后加入稳定剂,分散均匀得 到胶体溶液;将胶体溶液于160℃~300℃下进行 水热反应0.5h ~2h ,得到含有石墨烯量子点的悬 浊液;向含有石墨烯量子点的悬浊液中加入酸使 含有石墨烯量子点的悬浊液变澄清,过滤,将滤液 的pH 值调节为7~8并搅拌,然后过滤,得到含有 石墨烯量子点的溶液;及将含有石墨烯量子点的 溶液进行萃取,然后蒸发除去萃取剂,得到石墨烯 量子点的步骤。该方法工艺较为简单,能够制备尺 寸分布较窄的石墨烯量子点。 (51)Int.Cl. 权利要求书1页 说明书8页 附图1页 (19)中华人民共和国国家知识产权局(12)发明专利申请权利要求书1页 说明书8页 附图1页(10)申请公布号CN 104229790 A

化学还原法制备石墨烯的研究进展

化学还原法制备石墨烯的研究进展近年来,研究人员利用多种方法开展了石墨烯的制备工作,主要包括化学剥离法、金属表面外延法、SiC表面石墨化法和化学还原法等[1]。目前应用最广泛的合成方法是化学还原法。石墨烯在氧化的过程中会引入一些化学基团,如羧基(-COOH)、羟基(-OH)、羰基(-C = O)和环氧基(-C-O-C)等,这些基团的生成改变了C-C之间的结合方式,导致氧化石墨烯的导电性急剧下降,并且使具有的各种优异性能也随之消失。因此,对氧化石墨烯进行还原具有非常重要的意义,主要是先将氧化石墨烯分散(借助高速离心、超声等)到水或有机溶剂中形成稳定均相的溶胶,再按照一定比例用还原剂还原,得到单层或者多层石墨烯。还原得到的石墨烯有望在电子晶体管、化学传感器、生物基因测序以及复合材料等众多领域广泛应用。 目前,制备氧化石墨烯的技术已经相当成熟,其层间距(0.7~1.2 nm)较原始石墨烯层间距大,更有利于将其他物质分子插入。研究表明氧化石墨烯表面和边缘有大量的羟基、羧基等官能团,很容易与极性物质发生反应,得到改性氧化石墨烯。氧化石墨烯的有机改性可使其表面由亲水性变为亲油性,表面能降低,从而提高与聚合物单体或聚合物之间的相容性,增强氧化石墨烯与聚合物之间的粘接性。如果使用适当的剥离技术(如超声波剥离法、静电斥力剥离法、热解膨胀剥离法、机械剥离法、低温剥离法等),那么氧化石墨烯就能很容易的在水溶液或有机溶剂中分散成均匀的单层氧化石墨烯溶液,使利用其反应得到石墨烯成为可能。氧化还原法最大的缺点是制备的石墨烯有一定的缺陷,因为经过强氧化剂氧化得到的氧化石墨烯,并不一定能被完全还原,可能会损失一部分性能,如透光性、导热性,尤其是导电性,所以有些还原剂还原后得到的石墨烯在一定程度上存在不完全性,即与严格意义上的石墨烯存在差别。但氧化还原方法价格低廉,可以制备出大量的石墨烯,所以成为目前最常用制备石墨烯的方法。

石墨烯的制备与应用--课程论文

石墨烯的制备与应用前景 石墨烯是由碳原子以sp2链接的单元子层构成,其基本结构为有机材料中最稳定的苯六元环。它是目前发现的最薄的二维材料。石墨烯是构成其他石墨材料的基本单元,它可以翘曲成为零维的富勒烯,卷曲成为一维的CNTs或者堆垛成为三维的石墨。石墨烯是人类已知强度最高的物质,比钻石还坚硬,厚度相当于普通食品塑料袋的石墨烯能够承担大约两吨重的物品。石墨烯最大的特点是石墨 烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。这使得石墨烯中的电子,或更准确地,应称为“载荷子”的性质和相对论性的中微子非常相似。此外石墨烯有相当的不透明度:可以吸收大约2.3%的可见光。而这也是石墨烯中载荷子相对论性 的体现。 石墨烯的合成方法 1.微机械剥离法 这是最早制备出石墨烯的方法。2004年Novoselovt等用这种方法制备出了单层石墨烯。典型制备方法是用另外一种材料膨化或者引入缺陷的热 解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的 晶体中含有单层的石墨烯。但缺点是此法是利用摩擦石墨表面获得的薄片 来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供 应用的石墨薄片样本。 2.外延生长法 一般是通过加热6H—SiC单晶表面,脱附Si(0001面)原子制备出石墨烯.先将6H- SiC单晶表面进行氧化或H 刻蚀预处理在超高真空下加热去除表面氧化物,通过俄歇电子能谱确认氧化物完全去除后,继续恒温加热10-20分钟,所得的石墨烯片层厚度主要由这一步骤的温度所决定,这种方法能够制备出l-2碳原子层厚的石墨烯,但由于SiC晶体表面结构较为复杂,难以获得大面积、厚度均一的石烯。与机械剥离法得到的石墨烯相比,外延生长法制备的石墨烯表现出较高的载流子迁移率等特性,但观测不到量子霍尔效应。 3.碳纳米管轴向切割法 前文已经提到过,碳纳米管从结构上可以看作是由单层的石墨烯纳米带卷曲

氧化石墨烯的制备和表征 - 副本

氧化石墨烯的制备和表征 在我们的技术中独立的纸一样或foil-like材料是社会不可分割的一部分。他们的用途包括作为防护层,化学过滤器、组件电气电池或超级电容器,粘合剂层,电子或光电组件,和分子存储。基于纳米组件如剥落了蛭石或云母血小板使无机的纸一样的材料一直深入研究和商业化防护涂料、高温粘结剂、电介质壁垒和gas-impermeable膜。因为它们的化学电阻率与大多数媒体,在宽度,温度范围内,密封性能优越,是不透过性液体,碳基柔性石墨薄片堆叠血小板组成的膨胀石墨一直使用在在填料和填料的应用程序。碳纳米管的发现带来了巴基纸,它显示优良的机械和电气性能,使其潜在的适合燃料电池和结构复合应用程序。在这里,我们报告的准备和表征氧化石墨烯纸,一个由血流导引组装独立的碳基膜材料个人氧化石墨烯表。这种新材料在刚度和强度方面优于许多其他的纸一样的材料。这种新材料区别于其他纸一样的材料的刚度和强度。宏观的灵活性和刚度的组合的结果能联锁纳米石墨烯氧化物表的安排。 氧化石墨是一种层状材料组成的亲水氧化的石墨烯薄片(氧化石墨烯表)轴承氧官能团基飞机和边缘。Graphite-oxidebased薄膜是通过solvent-casting方法制造的,但尚不清楚是否氧化石墨分散体使用完全脱落成单个表。此外,生成的薄膜材料的形态和力学性能在侦破而没有阐明。 最近,我们已经表明,在合适的条件下氧化石墨在水中可以接受完全剥落,产生几乎完全个人的胶体悬浮液,平均横向尺寸约1毫米的石墨烯氧化物表。这样的表可以化学功能化,分散在聚合物矩阵,缺氧复合材料屈服小说。我们因此寻求一个方法将氧化石墨烯表组合为秩序井然的宏观结构。我们发现,类似于碳纳米管,石墨烯氧化物表确实可以组装成纸一样的材料并在一个方向流动。真空过滤胶体分散体系的氧化石墨烯表通过一个Anodisc膜过滤并干燥后,独立的氧化石墨烯纸厚度范围从1到30毫米(补充的信息1)。这这种材料在传播在反射白光时是均匀和深棕色,当比5毫米厚时是几乎黑色得了(图1)。氧化石墨烯纸样品的断裂边缘成像通过扫描电子显微镜(SEM)透露well-packed层通过几乎整个论文的截面样本,夹在密集的“波浪”少皮肤层,厚约100 - 200 nm e-g(图1)。这种材料在反射时以均匀和深棕色在传播,在比5毫米厚时几乎黑色得了(图1)。 图1 |氧化石墨烯纸的形态和结构。a-d氧化石墨烯纸模拟、数码相机图像。a,1微米厚(西北大学的标志在纸下);b,折叠,5微米厚半透明薄膜;c、折叠,25微米厚地带;d,带断裂后拉伸加载。e-g、低收入、中等收入和高分辨率扫描电镜侧视图像,10微末厚样品。h,x射线衍射模式的两个氧化石墨纸样品用两种不同的工具(见方法)。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

CVD法制备石墨烯教学文案

C V D法制备石墨烯

题目: CVD法制备石墨烯及其进展

目录 1. 石墨烯 1.1 石墨烯简介 2.石墨烯的制备方法 2.1 物理方法制备石墨烯 2.1.1机械剥离法 2.1.2取向附生法—晶膜生长 2.1.3 液相和气相直接剥离法 2.2 化学法制备石墨烯 2.2.1 化学气相沉积法 2.2.2外延生长法 2.2.3 氧化石墨还原法 3.化学气相沉淀法制备石墨烯 3.1碳源 3.2生长基体 3.3 生长条件 4.不同基体时制备特点 4.1以镍为基体 4.2以铜为基体 5.讨论 6.总结与展望 参考文献

摘要: 石墨烯作为一种近年来发现的新材料,拥有许多独特的理化性质,在多个领域具有很大的应用潜力,成为了目前研究的热点。在多种制备石墨烯的方法中,化学气相沉积(Chemical Vapor Deposition, CVD)法所制备的石墨烯具有面积大、质量高、均匀性好、层数可控等优点,被广泛采用。一般可采用镍,铁,铜,铂等过渡金属作为生长衬底,目前,研究中多采用铜衬底,这是由于其相对比较经济且所生长的石墨烯质量较好。但是如何利用化学气相沉积(CVD)在金属镍(Ni)和铜(Cu)衬底上实现高质量大面积石墨烯的可控生长还存在很大的难度。本文将重点介绍化学气相沉淀法制备石墨烯。 关键词:化学气相沉淀法,石墨烯 1. 石墨烯 1.1 石墨烯简介 石墨烯是一种二维晶体,人们常见的石墨是由一层层以蜂窝状有序排列的平面碳原子堆叠而形成的,石墨的层间作用力较弱,很容易互相剥离,形成薄薄的石墨片。当把石墨片剥成单层之后,这种只有一个碳原子厚度的单层就是石墨烯。石墨烯是一种二维晶体,由碳原子按照六边形进行排布,相互连接,形成一个碳分子,其结构非常稳定;随着所连接的碳原子数量不断增多,这个二维的碳分子平面不断扩大,分子也不断变大。单层石墨烯只有一个碳原子的厚度,即0.335纳米,相当于一根头发的20万分之一的厚度,1毫米厚的石墨中将将近有150万层左右的石墨烯。石墨烯是已知的最薄的一种材料,并且具有极高的比表面积、超强的导电性和强度等优点。 石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2. 3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15 000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料[12]。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。

电化学法制备石墨烯

电化学法制备石墨烯 石墨烯(Graphene,GN)是由sp2杂化C原子组成的具有蜂窝状六边形结构的二维平面晶体。石墨烯独特的结构特征使其具有优异的物理、化学和机械等性能,在晶体管太阳能电池传感器、锂离子电池、超级电容器、导热散热材料、电发热膜、场发射和催化剂载体等领域有着良好的应用前景。石墨烯的制备方法对其品质和性能有很大影响,低成本、高品质、大批量的制备技术是石墨烯能得到广泛应用的关键。现有制备石墨烯的方法有很多,包括机械剥离石墨法、液相剥离法、溶剂热合成法、化学气相沉积法、外延生长法和电化学法等。其中,电化学方法因其成本低、操作简单、对环境友好、条件温和等优点而越来越受到人们的关注。据最新研究报道,通过电化学方法制备的石墨烯可以达到克量级,这为石墨烯的工业化生产带来了曙光。 电化学制备技术则是通过电流作用进行物质的氧化或还原,不需要使用氧化剂或还原剂而达到制备与提纯材料的目的,具有生产工艺简单、成本低、清洁环保等优点,已在冶金、有机与聚合物合成、无机材料制备等方面得到广泛应用。而且通过电化学电场作用,可以实现外在电解液离子(分子)对一些层状材料的插入,如锂离子电池石墨负极充电时就是锂离子在石墨层间的插入及石墨层间化合物的电化学制备。根据电化学原理主要有两种路线制备石墨。 1、通过电化学氧化石墨电极可得氧化石墨烯,再通过电化学还原以实 现电化学或化学氧化的氧化石墨烯的还原而得到石墨烯材料。 2、采用类似液相剥离,但施以电场力作用驱动电解液分子以电化学方式直接对石墨阴极进行插层,使石墨层间距变大,层间范德华力变弱,以非氧化方式直接对石墨片层进行电化学剥离制备得到石墨烯。 电化学法制备石墨烯的优势主要为:1)与普通化学氧化还原法相比,不需要用到强氧化剂、强还原剂及有毒试剂,成本低,清洁环保;2)通过电化学方式,在氧化时可以更多地以离子插入方式剥离而减少氧化程度降低对石墨烯结构的破坏,电化学还原时则能更彻底还原,因此制得的石墨烯具有更好的物理化学性质;3)以石墨工作电极为阴极进行非氧化直接剥离时,石墨片层结构没有受到破坏,可以得到与液相或机械剥离法一样高品质的石墨烯片,但因为电化学的强电场作用,比单纯的溶剂表面作用力或超声作用力要大得多,剥离的效率更高,与液相或机械剥离法相比,电化学剥离易实现高品质石墨烯批量制备;4)电化学制备过程中,电流与电压很容易精确控制,因此容易实现石墨烯的可控制备与性能调控,而且电化学法工艺过程与设备简单,容易操作控制;5)与CVD 及有机合成法相比,电化学法采用石墨为原料,我国石墨产量居世界前列,原料丰富成本低廉,不需要用到烯类等需大量进口的高价石化原料。 一、石墨阳极氧化剥离制备石墨烯 阳极氧化剥离制备石墨烯就是将石墨作为阳极,电源在工作时电解质中的阴离子向阳极移,进而进入阳极石墨导致石墨被插层而体积膨胀,当阳极石墨的体积增加到一定程度时,就会由于层间范德华作用力的减小而最终从块体上脱落下来,形成层状具有一定含氧官能团的石墨烯或氧化石墨烯(包括单层和2~10层的少层氧化石墨烯)。石墨由于电化学氧化和酸性阴离子的插层导致表面体积剧烈膨胀,这种现象在很早之前就有报道。近年来提出了电化学法阳极氧化石墨制备石墨烯的机理,在进行电化学反应时电解液中的阴离子会向阳极迁移,由于石

石墨烯的合成与应用

石墨烯的合成与应用 贾雨龙1345761115 材料成型及控制工程摘要:论述了石墨烯非凡的物理及电学性质,包括电子输运-零质量的狄拉克-费米子行为,量子霍耳效应,最小量子电导率,量子干涉效应的强烈抑制等;石墨烯的机械和化学制备方法和石墨烯在纳电子器件方面、计算机芯片取代硅、制造最快的碳晶体管、减少噪声方面和潜在的储氢材料领域等方面的应用。 关键词:石墨烯;量子霍耳效应;量子电导率 Synthesis and applications of graphene Jia yun-long Jiangsu University of Science and Technology Abstract:This paper summarized the extraordinarily physical and electrical properties of graphene,including electron transport-Massless Dirac Fermion behavior,Anomalous quantum Hall effect(chiral,RT),Minimum quantum conductivity,Suppression of quantum interference effect,and etc.The mechanical and chemical synthesis methods for graphene and the applications of graphene in nanoelectronic devices,computers chip replace of silicon,manufacturing the fastest transistor,reducing yawp and potential hydrogen storage,etc were also introduced. Key words:Graphene;anomalous quantum Hall effect;Minimum conductivity 引言 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种炭质新材料[1],这种石墨晶体薄膜的厚度只有仅有0.0035nm,仅为头发的20万分之一,是构建其他维数炭质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性及电学性。完美的石墨烯是二维的,只包括六角元胞;如果有五角元胞和七角元胞存在,会构成石墨烯的缺陷;少量的五角元胞存在会使石墨烯翘曲入形状;12 个五角元胞会形成富勒烯(fullerene) 石墨烯的理论研究已有60多年的历史,被广泛用来描述不同结构炭质材料的性能。20世纪80年代,科学家们开始认识到石墨烯可以作为(2+1)维量子电动力学的理想理论模型。但一直以来人们普遍认为这种严格的二维晶体结构由于热力学不稳定性而难以独立稳定的存在。然而真正能够独立存在的二维石墨烯晶体在2004年由英国曼彻斯特大学的Novoselov等[2]利用胶带剥离高定向石墨的方法获得,并发现石墨烯载流子的相对论粒子特性[3,4],从而引发石墨烯研究热。石墨烯在过去的短短3年内已经充分展现出在理论研究和实际应用方面的无穷魅力,迅速成为材料科学和凝聚态物理领域最为活跃的研究前沿[5]。研究发现,再不需要任何传统化学稳定剂的情况下,石墨烯可以在水中稳定地分解分层,有望应用于可减少静电现象的涂层的研制。 1石墨烯的性质 1.1电子运输-零质量的狄拉克-费米行为(Massless Dirac Fermion behavior) 石墨烯是零带隙半导体,独特的载流子特性是其备受关注的原因之一。在凝聚态物理领域,材料的电学性能常用薛定谔方程描述,而石墨烯的电子与蜂窝状晶体周期势的相互作用产生了一种准粒子,A.Qaiumzadeh[6]根据GW近似值计算了石墨烯在无序状态下在兰道费米子液体内的准粒子特性,即零质量的狄拉克-费米子(massless Dirac Fermions),具有类似于光子的特性,在低能区域适合于采用含有有效光速的(2+1)维狄拉克方程来精确表述。因此,石墨烯的出现为相对论量子力学现象的研究提供了一种重要的手段。

相关主题
文本预览
相关文档 最新文档