当前位置:文档之家› -50C-250C黑体辐射源校准规范

-50C-250C黑体辐射源校准规范

-50C-250C黑体辐射源校准规范
-50C-250C黑体辐射源校准规范

普朗克黑体辐射公式推导

普朗克黑体辐射公式推 导 The document was finally revised on 2021

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态: 处于某一温度 T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度 T 有关而与黑体的形状和材料无关。 实验得到: 1. Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: ννννρνd T C C d )/ex p(231-=

Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 ννπνρνd kT C d Jeans Rayleigh 2 38= -公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而实验测得的黑体辐射的能量密度是 4T E σ=,该式叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以 给定的频率 v 振荡; (2)黑体只能以 E = hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为 Planck 辐射定律 h 为普朗克常数,h=s j .10 626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为 ).(),(wt r K i k k e C t r -=αβψ,为常系数振方向,表示两个互相垂直的偏α αk C 2,1=

黑体辐射实验

黑体辐射实验 任何物体都有辐射和吸收电磁波的本领。物体所辐射电磁波的强度按波长的分布与温度有关,称为热辐射。处于热平衡状态物体的热辐射光谱为连续谱。一切温度高于0K 的物体都能产生热辐射。黑体是一种完全的温度辐射体,能吸收投入到其面上的所有热辐射能,黑体的辐射能力仅与温度有关。任何普通物体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;其辐射能力不仅与温度有关,还与表面的材料的性质有关。所有黑体在相同温度下的热辐射都有相同的光谱,这种热辐射特性称为黑体辐射。黑体辐射的研究对天文学、红外线探测等有着重要的意义。黑体是一种理想模型,现实生活中是不存在的,但却可以人工制造出近似的人工黑体。辐射能力小于黑体,但辐射的光谱分布与黑体相同的温度辐射体称为灰体。 [实验目的] 1.理解黑体辐射的概念。 2.验证普朗克辐射定律。 3.验证斯特藩一玻耳兹曼定律。 4.验证维恩位移定律。 5. 学会测量一般发光光源的辐射能量曲线。 [实验原理] 1.黑体辐射的光谱分布—普朗克辐射定律 德国物理学家普朗克1900年为了克服经典物理学对黑体辐射现象解释上的困难,推导出一个与实验结果相符合的黑体辐射公式,他创立了物质辐射(或吸收)的能量只能是某一最小能量单位(能量量子)的整数倍的假说,即量子假说,对量子论的发展有重大影响。他利用内插法将适用于短波的维恩公式和适用于长波的瑞利—金斯公式衔接,提出了关于黑体辐射度的新的公式—普朗克辐射定律,解决了“紫外灾难”的问题。在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量定义为单色辐射度,普朗克黑体辐射定律为: 式中:第一辐射常数) (1074.3221621m W hc C ??==-π第二辐射常数)(104398.122K m k hc C ??== -其中,h 为普朗克常数,c 为光速,k 为玻耳兹曼常数。 黑体光谱辐射亮度由下式给出: 图1-1给出了T L λ随波长变化的图形。每一条曲线上都标出黑体的绝对温度。与诸曲线的最大值相交的对角直线表示维恩位移定律。

黑体辐射实验

黑体辐射实验 (一)、实验目的要求 1、掌握黑体基本理论 2、掌握黑体辐射能量的测量和任意发射光源的辐射能量的测量 3、学会利用相同的装置验证黑体的辐射定律 (二)、实验原理与设备 黑体的基本理论 物体在一定的温度下发出电磁辐射,如果理想热辐射体表面温度已知,那么其辐射特性就可以完全确定。 黑体在温度T时的光谱辐射出射度M等于普适函数。1900年,普朗克根据他提出的量子理论建立了的准确表达式,得到了与实验完全相同的结果。这就是著名的普朗克辐射公式。 式中:__第一辐射常量,其值为3.7418 ___第二辐射常量,其值为1.4388; M__单位为. 普朗克公式是光辐射的一个重要的基本公式。从这个公式出发,可以推导出其他有关的辐射公式。 根据基尔霍夫定律可知,绝对黑体的总辐射出射度只是温度的函数,1879年斯忒藩根据实验得到一条经验定律:绝对黑体的积分辐射出射度与其热力学温度的四次方成正比。1884年,玻尔兹曼根据热力学理论推导出了与斯忒藩经验定律相一致的结果,因此,称为斯-玻定律。 将上式对所有波长积分,就得到绝对黑体的积分辐射出射度, 即=

此式为斯忒藩-玻耳兹曼定律,其中称为斯忒藩-玻尔兹曼常量。斯忒藩-玻尔兹曼定律表明,黑体的全辐射出射度与热力学温度的四次方成正比。因此,温度T微小的变化,就会引起辐射出射度很大的变化。 凡温度在绝对零度以上的物体均能够发出红外辐射,其辐射的峰值波长与物体的温度有确定的关系: 式中λm ——物体辐射的峰值波长 T——物体的温度 B——常数(2898μm·K) 此为辐射度学中的维恩位移定律,意为只要物体有温度,则一定有固定波长的辐射,自然界的物体温度如果在 -40℃~3000℃(233K~3273K)范围,则根据上述公式,峰值辐射波长在0.88~12μm之间,即人们通常所说的红外波段。 2.实验装置及工作原理 WGH–10性黑体实验装置,油光栅单色仪,接受单元,扫描系统,电子放大器,A/D采集单元,电压可调的稳压溴钨灯光源,计算机及打印机组成.该设备集光学,精密机械,电子学,计算机技术与一体. 溴钨灯光源,可调溴钨灯供电源,红外光栅单色器,红外滤光片,硫化铅(PbS)光接收器,光调制器,信号采集单元,数据采集与单色仪控制软件及计算机等。 主机部分有以下几部分组成:单色器,狭缝,接收单元,光学系统以及光栅驱动系统等。红外单色器光路采用C -T型,如图1。

黑体辐射

中国石油大学近代物理实验实验报告成绩: 班级:姓名:同组者:教师: 黑体辐射实验 【实验目的】 1、了解黑体辐射实验现象,掌握辐射研究方法。 2、学会仪器调整与参数选择,提高物理数量关系与建模能力。 3、通过验证定律,充实物理假说与思想实验能力。 【实验原理】 黑体是指能够完全吸收所有外来辐射的物体,处于热平衡时,黑体吸收的能量等于辐射的能量,由于黑体具有最大的吸收本领,因而黑体也就具有最大的辐射本领。这种辐射是一种温度辐射,辐射的光谱分布只与辐射体的温度有关,而与辐射方向及周围环境无关。事实上当然不存在绝对黑体,但有些物体可以近似地作为黑体来处理,比如,一束光一旦从狭缝射入空腔体内,就很难再通过该狭缝反射回来,那么,这个开着的狭缝空腔体就可以看作是黑体。 1、黑体辐射的光谱分析 实验测出黑体的辐射强度在不同温度下与辐射波长的关系曲线。 维恩假定辐射能量按频率的分布类似于麦克斯韦的分子速率分布,导出如下公式 E(λ,T)=bλ?5e?a/λT(1) 式中E(λ,T)称为单色辐出度,它表示单位时间内,在黑体的单位面积上单位波长间隔内所辐射出的的能量,单位是瓦特/米2 ,T表示绝对温度,a,b是与波长和温度无关的常数。这个分布在短波部分与实验结果符合较好,而长波部分偏离较大。 瑞利和金斯利用经典电动力学和统计物理学推导得到单色辐出度 E(λ,T)=2πC λ4 kT (2) 式中,C为真空中的光速,k为玻尔兹曼常量。它在波长很长,温度较高时与实验结果相符合,但在短波段偏离非常大,当频率趋于无穷大时引起发散,这就是当时有名的“紫外灾难”。 普朗克提出:电磁辐射的能量只能是量子化的。他认为黑体是由多个带点谐振子组成,这些谐振子处于热平衡状态,每个振子具有一个固有的谐振频率ν,可以发出与吸收相同频率的电磁波,每个谐振子只能吸收或发射不连续的一份一份的能量,这个能量是一个最小能量ε0 =hν的整数倍,即谐振子能量为E=nhν,n为正整数,h为普朗克常量。在此能量量子化的假定下,他推导出了如下黑体辐射公式: E(λ,T)=2πhc2 λ5 1 e hc/λkT?1(3)

黑体辐射

黑体辐射 哈工大航天学院 摘要:黑体辐射问题是经典物理学遇到的极大的挑战,普朗克利用能量子假设成功的解决了这一问题,从而引发了物理学重大的变革。本文主要就黑体辐射问题的来源、普朗克如何解决问题加以介绍。 关键词:黑体辐射、紫外灾难、普朗克、能量子假设 一、问题来源与困难 1.1热辐射的基本概念 一切物质的分子都包含带电粒子,分子的热运动导致物体不断地向外发射电磁波,我们称它为热辐射。一切温度高于绝对零度的物体都能产生热辐射,温度越高,辐射出的总能量就越大,短波成分也越多。我们定义辐射出射度为在温度为T时,单位时间内从辐射源表面单位面积上辐射出的能量的总和。单位波长间隔内的辐射出射度称单色辐射出射度,用表示。物体除了能发射电磁波,同时还能吸收或反射电磁波,我们定义单色吸收比为物体吸收单位波长内电磁波能量与相应波长入射电磁波能量之比,用表示。 德国物理学家基尔霍夫于1859年提出了热辐射定律,它用于描述物体的辐射与吸收比之间的关系。表示如下: 其中是温度和波长的函数,与物体的具体形式无关。 1.2黑体 在任何条件下,对任何波长的外来辐射完全吸收而无反射的物体,即吸收比为1的物体就称为绝对黑体,简称为黑体。事实上当然不存在绝对黑体,但有些物体可以近似地作为黑体来处理,比如,一束光一旦从狭缝射入空腔体内,就很难再通过该狭缝反射回来,那么这个开着狭缝的空腔体就可以看作是黑体。根据基尔霍夫热辐射定律,由于与物体的具体形式无关,当为1时,达到最大,所以黑体既是吸收能量最强的物体也是辐射能力最强的物体。 1.3实验现象 物理学家根据黑体模型得到了黑体辐射的实验现象,如下图1所示。 1879年,斯特藩根据实验曲线总结出一个定律:黑体的辐射出射度与黑体的绝对温度四次方成正比,即,称为斯特藩-玻耳兹曼定律。它表明热辐射的功率随着温度的升高而迅

普朗克黑体辐射公式推导(精.选)

普朗克黑体辐射公式的推导 所谓的黑体是指能吸收射到其上的全部辐射的物体,这种物体就称为绝对黑体,简称黑体。 黑体辐射:由这样的空腔小孔发出的辐射就称为黑体辐射。 辐射热平衡状态:处于某一温度T 下的腔壁,单位面积所发射出的辐射能量和它所吸收的辐射能量相等时,辐射达到热平衡状态。 实验发现: 热平衡时,空腔辐射的能量密度,与辐射的波长的分布曲线,其形状和位置只与黑体的绝对温度T 有关而与黑体的形状和材料无关。 实验得到: 1.Wien 公式 从热力学出发加上一些特殊的假设,得到一个分布公式: Wien 公式在短波部分与实验还相符合,长波部分则明显不一致。 2. Rayleigh-Jeans 公式 Rayleigh-Jeans 公式在低频区和实验相符,但是在 高频区公式与实验不符,并且 ∞→=?∞ v v d E E ,既单位体积的能量发散,而 实 验测得的黑体辐射的能量密度是4 T E σ=,该 式 叫做Stefan-Bolzmann 公式,σ叫做Stefan-Bolzmann 常数。 3. Planck 黑体辐射定律 1900年12月14日Planck 提出如果空腔内的黑体辐射和腔壁原子处于平衡,那么辐射的能量分布与腔壁原子的能量分布就应有一种对应。作为辐射原子的模型,Planck 假定: (1)原子的性能和谐振子一样,以给定的频率v 振荡; (2)黑体只能以E=hv 为能量单位不连续的发射和吸收辐射能量,而不是象经典理论所要求的那样可以连续的发射和吸收辐射能量。 得到: νννπνρνd kT h C h d ??? ? ??-=1)/exp(1 833该式称为Planck 辐射定律 h 为普朗克常数,h=s j .10626.634 -? 4,普朗克的推导过程: 把空窖内的电磁波分解为各个频率的简振振动,简振模的形式最后为) .(),(wt r K i k k e C t r -=αβψ, 为常系数振方向,表示两个互相垂直的偏ααk C 2,1= 每一个简振模在力学上等价于一个自由度,记频率在( )νννd +,内的自由度数为()ννd g ,

黑体辐射实验

实验十 黑体辐射实验 实验者:头铁的小甘 引言: 任何物体,只要温度大于绝对零度,就会向周围发生辐射,这称为温度辐射。 黑体是指能够完全吸收所有外来辐射的物体,处于热平衡时,黑体吸收的能量等 于辐射的能量,由于黑体具有最大的吸收本领,因而黑体也就具有最大的辐射本 领。这种辐射是一种温度辐射,辐射的光谱分布只与辐射体的温度有关,而与辐 射方向及周围环境无关。 6000o K 5000o K 4000o K 3000o K 图 1 黑体辐射能量分布曲线 黑体辐射 p lanck 公式 十九世纪末,很多著名的科学家包括诺贝尔奖获得者,对黑体辐射进行了 大量实验研究和理论分析,实验测出黑体的辐射能量在不同温度下与辐射波长的 关系曲线如图 1 所示,对于此分布曲线的理论分析,历上曾引起了一场巨大的风 波,从而导致物理世界图像的根本变革。维恩试图用热力学的理论并加上一些特 定的假设得出一个分布公式-维恩公式。这个分布公式在短波部分与实验结果符 合较好,而长波部分偏离较大。瑞利和金斯利用经典电动力学和统计物理学也得 出了一个分布公式,他们得出的公式在长波部分与实验结果符合较好,而在短波 部分则完全不符。如图 2。因此经典理论遭到了严重失败,物理学历史上出现了 一个变革的转折点。 实验原理: Planck 提出:电磁辐射的能量只能是量子化的。他认为以频率ν做谐振动 的振子其能量只能取某些分立值,在这些分立值决定的状态中,对应的能量应该 是某一最小能量的 h ν整数倍,即 E=nh ν,n=1,2,3,…,h 即是普朗克常数。在 此能量量子化的假定下,他推导出了著名的普朗克公式 )() 1(35 1 2--= Wm e C E T C T λλλ

黑体辐射实验-学生讲义

近代物理实验 黑体辐射 任何物体都有辐射和吸收电磁波的本领。物体所辐射电磁波的强度按波长的分布与温度有关,称为热辐射。处于热平衡状态物体的热辐射光谱为连续谱。一切温度高于0K 的物体都能产生热辐射。黑体是一种完全的温度辐射体,能吸收投入到其面上的所有热辐射能,黑体的辐射能力仅与温度有关。任何普通物体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;其辐射能力不仅与温度有关,还与表面的材料的性质有关。所有黑体在相同温度下的热辐射都有相同的光谱,这种热辐射特性称为黑体辐射。黑体辐射的研究对天文学、红外线探测等有着重要的意义。黑体是一种理想模型,现实生活中是不存在的,但却可以人工制造出近似的人工黑体。辐射能力小于黑体,但辐射的光谱分布与黑体相同的温度辐射体称为灰体。 [实验目的] 1. 理解黑体辐射的概念。 2. 验证普朗克辐射定律。 3. 验证斯特藩一玻耳兹曼定律。 4. 验证维恩位移定律。 5. 学会测量一般发光光源的辐射能量曲线。 [实验原理] 1. 黑体辐射的光谱分布—普朗克辐射定律 德国物理学家普朗克1900年为了克服经典物理学对黑体辐射现象解释上的困难, 推导出一个与实验结果相符合的黑体辐射公式,他创立了物质辐射(或吸收)的能量只能是某一最小能量单位(能量量子)的整数倍的假说,即量子假说,对量子论的发展有重大影响。他利用内插法将适用于短波的维恩公式和适用于长波的瑞利—金斯公式衔接,提出了关于黑体辐射度的新的公式—普朗克辐射定律,解决了“紫外灾难”的问题。在一定温度下,单位面积的黑体在单位时间、单位立体角内和单位波长间隔内辐射出的能量定义为单色辐射度,普朗克黑体辐射定律为: 式中:第一辐射常数)(1074.3221621m W hc C ??==-π 第二辐射常数)(104398.122 K m k hc C ??== - 其中,h 为普朗克常数,c 为光速,k 为玻耳兹曼常数。 黑体光谱辐射亮度由下式给出: 图1-1给出了T L λ随波长变化的图形。每一条曲线上都标出黑体的绝对温度。与诸曲线的最大值相交的对角直线表示维恩位移定律。

国产高精度黑体辐射源在各计量院的使用

任何物体都具有不断辐射、吸收、反射电磁波的性质。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。球型腔黑体辐射源,主要用于校准辐射温度计、红外热像仪等辐射测温仪器。黑体辐射源的主要技术指标为黑体空腔发射率、靶面的均匀性、控温稳定性和空腔辐射温度的稳定度。除黑体腔的特殊设计外,腔体内壁面温度均匀性,是黑体技术的关键之一。 本产品符合JJG 856-2015国家计量检定规程。黑体作为标准红外辐射源,它的光谱能量是可以通过计算而获得。 珠海市计量质量检测研究院的黑体辐射源安装调试。 现场图片: 非常感谢珠海市计量质量检测研究院对我们提供黑体辐射源的充分信赖和 认可!客户经过多方面的考虑和比较,最终选择了我司的产品。 一、是非常看好我公司生产的黑体辐射源; 二、是通过对我司的充分了解,口碑好,技术先进,价格合理,售后服务有保障,是国内最好黑体辐射源制造厂家。

为顾客从网络上获取更大的利益是我们工作的宗旨。我们将以最专业的技术、最好售后服务回报广大客户对我们的一贯支持。 愿我们产品仍然能继续得到您的青睐与支持,与您共同发展,创造美好将来。 深圳市计量质量检测研究院的黑体辐射源安装调试。 现场图片: 非常感谢深圳市计量质量检测研究院我司黑体辐射源的充分信赖和认可!客户经过多方面的考虑和比较,最终选择了我司的产品。 一、是非常看好我公司生产的黑体辐射源; 二、是通过对我司的充分了解,知道我司口碑好,技术先进,价格合理,售后服务有保障,是国内最好黑体辐射源制造厂家。 为顾客从网络上获取更大的利益是我们工作的宗旨。我们将以最专业的技术、最好售后服务回报广大客户对我们的一贯支持。愿我们产品仍然能继续得到您的青睐与支持,与您共同发展,创造美好将来。如需更多黑体辐射源的产品有 使用信息可咨询中欧特普科技CE-TEMP为您提供,黑体辐射源是专业且小众 的应用。如需了解更多的产品信息:可联系我们的专业工程师,为您的应用交 流和选型建议。深圳市中欧特普科技有限公司 --德国高端红外测温控制方案提供商

黑体辐射公式的推导

普朗克和瑞利-金斯黑体辐射公式的推导 1 引言 马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机)。维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。 这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔(也就是构成物质的原子)内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。

2 公式推导 2.1 普朗克公式和瑞利-金斯公式的推导 黑体是指在任何温度下,对于各种波长的电磁辐射的吸收系数恒等于1的物体。黑体辐射的能量是由电磁场的本征振动引起的,为简化推导过程,在此将黑体简化为边长为L 的正方形谐振腔。则腔内的电磁场满足亥姆霍兹方程: 2222u+k u 0 (k )ωμε?== (1) 用分离变量法,令u(x,y,z)X(x)Y(y)Z(z)= 则(1)式可分解为三个方程: 22 2 22 222200 0x y z d X k X dx d Y k Y dy d Z k Z dz ?+=???+=???+=?? 其中2222x y z k k k ωμε++= 得(1)式的驻波解为: 112233(,,)(cos sin )(cos sin )(cos sin ) x x y y z z u x y z c k x d k x c k y d k y c k z d k z =+++由在x=0,x=L,y=0,y=L,z=0,z=L 上的边界条件0n E n ?=?及0D E ?=可得:

黑体辐射实验

黑体测量实验 【实验目的】1、理解和掌握黑体辐射的基本规律,加深对能量量子性的理解; 2、验证斯忒藩—波尔兹曼定律; 3、验证维恩—位移定律。【实验仪器】 WGH-10型黑体实验装置 【实验原理】 1、黑体辐射 任何物体,只要其温度在绝对零度以上,就向周围发射辐射,这称为温度辐射。黑体是一种完全的温度辐射体,即任何非黑体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;并且非黑体的辐射能力不仅与温度有关,而且与表面的材料性质有关。而黑体的辐射能力则仅与温度有关。黑体的辐射亮度在各个方向都相同,即黑体是一个完全的余弦辐射体。 辐射能力小于黑体,但辐射的光谱分布与黑体相同的温度辐射体称为灰体。 2、黑体辐射定律 (1)黑体辐射的光谱分布—普朗克辐射定律 黑体的光谱辐射出射度为:???? ?? -=1251 T C T e C M λλλ 式中:第一辐射常数:2161m w 1074.3??=-C 第二辐射常数:K w 104396.122??=-C (2)黑体的全辐射出射度—忒藩—波尔兹曼定律 黑体的全辐射出射度为: 40 T d M M T b δλλ?∞ == T 为黑体的绝对温度,δ为 忒藩—波尔兹曼常数, () 428234 5K m w/10670.5152??==-c h k πδ

k 为波尔兹曼常数,h 为普朗克常数,c 为光速。 (3)维恩—位移定律 光谱亮度的最大值的波长λmax 与它的绝对温度T 成反比, T b =m a x λ b 为常数,K m 10896.23??=-b 【实验步骤】 1、将WGH-10型黑体实验装置电源的电压凋节旋钮凋节至最小值,然后打开电源和接收器的电源,过1~2分钟后,可以打开桌面上WGH-10型黑体实验系统的软件。 2、根据溴钨灯工作电流--色温对应表,凋节光源的驱动电流(不能超过 2.5A !)。 3、实验中要测量两个温度下的黑体 辐射曲线。学生可任意测两个温度(不 要高过2940K ,即不能使光源的驱动电 流超过2.5A )下的黑体辐射曲线。过高 的温度,对溴钨灯的工作寿命有很大的 影响,建议测量在2.5A 以下进行。 4、以驱动电流为2.5A ,对应溴钨灯(近 似为黑体)的色温为2940K 为例。先测 量一组仪器的基线,参数设置如图所示

黑体辐射源操作规程

黑体辐射源操作规程 2019-09-01批准 2019-09-01实施

黑体辐射源操作规程 一、简介 黑体辐射源作为标准辐射源,主要用于校准辐射温度计、红外红外热像仪和辐射温度传感探测器等。 二、主要技术指标 腔口发射率:≥0.995 温度稳定性:<±0.1℃/10min或0.1%t/10min的大者 三、使用条件 环境条件:温度(23±5)℃,湿度≤85%RH。周围无强烈震动、腐蚀性气体、粉尘和易燃易爆的气体存在;外接电源:为三相四线制。应满足使用电源的要求及约5KW的总功率;应有缺相保护、过流保护及短路保护等装置;应有可靠的安全接地线。 四、操作程序 1)接通电源 插入220V电源,打开黑体辐射源开关,电源指示灯亮,同时温度控制器液晶屏亮,温控仪进行自检。 2)设定黑体的工作温度 温控器自检完成后,进入主控页面,此时只需要用按上下键即可调节温度,调节到预设温度后放开按键,3s后自动确认设定温度,开始升降温。 3)关机 仪器使用完毕后严禁直接关机,应先将温控仪设定温度调整到

黑体辐射源最低设定温度值:50℃,设定温度确认后在关闭电源。五、事故处理 1)当打开电源开关,黑体温度控制面板所有的指示灯不亮。 检查黑体电源是否接通,动力是否正常。 2)当打开电源开关,面板开关自动跳闸,黑体加热电炉或变压器有短路、碰线等,检查后方可通电。 3)黑体通电后,一切正常,但黑体不升温。 打开仪表面板,检查主加热器过流保护开关是否跳闸。 根据说明书重新设定内部参数。 六、使用维护保养 1)开始升温时,不能从冷态直接升温到600℃,防止因传热温差过大烧坏加热器。 2)黑体在工作室切不可搬动或振荡黑体,否则会损坏加热器。 _________________________________________________________ 本指导书由热工室编写审核:xx 批准:xx

实验七 黑体辐射

实验七 黑体辐射 Black-body Radiation 任何物体,只要其温度在绝对零度以上,就向周围发射辐射,这称为温度辐射;只要其温度在绝对零度以上,也要从外界吸收辐射的能量。处在不同温度和环境下的物体,都以电磁辐射形式发出能量,而黑体是一种完全的温度辐射体,即任何非黑体所发射的辐射通量都小于同温度下的黑体发射的辐射通量;并且,非黑体的辐射能力不仅与温度有关,而且与表面的材料的性质有关,而黑体的辐射能力则仅与温度有关。在黑体辐射中,存在各种波长的电磁波,其能量按波长的分布与黑体的温度有关。 实验目的(experimental purpose) 1.了解黑体实验的发展历史,明确光谱辐射曲线的广泛应用; 2.了解黑体实验仪器组件,明确测量过程与分析要素; 3.明确黑体实验设计思想,掌握黑体辐射原理与定律。 实验原理(experimental principle) 任何物体都具有不断辐射、吸收、发射电磁波的本领。辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。 所谓黑体是指入射的电磁波全部被吸收,既没有反射,也没有 透射( 当然黑体仍然要向外辐射)。显然自然界不存在真正的黑体, 但许多地物是较好的黑体近似( 在某些波段上)。 黑体不仅仅能全部吸收外来的电磁辐射,且发射电磁辐 射的 能力比同温度下的任何其它物体强。 黑体辐射指黑体发出的电磁辐射。黑体辐射能量按波长的分布仅与温度有关。对于黑体的研究,使得自然现象中的量子效应被发现。

黑体辐射定律

基尔霍夫热辐射定律 基尔霍夫热辐射定律(Kirchhoff热辐射定律),德国物理学家古斯塔夫·基尔霍夫于1859年提出的传热学定律,它用于描述物体的发射率与吸收比之间的关系。 简介一般研究辐射时采用的黑体模型由于其吸收比等于1(α=1),而实际物体的吸收比则小于1(1>α>0)。基尔霍夫热辐射定律则给出了实际物体的辐射出射度与吸收比之间的关系。 ?M为实际物体的辐射出射度,M b为相同温度下黑体的辐射出射度。 而发射率ε的定义即为 所以有ε=α。 所以,在热平衡条件下,物体对热辐射的吸收比恒等于同温度下的发射率。 而对于漫灰体,无论是否处在热平衡下,物体对热辐射的吸收比都恒等于同温度下的发射率。 不同层次的表达式 对于定向的光谱,其基尔霍夫热辐射定律表达式为 对于半球空间的光谱,其基尔霍夫热辐射定律表达式为 对于全波段的半球空间,其基尔霍夫热辐射定律表达式为 ?θ为纬度角,φ为经度角,λ为光谱的波长,T为温度。

参考文献 ?杨世铭,陶文铨。《传热学》。北京:高等教育出版社,2006年:356-379。 ?王以铭。《量和单位规范用法辞典》。上海:上海辞书出版社 普朗克黑体辐射定律 普朗克定律描述的黑体辐射在不同温度下的频谱 物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律)(英文:Planck's law, Blackbody radiation law)是用于描述在任意温度T下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。这里辐射率是频率 的函数[1]: 这个函数在hv=2.82kT时达到峰值[2]。 如果写成波长的函数,在单位立体角内的辐射率为[3] 注意这两个函数具有不同的单位:第一个函数是描述单位频率间隔内的辐射率,而第二个则是单位波长间隔内的辐射率。因而和并不等价。它们之间存在有如下关系:

普朗克黑体辐射公式推导

量子力学结课论文: 对普朗克黑体辐射公式的推证及总结

摘要:黑体辐射现象是指当黑体(空腔)与内部辐射处于平衡时,腔壁单位面积所发射出的辐射能量与它所吸收的辐射能量相等。实验得出的平衡时辐射能量密度按波长分布的曲线,其形状和位置只与黑体的绝对温度有关,而与空腔的形状和组成物质无关。基于能量量子化的假设,普朗克提出了与实验结果相符的黑体辐射能量公式: ρv dν=8πhν3 3 ? 1 e hv kT?1 普朗克的理论很好地解释了黑体辐射现象,并且突破了经典物理学在微观领域内的束缚,打开了人类认识光的微粒性的途径[1]。本文主要介绍了普朗克公式的推导过程及其能量假设并将普朗克对黑体辐射的解释做了总结。 关键词:黑体辐射能量量子化普朗克公式麦克斯韦-玻尔兹曼分布 1.普朗克的量子化假设: 黑体以hν为能量单位不连续地发射和吸收频率为ν的光子的能量. 且能量单位hν称为能量子,h为普朗克常量(h=6.62606896×10?34J?S) 2.普朗克公式的推导过程: 2.1任意频率ν下的辐射能量:

假设有一处于平衡状态的黑体,其内有数量为N 的原子可吸收或发出频率为ν的光子,其中N g 为这些原子中处在基态的原子数,N e 为处在激发态(此处指可由基态原子受频率为ν的光子激发达到的能态)的原子数,n 为频率为ν的光子平均数。则由统计力学中的麦克斯韦-玻尔兹曼公式[2]知: N e ∝N e ?E e N g ∝ N e ?E g 由此可得 N e N g =e ?Ee ?Eg =e ?h ν(2.1.1) 平衡状态下,体系内原子在两能级间相互转化的速率相等,且其速率正比于转化的概率和该状态下的原子数目。结合爱因斯坦系数关系[3]可得:N g n=N e (n+1)(2.1.2) 结合(2.1.1),可解得:n =1 e h νkT ?1(2.1.3) 则该状态下光子总能量为: ε0= nhv =hv e h νkT ?1 (2.1.4) 2.2 v ~v +d v 频率段中可被体系接收的频率数目 设所求黑体为规整的立方体,其长,宽,高分别为L x ,L y ,L z 。体积为V 0。不妨先讨论一维情况: 体系线宽为L ,则L 必为光子半波长的整数倍,设其波数为K ,有

1-2 黑体辐射 实验报告

近代物理实验报告 指导教师: 得分: 实验时间: 2010 年 06 月 02 日, 第 十四 周, 周 三 , 第 5-8 节 实验者: 班级 材料0705 学号 200767025 姓名 童凌炜 同组者: 班级 材料0705 学号 200767007 姓名 车宏龙 实验地点: 综合楼 505 实验条件: 室内温度 ℃, 相对湿度 %, 室内气压 实验题目: 黑体辐射 实验仪器:(注明规格和型号) WGH-10型黑体实验装置(光栅单色仪、接收单元、扫描系统、电子放大器、转换采集、电流可调的溴钨灯光源、计算机及打印机组成)试验装置的光学系统如图所示。 实验目的: 通过测量黑体辐射的能量分布曲线及普朗克常量,加深对黑体辐射问题的理解。 实验原理简述: 历史上很多物理学家都企图用经典理论解释黑体辐射规律。如Kirchhoff 、Boltzzman 、Wilhelm 、Rayleigh 等。他们得到了一些与之有关的公式: Boltzzman Equation :W k S N ln = Wilhelm Equation : T a e b T R λλλ/5),(--= Rayleigh-Jeans formula : ννπννd kT c d T E 2 38),(=

Planck 提出:电磁辐射的能量只能是量子化的。他认为以频率ν做谐振动的振子其能量只能取某些分立值,在这些分立值决定的状态中,对应的能量应该是某一最小能量的h ν整数倍,即E=nh ν,n=1,2,3,…在此能量量子化的假定下,他推导出了著名的普朗克公式: 1 8),(/33-=kT h e d c h d T E νν νπνν 因为λλννλd c d c 2,/= = 所以 18),(/5-= kT hc e d hc d T E λλ λπλλ 它与实验结果符合得很好。Planck 提出的能量量子假说具有划时代的意义,标志了量子物理学的诞生。 考虑到单色辐射能密度E (λ,T )与单色辐射度R (λ,T )之间的关系: ),(4 ),(T R c T E λλ= 此式还可以写成如下形式 12),(/5 2-= kT hc e d hc d T R λλλπλλ Planck 公式经过微分后得到Wilhelm 位移定律: 965.4=T k hc m λ Planck 公式经积分后可以得到Stefan-Boltzmann Law 40 ),()(T d T E T E σλλ==?∞ 不同的人提出的辐射理论表达为公式曲线之后的图形如右所示, 可见还是存在一定的差别的。 实验步骤简述: 1、 实验内容 1 绘制不同温度下的黑体辐射能量曲线 2 验证普朗克辐射定律 3 验证维恩位移定律 4 验证斯特藩-玻尔兹曼定律 2、 实验步骤 (1) 检查仪器连线,调节狭缝宽度。 (2) 打开溴钨灯电源,打开控制箱电源,预热。

黑体辐射定律

基尔霍夫热辐射定律 基尔霍夫热辐射定律(Kirchhoff热辐射定律),德国物理学家古斯塔夫·基尔霍夫于1859年提出的传热学定律,它用于描述物体的发射率与吸收比之间的关系。 简介一般研究辐射时采用的黑体模型由于其吸收比等于1(α=1),而实际物体的吸收比则小于1(1>α>0)。基尔霍夫热辐射定律则给出了实际物体的辐射出射度与吸收比之间的关系。 ?M为实际物体的辐射出射度,M b为相同温度下黑体的辐射出射度。 而发射率ε的定义即为 所以有ε=α。 所以,在热平衡条件下,物体对热辐射的吸收比恒等于同温度下的发射率。 而对于漫灰体,无论就是否处在热平衡下,物体对热辐射的吸收比都恒等于同温度下的发射率。 不同层次的表达式 对于定向的光谱,其基尔霍夫热辐射定律表达式为 对于半球空间的光谱,其基尔霍夫热辐射定律表达式为 对于全波段的半球空间,其基尔霍夫热辐射定律表达式为 ?θ为纬度角,φ为经度角,λ为光谱的波长,T为温度。 参考文献

?杨世铭,陶文铨。《传热学》。北京:高等教育出版社,2006年:356-379。 ?王以铭。《量与单位规范用法辞典》。上海:上海辞书出版社 普朗克黑体辐射定律 普朗克定律描述的黑体辐射在不同温度下的频谱 物理学中,普朗克黑体辐射定律(也简称作普朗克定律或黑体辐射定律)(英 文:Planck's law, Blackbody radiation law)就是用于描述在任意温度T下,从一个黑体中发射的电磁辐射的辐射率与电磁辐射的频率的关系公式。这里辐射率就是频率的函数[1]: 这个函数在hv=2、82kT时达到峰值[2]。 如果写成波长的函数,在单位立体角内的辐射率为[3]

黑体辐射出射度曲线绘制

黑体辐射出射度曲线绘制 一、目的:学习和巩固黑体辐射定律,验证普朗克辐射定律、斯蒂芬-玻尔兹曼 等定律;了解单色仪的工作原理及基本结构。 二、内容:按照实验指导书的要求和步骤操作仿真黑体实验装置,验证黑体相关 定律。 三、设备:WHS-型黑体实验装置,计算机,打印机等。 四、原理: 黑体是一个能完全吸收并向外完全辐射入射在它上面的辐射能的理想物体。黑体的光谱辐射量和温度之间存在精确的定量关系,确定了黑体的温度,就可以确定其他的辐射量,因此黑体辐射定律在辐射度学中起了基准的作用,占据十分重要的地位。 自然界不存在绝对黑体,用人工的方法可以制成尽可能接近绝对黑体的辐射源。钨的熔点约为3695K,充气钨丝灯的光谱辐射分布和黑体十分接近,因此可以用来仿真黑体。CIE规定分布温度2856K的充气钨丝灯作为标准A光源,以此实现绝对温度为2856K的完全辐射体的辐射,即标准照明体A。本次实验所用的WHS-1黑体实验装置就是以溴钨灯模拟黑体的辐射源,通过改变灯丝的电流来模拟改变黑体的色温。 描述黑体辐射定律的普朗克公式以波长表示的形式为: (1)式(1)中,第一辐射常数;第二辐射常数 ;;为光速。 由于黑体是朗伯辐射体,因此可以得到黑体的光谱辐亮度表示式如下: (2) 斯蒂芬-玻尔兹曼定律描述的是黑体的辐射出射度与温度之间的关系: (3) 式(3)中,称为斯蒂芬-玻尔兹曼常数。 黑体光谱辐射是单峰函数,其峰值波长满足维恩位移定律: (4)

式(4)中,常数。实验就是要验证黑体辐射的上述定律。

WHS-1型黑体实验装置的工作过程为:调整灯丝电流为某一数值,如1.7A,停留几分钟待光源稳定;单色仪光栅机构复位,从800nm至2500nm以一定的间隔(如1nm)进行扫描,将数据存进内存(即软件中所指“寄存器_1”等),显示的 辐出度数值为:。为保证显示值不偏离理论值太多,除了要保证光栅扫描机构的精度外,溴钨灯的稳定性也十分重要。因此溴钨灯的预热,以及调整电流后,应有充足的稳定时间。 五、实验步骤: 1.正确连接计算机、单色仪、接收单元、电控箱、溴钨灯电源、溴钨灯; 2.打开计算机、电控箱及溴钨灯电源,使机器预热20分钟; 3.按照软件的提示,确认反射镜拨杆的位置置于位置“1”,即把拨杆拨向 出射狭缝方向(拨向相反方向用于“观察窗查看二级谱线”实验); 4.将溴钨灯电源的电流调节为1.7A(即对应黑体色温2999K)扫描一条从 800~2500nm的曲线,得到在色温2999K时的黑体辐射曲线;

黑体辐射实验

实验十八 黑体辐射实验 一、实验目的 1. 了解黑体和一般发光体辐射强度的关系; 2. 掌握测量一般发光光源的辐射能量曲线的方法 3. 验证普朗克辐射定律; 4. 验证斯忒藩一波耳兹曼定律; 5. 验证维恩位移定律; 二、黑体辐射和实验基本理论 1.黑体辐射 任何物体,只要绝对不为零,就会向周围发射辐射,这称为热辐射。黑体是一种完全的热辐射体,即,任何非黑体所发射的辐射通量都小于同温度下的黑体发射的辐射通量。在热平衡下,黑体的辐射能力则仅与温度有关。黑体的辐射亮度在各个方向都相同,即黑体是一个完全的余弦辐射体。辐射能力小于黑体,但辐射的光谱分布与黑体相同的温度辐射体称为灰体。 2.黑体辐射定律 (1)黑体辐射的光谱分布——普朗克辐射定律 普朗克提出,在空腔辐射体中电磁辐射的能量是量子化的。根据这一假定,在某一温度下达到平衡时,黑体的光谱辐射度可表示为: ) 1e (C )1e (1hc 2E T 2C hc 5155 2T -λ=-λλπ=λλ(瓦/米3) (18-1) 式中c 为光速,h 为普朗克常数,C 1 = 3.74×10-16 (瓦米2)、常数C 2 = 1.4398?10-2(米开尔文)。 黑体光谱辐射亮度由下式给出: π = λλT T E L (瓦/米3球面度) (18-2) 图18-1 黑体的频谱亮度L λT 随波长变化

图2-1 给出黑体的频谱亮度随波长的变化,其中每一条曲线上都标出黑体的绝对温度。与诸曲线的最大值相交的对角直线表示维恩位移定律。 (2)黑体的积分辐射——斯忒藩—波尔兹曼定律 此定律用辐射度表示为, 40 T T T d E E δ=λ=?∞ λ(瓦特/米2) (18-3) T 为黑体的绝对温度,δ为斯忒藩—波尔兹曼常数, δ =2 345c h 15k 2π= 5.670×10-8 (瓦/米2?开尔文4) (18-4) 其中,k 为波尔兹曼常数,h 为普朗克常数,c 为光速。 由于黑体辐射是各向同性的,所以其辐射亮度与辐射度有关系 π = T E L (18-5) 于是,斯忒藩—波尔兹曼定律也可以用辐射亮度表示为 4 T L π δ= (瓦特/米2?球面度) (18-6) (3)维恩位移定律 光谱亮度的最大值的波长 λmax 与它的绝对温度T 成反比, T A max = λ (18-7) A 为常数,A=2.896?10-3 (米×开尔文)。 这一波长对应的黑体光谱辐射亮度由式(18-1)、(18-2)和(18-7),有 ) 1e (C 1E L T max 2 C max 5max 1 T max -λ π= π = λλ=4.10T 5?10-6(瓦特/米3?球面角?开尔文5 ) 随着温度的升高,绝对黑体光谱亮度的最大值的波长向短波方向移动。 三、实验装置和测量 1.实验仪器 本实验主要仪器为WGH-10型黑体实验装置,其由光栅单色仪,接收单元,扫描系统,电子放大器,A/D 采集单元,电压可调的稳压溴钨灯光源,以及计算机组成。

光谱仪,光谱响应,辐射量,辐照度,辐射亮度,辐射率,光栅,辐射计

光谱仪简介 光谱仪( Spectroscope)是将成分复杂的光分解为光谱线的科学仪器,由棱镜或衍射光栅等构成,利用光谱仪可测量物体表面反射的光线,。阳光中的七色光是肉眼能分的部分(可见光),但若通过光谱仪将阳光分解,按波长排列,可见光只占光谱中很小的范围,其余都是肉眼无法分辨的光谱,如红外线、微波、紫外线、X射线等等。通过光谱仪对光信息的抓取、以照相底片显影,或电脑化自动显示数值仪器显示和分析,从而测知物品中含有何种元素。这种技术被广泛地应用于空气污染、水污染、食品卫生、金属工业等的检测中。 将复色光分离成光谱的光学仪器。光谱仪有多种类型,除在可见光波段使用的光谱仪外,还有红外光谱仪和紫外光谱仪。按色散元件的不同可分为棱镜光谱仪、光栅光谱仪和干涉光谱仪等。按探测方法分,有直接用眼观察的分光镜,用感光片记录的摄谱仪,以及用光电或热电元件探测光谱的分光光度计等。单色仪是通过狭缝只输出单色谱线的光谱仪器,常与其他分析仪器配合使用。 图片 图中所示是三棱镜摄谱仪的基本结构。狭缝S与棱镜的主截面垂直,放置在透镜L的物方焦面内,感光片放置在透镜L的像方焦面内。用光源照明狭缝S,S的像成在感光片上成为光谱线,由于棱镜的色散作用,不同波长的谱线彼此分开,就得入射光的光谱。棱镜摄谱仪能观察的光谱范围决定于棱镜等光学元件对光谱的吸收。普通光学玻璃只适用于可见光波段,用石英可扩展到紫外区,在红外区一般使用氯化钠、溴化钾和氟化钙等晶体。目前普遍使用的反射式光栅光谱仪的光谱范围取决于光栅条纹的设计,可以具有较宽的光谱范围。 表征光谱仪基本特性的参量有光谱范围、色散率、带宽和分辨本领等。基于干涉原理设计的光谱仪(如法布里-珀罗干涉仪、傅立叶变换光谱仪)具有很高的色散率和分辨本领,常用于光谱精细结构的分析。 单色仪 科技名词定义 中文名称: 单色仪 英文名称: monochromator

相关主题
文本预览
相关文档 最新文档