当前位置:文档之家› 物质的量浓度误差分析小结

物质的量浓度误差分析小结

物质的量浓度误差分析小结
物质的量浓度误差分析小结

一定物质的量浓度溶液配制的误差分析

(一)由概念不清引起的误差

1.容量瓶的容量与溶液体积不一致。

例:用500mL容量瓶配制450mL 0.1 moL/L的氢氧化钠溶液,用托盘天平称取氢氧化钠固体1.8g。---------------------偏小。

2.溶液中的溶质与其结晶水合物的不一致。

例:配制500mL0.1moL/L的硫酸铜溶液,需称取胆矾8.0g。---偏小。

(二)由试剂纯度引起的误差

3.结晶水合物风化或失水。

例:用碳酸钠晶体配制碳酸钠溶液时,所用晶体已经部分失水。--偏大。

4.溶质中含有其他杂质。

例:配制氢氧化钠溶液时,氢氧化钠固体中含有氧化钠杂质。--偏大。

(三)由称量不正确引起的误差

5.称量过程中溶质吸收空气中成分。

例:配制氢氧化钠溶液时,氢氧化钠固体放在烧杯中称量时间过长。----偏小。称量氢氧化钠固体时速度要快或放在小烧杯中称量最好。

6.称量错误操作。

例:配制氢氧化钠溶液时,天平的两个托盘上放两张质量相等的纸片。--偏小。

7.天平砝码本身不标准。

例:天平砝码有锈蚀。――――偏大。

8.称量时药品砝码位置互换。

例:配制一定物质的量浓度的氢氧化钠溶液,需称量溶质4.4g,称量时天平左盘放砝码,右盘放药品。―――――偏小。

9.量筒不干燥。

例:配制一定物质的量浓度的硫酸溶液时,用没有干燥的量筒量取浓硫酸。――――偏小。

10. 量筒洗涤。

例:用量筒量取浓硫酸倒入小烧杯后,用蒸馏水洗涤量筒并将洗涤液转移至小烧杯中。―――偏大。

11.量筒读数错误。

用量筒量取浓硫酸时,仰视读数。―――偏大。

(四)由溶解转移过程引起的误差

12.未冷却溶液直接转移。

例:配制氢氧化钠溶液时,将称量好的氢氧化钠固体放入小烧杯中溶解,未冷却立即转移到容量瓶中并定容。―――偏大。

13.转移溶质有损失。

例:转移到容量瓶过程中,有少量的溶液溅出。―――偏小。14.烧杯或玻璃棒未洗涤。

例:转移后,未洗涤小烧杯和玻璃棒,或者虽洗涤但未将洗涤液一并转移至容量瓶中。――――偏小。

(五)由定容过程引起的误差

15.定容容积不准确。

例:定容时,加水超过刻度线,用胶头滴管吸取多余的液体至刻度线。--偏小。

16.定容后多加蒸馏水。

例:定容摇匀后,发现液面下降,继续加水至刻度线。―――偏小。

17.定容时视线不平视。

例:定容时仰视。―――偏低。俯视时――――偏大。

(六)对实验结果无影响的操作

18.称量溶质的小烧杯没有干燥。

分析:无影响。因为所称溶质质量是两次称量数据之差,其溶质的物质的量正确,则物质的量浓度无影响。

19.配制前容量瓶中有水滴。

分析:无影响。溶质的质量和溶液的体积都没有变化。

20.定容摇匀后少量溶液外流。

分析:无影响。定容摇匀后,溶液的配制已经完成。从中任意取出溶液,浓度不会发生改变。

实验数据误差分析和数据处理

第二章 实验数据误差分析和数据处理 第一节 实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=121 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑==+???++= 1 222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值

(完整word版)实验力学学习心得

实验力学学习心得 曾经对力学的认识很懵懂,以前在我心中力学是一个很抽象的东西,我一直认为力学更多的是在图纸上的演算与推导,凡是与力相关的事物都属于力学范畴。对于力学应用方面的理解,也只是粗略的知道它会应用于航空航天、机械、土木、交通、能源、化工、材料、环境、船舶与海洋等等,但原理是什么,方法是怎样的,我想也绝不只是我最初理解的只是一些受力分析那么简单。而对实验力学这门课的学习则是让我们知道了目前所学的这些知识与它所应用的工程实际相联系的途径和方法。 简单的来说,实验力学就是用实验的方法求解力学问题。即用实验方法测量在力的作用下,物体产生的位移、速度、加速度、应变(形变)、应力、振动频率等物理量。工程实验力学中对实验力学的定义是用实验方法测量应变、应力和位移。也称为实验应力分析。在我现在学习了这门课之后的理解,实验力学是解决工程问题中力学问题的一个重要环节,是求解其力学问题的中间环节,通过实验力学方法测得所需物理量,最终求出结果。 通过课程认知,我了解了解决力学问题的方法主要有两个:理论方法和实验方法。理论方法就是理论方法就是将实际问题转化为数学模型,建立方程,然后求解。它主要有解析法和数值法,理论方法的解答是数学模型的解答,只有实际问题与数学模型相符时才是精确的,这也是它的局限性。而我们这学期学的实验力学的方法就是在实际问题上直接测量。我们这学期做了三个实验力学的实验,分别是测量电桥特性,动态应变测量和光测弹性学方法。这三个实验就用到了实验应力分析的方法——电测,振动测量,光测。实验力学的实验结果更可靠,并且可以发现新问题,开创新领域。不过它也有它的缺点就是测量都有误差,并且实验仪器和材料昂贵,这也导致了费用高。不过,理论分析和实验分析是相辅相成。理论的建立需要实验分析的成果,发现新问题,建立新理论。实验设计和实施需要理论分析做指导。复杂问题需要需要理论与实验共同完成。 正如我刚刚说的,误差是实验方法的一个弊端,也是不可避免的,但随着测试手段的改进和测量者水平的提高,可以减少误差,或者减少误差的影响,提高实验准确程度。实验误差按其产生原因和性质,可以分为系统性误差、偶然性误差和过失误差(粗差)三种。实验力学这门课,同样教会了我们如何去减少误差。比如对称法、初载荷法、增量法消除系统误差。还有通过分析给出修正公式用来消除系统误差,或者定期用更准确的仪器校准实验仪器以减少实验误差,校准时做好记录供以后修正数据用。偶然性误差难以排除,但可以用改进测量方法和数据处理方法,减少对测量结果的影响。例如用多次测量取平均值配合增量法,可以使偶然性误差相互抵消一部分,得到最佳值。过失误差是指明显与实际不符,没有一定的规律。这在我们实验中也会经常出现,通常这些都是由于疏忽大意、操作不当或设备出了故障引起明显不合理的错值或异常值,一般都可以从测量结果中加以剔除。 我们主要做了三个实验,测量电桥特性,动态应变测量和光测弹性学方法。给自己印象最深刻的就是第一个实验。桥路变换接线实验是在等强度实验梁上进行,当时是要在梁的上下表面哥粘贴两个应变片。当时老师在黑板上画了三个图,可是我当时连最基本的图都看不懂,根本不知道哪个是应变片哪个是电阻的意思。接下来在粘应变片的时候也遇到了各种麻烦,应变片倒是没粘好几个,但是手上已经一团糟。好不容易把应变片粘好后,需要用焊锡把电线连上,在仔细琢磨过到底那根线连哪个之后,又遇到了新的麻烦就是那个怎么焊都焊不上,后来找来老师才知道原来是我们那一组的电烙铁有问题,换了个,才继续把这个艰辛的实验做完。这个实验做了不少时间,也着实费了不少的功夫,不过通过这个实验我认识到了自己

物质的量浓度误差分析

物质的量浓度误差分析 1. 误差: a.系统误差:由试验仪器引起的误差,这种误差是无法避免的。 b.操作误差:由于造作不当而引起的误差,这种误差可以避免。 2.实验结果误差:由c B =n B /V 知浓度与溶质物质的量和溶液的体积有关;实际浓度大于预定浓度,误差为偏大;实际浓度小于预定浓度,误差为偏小。 系统误差主要来自仪器和实验者 容量瓶用于配制溶液对减少系统误差的意义: 容量瓶的设计思路 误差分析线索——根据“一定物质的量浓度溶液配置过程中各个步骤”的误差分析: 一、计算 ①表达式的正确应用 举例:如配置230ml 溶液,应选择250ml 的容量瓶,以250ml 进行相关计算 二、称量 1.固体的称量 ①砝码沾油污或锈蚀 ②砝码残缺 ③左码右物(1)游码不动;(2)游码移动 2.液体的量取 局部放大法分析仰视和俯视产生的误差 ①仰视读数 ②俯视读数 ③洗涤量筒 ④量筒内有少量水 三、溶解 ①溶质未完全溶解 ②搅拌过程中溶液溅出 ③溶解后溶液未冷却到室温 四、转移 ①未用玻璃棒引流 ②转移过程中液体溅到容量瓶外 五、洗涤 ①未洗涤小烧杯和玻璃棒 六、定容 ①仰视刻度线 ②俯视刻度线 七、摇匀 ①摇匀后,发现液面低于刻度线,又补加几滴水 课堂练习: 刻度线→ 仰视刻度线 液面超过刻度线 液面低于刻度线 俯视刻度线 刻度线→

课后作业: 1.由于操作上的不规范,下列使所配溶液的物质的量浓度偏高的是;偏低的是:。 (1)天平的砝码占有其他物质或有锈蚀 (2)试剂、砝码的左右位置颠倒 (3)直接称热的物质 (4)砝码有残缺 (5)在敞口的容器中称量易吸收空气中其他成分或易于挥发的物质是动作过慢 (6)所用溶质含有其他杂质 (7)调整天平零点时,游码放在了刻度线的右端 (8)用量筒量取液体时,仰视读数,使所读液体的体积偏大 (9)称量含结晶水的溶质时,溶质已风化 (10)定溶时俯视刻度线,溶液的体积比实际体积小 (11)溶解、转移、洗涤时有液体流出至容器外,使溶质的物质的量减少 (12)定容摇匀后,静置时发现液面低于刻度线,又加水至刻度线 (13)定容时加水过量越过刻度线,又取出部分溶液,使液面降至刻度线 (14)溶解固体溶质或稀释溶液时,未冷却至室温即转入容量瓶进行定容(容量瓶内溶液的温度高于20℃,造成所量取的溶液的体积小于容量瓶上所标注的的液体体积。) (15)容量瓶用蒸馏水洗静后,再用待配溶液润洗 (16)定容结束时,溶液液面的最高点与刻度线处于同一水平线上 (17)称量固体溶质时出现“左码右物”(已移动游码) (18)固体溶质已潮解 (19)量取液体溶质时,俯视读数 (20)定容时仰视刻度线 (21)转移溶液时不洗涤烧杯、玻璃棒,或洗涤液未转移到容量瓶中

偏差分析心得体会

偏差分析心得体会 篇一:误差分析及实验心得 误差分析及实验心得 误差分析 1 系统误差:使用台秤、量筒、量取药品时产生误差; 2 随机误差:反应未进行完全,有副反应发生;结晶、 纯化及过滤时,有部分产品损失。 1、实验感想: 在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。 在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获:

(1)、培养了严谨求实的精神和顽强的毅力。通过此 次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。 (2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。 九、实验讨论及心得体会 本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为理论上应该是约。所得产量与理论值存在一定偏差通过分析得到以下可能原因: a、减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、结晶时没有结晶完全。 通过以上分析我觉得有些操作导致的损失可以避免所以 我在以后的实验中保持严谨的态度。我通过本次实验我学

大学物理实验报告数据处理及误差分析

篇一:大学物理实验1误差分析 云南大学软件学院实验报告 课程:大学物理实验学期: - 学年第一学期任课教师: 专业: 学号: 姓名: 成绩: 实验1 误差分析 一、实验目的 1. 测量数据的误差分析及其处理。 二、实验内容 1.推导出满足测量要求的表达式,即 0? (?)的表达式; 0= (( * )/ (2*θ)) 2.选择初速度A,从[10,80]的角度范围内选定十个不同的发射角,测量对应的射程, 记入下表中: 3.根据上表计算出字母A 对应的发射初速,注意数据结果的误差表示。 将上表数据保存为A. ,利用以下程序计算A对应的发射初速度,结果为100.1 a =9.8 _ =0 =[] _ = ("A. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _

+= [ ] 0= _ /10.0 0 4.选择速度B、C、D、重复上述实验。 B C 6.实验小结 (1) 对实验结果进行误差分析。 将B表中的数据保存为B. ,利用以下程序对B组数据进行误差分析,结果为 -2.84217094304 -13 a =9.8 _ =0 1=0 =[] _ = ("B. "," ") _ = _ . ad ()[:-1] = _ [:]. ('\ ') _ = _ . ad ()[:-1] = _ [:]. ('\ ') a (0,10): .a d( a . ( a ( [ ])* / a . (2.0* a ( [ ])* a . /180.0))) _ += [ ] 0= _ /10.0 a (0,10): 1+= [ ]- 0 1/10.0 1 (2) 举例说明“精密度”、“正确度”“精确度”的概念。 1. 精密度 计量精密度指相同条件测量进行反复测量测值间致(符合)程度测量误差角度说精密度所 反映测值随机误差精密度高定确度(见)高说测值随机误差定其系统误差亦。 2. 正确度 计量正确度系指测量测值与其真值接近程度测量误差角度说正确度所反映测值系统误差 正确度高定精密度高说测值系统误差定其随机误差亦。 3. 精确度 计量精确度亦称准确度指测量测值间致程度及与其真值接近程度即精密度确度综合概念 测量误差角度说精确度(准确度)测值随机误差系统误差综合反映。 比如说系统误差就是秤有问题,称一斤的东西少2两。这个一直恒定的存在,谁来都是 这样的。这就是系统的误差。随机的误差就是在使用秤的方法。 篇二:数据处理及误差分析 物理实验课的基本程序

实验设计与数据处理心得

实验设计与数据处理心得体会 刚开始选这门课的时候,我觉得这门课应该就是很难懂的课程,首先我们做过不少的实验了,当然任何自然科学都离不开实验,大多数学科(化工、化学、轻工、材料、环境、医药等)中的概念、原理与规律大多由实验推导与论证的,但我觉得每次到处理数据的时候都很困难,所以我觉得这就是门难懂的课程,却也就是很有必要去学的一门课程,它对于我们工科生来说也就是很有用途的,在以后我们实验的数据处理上有很重要的意义。 如何科学的设计实验,对实验所观测的数据进行分析与处理,获得研究观测对象的变化规律,就是每个需要进行实验的人员需要解决的问题。“实验设计与数据处理”课程就就是就是以概率论数理统计、专业技术知识与实践经验为基础,经济、科学地安排试验,并对试验数据进行计算分析,最终达到减少试验次数、缩短试验周期、迅速找到优化方案的一种科学计算方法。它主要应用于工农业生产与科学研究过程中的科学试验,就是产品设计、质量管理与科学研究的重要工具与方法,也就是一门关于科学实验中实验前的实验设计的理论、知识、方法、技能,以及实验后获得了实验结果,对实验数据进行科学处理的理论、知识、方法与技能的课程。 通过本课程的学习,我掌握了试验数据统计分析的基本原理,并能针对实际问题正确地运用,为将来从事专业科学的研究打下基础。这门课的安排很合理,由简单到复杂、由浅入深的思维发展规律,先讲单因素试验、双因素试验、正交试验、均匀试验设计等常用试验设计

方法及其常规数据处理方法、再讲误差理论、方差分析、回归分析等数据处理的理论知识,最后将得出的方差分析、回归分析等结论与处理方法直接应用到试验设计方法。 比如我对误差理论与误差分析的学习:在实验中,每次针对实验数据总会有误差分析,误差就是进行实验设计与数据评价最关键的一个概念,就是测量结果与真值的接近程度。任何物理量不可能测量的绝对准确,必然存在着测定误差。通过学习,我知道误差分为过失误差,系统误差与随机误差,并理解了她们的定义。另外还有对准确度与精密度的学习,了解了她们之间的关系以及提高准确度的方法等。对误差的学习更有意义的应该就是如何消除误差,首先消除系统误差,可以通过对照试验,空白试验,校准仪器以及对分析结果的校正等方法来消除;其次要减小随机误差,就就是要在消除系统误差的前提下,增加平行测定次数,可以提高平均值的精密度。 比如我对方差分析的理解:方差分析就是实验设计中的重要分析方法,应用非常广泛,它就是将不同因素、不同水平组合下试验数据作为不同总体的样本数据,进行统计分析,找出对实验指标影响大的因素及其影响程度。对于单因素实验的方差分析,主要步骤如下:建立线性统计模型,提出需要检验的假设;总离差平方与的分析与计算;统计分析,列出方差分析表。对于双因素实验的方差分析,分为两种,一种就是无交互作用的方差分析,另一种就是有交互作用的方差分析,对于这两种类型分别有各自的设计方法,但就是总体步骤都与单因素实验的方差分析一样。

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多 少次测定,但是测定结果总不会是完全一样。这 说明在测定中有误差。为此我们必须了解误差产 生的原因及其表示方法,尽可能将误差减到最 小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求 测到的。严格来讲,由于测量仪器,测定方法、 环境、人的观察力、测量的程序等,都不可能是 完善无缺的,故真值是无法测得的,是一个理想 值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差 出现的机率相等,故将各观察值相加,加以平均, 在无系统误差情况下,可能获得极近于真值的数 值。故“真值”在现实中是指观察次数无限多时, 所求得的平均值(或是写入文献手册中所谓的 “公认值”)。

(二)平均值 然而对我们工程实验而言,观察的次数都是 有限的,故用有限观察次数求出的平均值,只能 是近似真值,或称为最佳值。一般我们称这一最 佳值为平均值。常用的平均值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正 态分布时,用最小二乘法原理可以证明:在一组 等精度的测量中,算术平均值为最佳值或最可信 赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察 的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==12 22221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同 一物理量由不同人去测定,计算平均值时,常对 比较可靠的数值予以加重平均,称为加权平均。

误差分析及实验心得

误差分析及实验心得 误差分析1系统误差:使用台秤、量筒、量取药品时产生误差; 2随机误差:反应未进行完全,有副反应发生;结晶、纯化及过滤时,有部分产品损失。 1、实验感想: 在实验的准备阶段,我就和搭档通过校园图书馆和电子阅览室查阅到了很多的有关本实验的资料,了解了很多关于阿司匹林的知识,无论是其发展历史、药理、分子结构还是物理化学性质。而从此实验,我们学习并掌握了实验室制备阿司匹林的各个过程细节,但毕竟是我们第一次独立的做实验,导致实验产率较低,误差较大。 在几个实验方案中,我们选取了一个较简单,容易操作的进行实验。我与同学共做了3次实验,第一次由于加错药品而导致实验失败,第二次实验由于抽滤的时候加入酒精的量过多,导致实验产率过低。因此,我们进行了第三次实验,在抽滤时对酒精的用量减少,虽然结果依然不理想,但是我们仍有许多的收获: (1 )、培养了严谨求实的精神和顽强的毅力。通过此次的开放性实验,使我们了解到“理论结合实践”的重要性,使我们的动手能力和思考能力得到了锻炼和提高,明白了在实践中我们仍需要克服很多的困难。 (2)、增进同学之间的友谊,增强了团队合作精神。这次的开放性实验要求两个或者两个以上的同学一起完成,而且不像以前实验时有已知的实验步骤,这就要求我们自己通力合作,独立思考,查阅资料了解实验并制定方案,再进行实验得到要求中的产物。我们彼此查找资料,积极的发表个人意见,增强了团队之间的协作精神,培养了独立思考问题的能力,同时培养了我们科学严谨的求知精神,敢于追求真理,不怕失败的顽强毅力。当然我们也在实验中得到了很大的乐趣。 九、实验讨论及心得体会 本次实验练习了乙酰水杨酸的制备操作,我制得的乙酰水杨酸的产量为_ 论上应该是约1.5g。所 得产量与理论值存在一定偏差通过分析得到以下可能原因: a、减压过滤操作中有产物损失。 b、将产物转移至表面皿上时有产物残留。 c、结晶时没有结晶完全。 通过以上分析我觉得有些操作导致的损失可以避免所以我在以后的实验中保持严谨的态度。我通过本次实验我学到了乙酸酐和水杨酸在酸催化下制备乙酰水杨酸的操作方法初步了解有机合成中乙酰化反 应原理巩固和进一步熟悉了减压过滤、重结晶基本操作的原理和方法了解到乙酰水杨酸中杂质的来源及 其鉴别方法通过误差分析可能原因进一步更深理解实验的原理和操作养成严谨的态度。

数据处理与误差分析报告

物理实验课的基本程序 物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。 §1 实验前的预习 为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。 实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目: 实验名称 写出本次实验的名称。 实验目的 应简单明确地写明本次实验的目的要求。 实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。若讲义与实际所用不符,应以实际采用的原理图为准。 实验内容 简明扼要地写出实验内容、操作步骤。为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。注意要正确地表示出有效数字和单位。 §2 课堂操作 进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分 尺调零、天平调水平和平衡、光路调同轴等高等)。 准备就绪后开始测量。测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预 先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。数据之间要留有间隙,以便补充。发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。运算的错误可以修改,原始数据则不能擅自改动。全部数据必须经老师检查、签名,否则本次实验无效。两人同作一个实验时,要既分工又协作,以便共同完成实验。实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。 §3 实验报告 实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告 要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。 完整的实验报告应包括下述几部分内容: 数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签 名的原始数据记录纸要附在本次报告一起交)。 数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照 实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。 结果表达 按下面格式写出最后结果: )N ()(N )N (总绝对误差测量结果待测量?±=.. %100(??=N N )Er 相对误差

酸碱中和滴定实验误差分析

酸碱中和滴定实验误差分析 1.用已知物质的量浓度的酸(或碱)来测定未知物质的量浓度的碱(或酸)的方法叫做酸碱 中和滴定。 2.酸碱中和反应的实质:H++OH-=H2O 公式:a. n(H +) =n(OH-) b. C(H+)V(H+)==C(OH-)V(OH-) 3.中和滴定过程中,容易产生误差的6个方面是: ①洗涤仪器(滴定管、移液管、锥形瓶); ②气泡; ③体积读数(仰视、俯视)俯视刻度线,实际加水量未到刻度线,使溶液的物质的量浓度增大;仰视刻度线,实际加水量超过刻度线,使溶液的物质的量浓度减小。; ④指示剂选择不当; ⑤杂质的影响; ⑥操作(如用力过猛引起待测液外溅等)。 具体分析如下: (1)滴定前,在用蒸馏水洗涤滴定管后,未用标准液润洗。(偏高) (2)滴定前,滴定管尖端有气泡,滴定后气泡消失。(偏高) (3)滴定前,用待测液润洗锥形瓶。(偏高) (4)取待测液时,移液管用蒸馏水洗涤后,未用待测液润洗。(偏低) (5)取液时,移液管尖端的残留液吹入锥形瓶中。(偏高) (6)读取标准液的刻度时,滴定前平视,滴定后俯视。(偏低) (7)若用甲基橙作指示剂,最后一滴盐酸滴入使溶液由橙色变为红色。(偏高) (8)滴定过程中,锥形瓶振荡太剧烈,有少量溶液溅出。(偏低) (9)滴定后,滴定管尖端挂有液滴未滴入锥形瓶中。(偏高) (10)滴定前仰视读数,滴定后平视刻度读数。(偏低) (11)滴定过程中向锥形瓶内加入少量蒸馏水。(无影响) (12)滴定过程中,滴定管漏液。(偏高) (13)滴定临近终点时,用洗瓶中的蒸馏水洗下滴定管尖嘴口的半滴标准溶液至锥形瓶中。(操作正确,无影响) (14)过早估计滴定终点。(偏低) (15)过晚估计滴定终点。(偏高) (16)一滴标准溶液附在锥形瓶壁上未洗下。(偏高) (上文所指偏高偏低抑或无影响是指待测酸碱浓度) 分析技巧:1.分析不当操作对公式中四个变量其中一个或多个的大小影响, 2.根据公式,分析对V标准液的影响,V标准液比理论偏大,则待测液浓度测量值比 实际值偏大,反之亦然。故而V 标准液 是我们考察的重点。 3.对于(11),分析向已经准确量取好的待测液中滴加入水,虽然改变了待测液 浓度和体积,但并不影响n 待测液,所以V 标准液 不变化,对测量结果无影响。

测量误差及数据处理的基本知识

第一章 测量误差及数据处理的基本知识 物理实验离不开对物理量的测量。由于测量仪器、测量方法、测量条件、测量人员等因素的限制,测量结果不可能绝对准确。所以需要对测量结果的可靠性做出评价,对其误差范围作出估计,并能正确地表达实验结果。 本章主要介绍误差和不确定度的基本概念,测量结果不确定度的计算,实验数据处理和实验结果表达等方面的基本知识。这些知识不仅在每个实验中都要用到,而且是今后从事科学实验工作所必须了解和掌握的。 1.1 测量与误差 1.1.1测量 物理实验不仅要定性的观察物理现象,更重要的是找出有关物理量之间的定量关系。因此就需要进行定量的测量。测量就是借助仪器用某一计量单位把待测量的大小表示出来。根据获得测量结果方法的不同,测量可分为直接测量和间接测量:由仪器或量具可以直接读出测量值的测量称为直接测量。如用米尺测量长度,用天平称质量;另一类需依据待测量和某几个直接测量值的函数关系通过数学运算获得测量结果,这种测量称为间接测量。如用伏安法测电阻,已知电阻两端的电压和流过电阻的电流,依据欧姆定律求出待测电阻的大小。 一个物理量能否直接测量不是绝对的。随着科学技术的发展,测量仪器的改进,很多原来只能间接测量的量,现在可以直接测量了。比如车速的测量,可以直接用测速仪进行直接测量。物理量的测量,大多数是间接测量,但直接测量是一切测量的基础。 一个被测物理量,除了用数值和单位来表征它外,还有一个很重要的表征它的参数,这便是对测量结果可靠性的定量估计。这个重要参数却往往容易为人们所忽视。设想如果得到一个测量结果的可靠性几乎为零,那么这种测量结果还有什么价值呢?因此,从表征被测量这个意义上来说,对测量结果可靠性的定量估计与其数值和单位至少具有同等的重要意义,三者是缺一不可的。 1.1.2 误差 绝对误差 在一定条件下,某一物理量所具有的客观大小称为真值。测量的目的就是力图得到真值。但由于受测量方法、测量仪器、测量条件以及观测者水平等多种因素的限制,测量结果与真值之间总有一定的差异,即总存在测量误差。设测量值为N ,相应的真值为N 0,测量值与真值之差ΔN ΔN =N -N 0 称为测量误差,又称为绝对误差,简称误差。 误差存在于一切测量之中,测量与误差形影不离,分析测量过程中产生的误差,将影响降低到最低程度,并对测量结果中未能消除的误差做出估计,是实验测量中不可缺少的一项重要工作。 相对误差 绝对误差与真值之比的百分数叫做相对误差。用E表示: %1000 ??=N N E 由于真值无法知道,所以计算相对误差时常用N代替0N 。在这种情况下,N可能是公认 值,或高一级精密仪器的测量值,或测量值的平均值。相对误差用来表示测量的相对精确度,相对误差用百分数表示,保留两位有效数字。 1.1.3 误差的分类

定物质的量浓度溶液配制过程中的误差分析

一定物质的量浓度溶液配制过程中的 误差分析 山东省邹城市第二中学张文伟 邮编:273500 在高中化学,一定物质的量浓度溶液的配制过程中的误差分析,一直是教学的重点和学生学习中的难点,也是考试中的考点,下面就结合一定物质的量浓度溶液配制的步骤,将配制过程中可能出现的情况总结如下。 误差分析依据的原理:C B= = ,由m、V决定实验误差。 1、计算 例如,经计算需溶质固体,而实际称量了。 由于托盘天平的感量为,四舍五入后,称量的溶质的质量增加,故所配溶液浓度偏高。 2、称量或量取 ①天平砝码生锈(没有脱落)或沾有其它物质。导致称量物质的实际值大于称量值。 ②称量时,游码忘记归零。 ③调整天平零点时,游码放在了刻度线的右端。 ④用量筒量取液体时,仰视读数,使所量取的液体体积偏大。 ⑤用量筒量取液体时,用水洗涤量筒,将残留在量筒中的液体洗出,使所量取液体体积偏大。

上述操作均使称得溶质的质量或量取液体体积增大,故所配溶液浓度偏高。 ⑥直接称热的物质,含有水分,称的重,实际质量小。 ⑦砝码有残缺。 ⑧称量时,将药品和砝码的位置放颠倒了。 ⑨在敞口容器中称量易吸收空气中其它成分或易于挥发的物质时的动作过慢。 ⑩用刚洗涤过的量筒量取所配溶液。 由于刚洗涤过的量筒内壁附着有水珠,使量取的一定体积的溶液所含溶质的量减少,故所配溶液浓度偏低。 ⑩用量筒量取液体时,俯视读数,使所量取的液体体积偏小。 上述操作均使称得溶质的质量或量取液体体积减小,故所配溶液浓度偏低。 3、溶解 为加速溶质的溶解而搅拌溶液,使溶液飞溅出来。 飞溅出的溶液中含有部分溶质,使所配溶液中的溶质减少,浓度偏低。 4、转移 ①转移溶液时有部分液体溅出,使溶质减少,所配溶液浓度偏低。 ②溶解固体溶质或稀释溶液时,未恢复至室温即转入容量瓶进

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测 定结果总不会是完全一样。这说明在测定中有误差。为此 我们必须了解误差产生的原因及其表示方法,尽可能将误 差减到最小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求测到的。严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程 序等,都不可能是完善无缺的,故真值是无法测得的,是 一个理想值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差出现的机 率相等,故将各观察值相加,加以平均,在无系统误差情 况下,可能获得极近于真值的数值。故“真值”在现实中 是指观察次数无限多时,所求得的平均值(或是写入文献 手册中所谓的“公认值”)。 (二)平均值 然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称

为最佳值。一般我们称这一最佳值为平均值。常用的平均 值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正态分布 时,用最小二乘法原理可以证明:在一组等精度的测量中, 算术平均值为最佳值或最可信赖值。 式中: n x x x 21、——各次观测值;n ――观察的次数。 (2)均方根平均值 (3)加权平均值 设对同一物理量用不同方法去测定,或对同一物理量 由不同人去测定,计算平均值时,常对比较可靠的数值予 以加重平均,称为加权平均。 式中;n x x x 21、——各次观测值; n w w w 21、——各测量值的对应权重。各观测值的 权数一般凭经验确定。 (4)几何平均值 (5)对数平均值 以上介绍的各种平均值,目的是要从一组测定值中找 出最接近真值的那个值。平均值的选择主要决定于一组观 测值的分布类型,在化工原理实验研究中,数据分布较多 属于正态分布,故通常采用算术平均值。 (三)中位数(xM )

化学实验误差分析总结

高中化学高二第一学期 第十章学习几种定量测定方法 关于实验误差方面的总结 10.1 测定1mol气体体积 在实验中造成测定结果偏小的是 1.装置漏气 2.镁带含有跟硫酸不反应的杂质 3.称量后擦去镁带表面的氧化膜 4.反应结束后,未用针筒抽气 5.硫酸注入量不足10ml,使镁带有剩余 6.实验仪器本身存在量得气体体积偏小的误差 在实验中造成测定结果偏大的是 1.最后计算氢气体积时没有扣去硫酸的体积 2.反应放热,实验过程中温度升高较大 3.镁带中含有产生气体比等质量的镁产生气体多的杂质(如Al 等) 4.实验仪器本身存在量得气体偏大的误差 10.2结晶水合物中结晶水含量的测定

1.加热不彻底造成硫酸铜晶体未失去全部结晶水 2.失去全部结晶水后未放入干燥器中冷却(在空气中冷却) 3.取用的样品中混有前面同学操作后的无水硫酸铜 4.晶体中含有不挥发杂质 在实验中造成测定结果偏高的是 1.加热时有晶体溅出(用玻璃棒搅拌时被沾去一点硫酸铜) 2.坩埚不干燥 3.晶体表面有水 4.加热时间过长,部分变黑 5.晶体中含有受热易分解的杂质 6.为了测定一包白色粉末的质量,将药品放在右盘,砝码放在 左盘,并需移动游码使之平衡,测得药品的质量为m(砝码)和m(游码的移动) 10.3酸碱滴定 在实验中造成测定结果偏低的是 1.用以量取待测液的滴定管未用待测液润洗 2.滴定时,摇动锥形瓶不慎溅出几滴溶液

1.锥形瓶洗净后又用待测液润洗 2.装酸液的滴定管内有气泡,滴定后气泡消失 3.滴定管用水洗后,未用标准溶液润洗就装入标准溶液 4.滴定前,滴定管尖嘴部分有一气泡,滴定过程中气泡消失 滴定结束读数时,若仰视,则读数值比溶液的实际体积偏大,结果造成测得的待测液浓度偏大 若同一次读数采用俯视,则使测得待测液浓度偏小。

物理误差分析及数据处理

第一章 实验误差评定和数据处理 (课后参考答案) 制作:李加定 校对:陈明光 3.改正下列测量结果表达式的错误: (1)12.001±0.000 625 (cm ) 改:12.0010±0.0007(cm ) (2)0.576 361±0.000 5(mm ) 改: 0.576 4±0.000 5(mm ) (3)9.75±0.062 6 (mA ) 改: 9.75±0.07 (mA ) (4)96 500±500 (g ) 改: 96.5±0.5 (kg ) (5)22±0.5(℃) 改: 22.0±0.5(℃) 4.用级别为0.5,量程为10 mA 的电流表对某电路的电流作10次等精度测量,测量数据如下表所示。试计算测量结果及标准差,并以测量结果形式表示之。 解:①计算测量列算术平均值I : ②计算测量列的标准差I σ: ③根据格拉布斯准则判断异常数据: 取显着水平a =0.01,测量次数n =10,对照表1-3-1查得临界值0(10,0.01) 2.41g =。取max x ?计算i g 值,有 由此得6I =9.40为异常数据,应剔除。 ④用余下的数据重新计算测量结果 重列数据如表1-3-3。

计算得 9 1 1 9.564 ()9i i I I mA == =∑ ,0.0344 ()I mA σ== 再经过格拉布斯准则判别,所有测量数据符合要求。 算术平均值I 的标准偏差为I σ 0.01145I σ= = = (mA ) 按均匀分布计算系统误差分量的标准差σ仪 为 0.0289σ?=仪0.5%10 (mA ) 合成标准差σ为 0.031σ (mA ) 取0.04σ= (mA),测量结果表示为 9.560.04x x σ=±=± (mA ) 5.用公式24m d h ρπ= 测量某圆柱体铝的密度,测得直径d =2.042±0.003(cm ),高h =4.126±0.004(cm ),质量m =36.488±0.006(g )。计算铝的密度ρ和测量的标准差ρσ,并以测量结果表达式表示之。 解 (1)计算铝的密度ρ: (2)计算g 标准差相对误差: 对函数两边取自然对数得

数值分析实验误差分析

实验报告 课程名称数值分析实验 实验项目误差分析 专业班级姓名学号 指导教师______________________ 成绩_______________ 日期____________ 、实验目的 1?了解误差分析对数值计算的重要性。 2?掌握避免或减小误差的基本方法。 、实验设备 安装有C、C++或MATLAB的计算机。 三、实验原理 根据不同的算法,得到的结果的精度是不一样的。 四、实验内容步骤 求方程 ax2+bx+c=0 的根,其中 a=1, b= -(5 x 108+1), c=5 x 108 采用如下两种计算方案,在计算机上编程计算,将计算结果记录下来,并分析产生误差的原因。 方案一: .bW b2 -4ac x1 - 2a 万案一: b sgn(b) b2-4ac 2a -b -d b2-4ac x2 2a c X2 : X i

要求:编写程序实现该算法;调试程序,检查输出结果。 五、实验结果及分析

x2=(-b-sqrt(q))/2; x3=-(b-sqrt(q))/2; x4=c/x1; prin tf("%f\n",x1); prin tf("%f\n",x2); prin tf("%f\n",x3); prin tf("%f\n",x4); } 2.拉格朗日(Lagrange )多项式插值 Lagrange插值多项式:

L n(x) =a n x n- a n 1x n丄讦’"理 n 7 yh(x) i卫 ](X)= (x —X o)…(X — X i」)(X —X iJ …(X—X n) (x i —x0)■…(x i —x i」)(x i —Xi申)…(x i —Xn) 3.牛顿(Newton)插值公式 N n(X)- f (X o) flX o’xKX-X。)flXo^xKX-XoXX-Xj flX o’Xj‘XnKX — XoXX—Xj (X—X n」) 四、实验内容步骤 1?给定sin 1T =0.190809, sin 12 -0.207912.sin13‘ =0.224951,构造 Lagrange 插值函数计 算sinll 30'。 2 .已知4个点的函数值如下表,用Newt on插值法求x=0.596时的函数值。 五、实验结果及分析 1.拉格朗日插值 2.牛顿插值

误差理论与数据处理知识总结

第一章绪论 1.1研究误差的意义 1.1.1研究误差的意义为: 1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差 2)正确处理测量和试验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据 3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。1.2误差的基本概念 1.2.1误差的定义:误差是测得值与被测量的真值之间的差。 1.2.2绝对误差:某量值的测得值之差。 1.2.3相对误差:绝对误差与被测量的真值之比值。 1.2.4引用误差:以仪器仪表某一刻度点的示值误差为分子,以测量范围上限值或全量程为分母,所得比值为引用误差。 1.2.5误差来源:1)测量装置误差 2)环境误差 3)方法误差 4)人员误差 1.2.6误差分类:按照误差的特点,误差可分为系统误差、随机误差和粗大误差三类。 1.2.7系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差为系统误差。 1.2.8随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化的误差称为随机误差。 1.2.9粗大误差:超出在规定条件下预期的误差称为粗大误差。 1.3精度 1.3.1精度:反映测量结果与真值接近程度的量,成为精度。 1.3.2精度可分为: 1)准确度:反映测量结果中系统误差的影响程度 2)精密度:反映测量结果中随机误差的影响程度 3)精确度:反映测量结果中系统误差和随机误差综合的影响程度,其定量特征可用测量的不确定度来表示。 1.4有效数字与数据运算 1.4.1有效数字:含有误差的任何近似数,如果其绝对误差界是最末位数的半个单位,那么从这个近似数左方起的第一个非零的数字,称为第一位有效数字。从第一位有效数字起到最末一位数字止的所有数字,不论是零或非零的数字,都叫有效数字。 1.4.2测量结果应保留的位数原则是:其最末一位数字是不可靠的,而倒数第二位数字应是可靠的。 1.4.3数字舍入规则:保留的有效数字最末一位数字应按下面的舍入规则进行凑整: 1)若舍去部分的数值,大于保留部分的末位的半个单位,则末位加一 2)若舍去部分的数值,小于保留部分的末位的半个单位,则末位不变 3)若舍去部分的数值,等于保留部分的末位的半个单位,则末位凑成偶数。 1.4.4数据运算规则: 1)在近似数加减运算时,运算数据以小数位数最少的数据位数为准 2)在近似数乘除运算、平方或开方运算时,运算数据以有效位数最少的数据位数为准 3)在对数运算、三角函数运算时,数据有效位数应查表得到。 第二章误差的基本性质与处理 2.1随机误差 2.1.1随机误差的产生原因:1)测量装置方面的因素 2)环境方面的因素 3)人员方面的因素。 2.1.2随机误差一般具有以下几个特性:对称性,单峰性,有界性,抵偿性。 2.1.3正态分布:服从正态分布的随机误差均具有以上四个特征,由于多数随机误差都服从正态分布,因而正态分布在误差理论中占有十分重要的地位。

误差分析与数据处理

误差分析与数据处理 物理化学实验是研究物质的物理性质以及这些物理性质与其化学反应间关系的一门实验科学。在实验研究工作中,一方面要拟定实验的方案,选择一定精度的仪器和适当的方法 进行测量;另一方面必须将所测得的数据加以整理归纳,科学地分析并寻求被研究变量间的 规律。但由于仪器和感觉器官的限制,实验测得的数据只能达到一定程度的准确性。因此,在着手实验之前要了解测量所能达到的准确度以及在实验以后合理地进行数据处理,都必须 具有正确的误差概念,在此基础上通过误差分析,选用最合适的仪器量程,寻找适当的实验方法,得出测量的有利条件。下面首先简要介绍有关误差等几个基本概念。 —、一、基本概念 1.误差。在任何一种测量中,无论所用仪器多么精密,方法多么完善,实验者多么细心,所得结果常常不能完全一致而会有一定的误差或偏差。严格地说,误差是指观测值与真 值之差,偏差是指观测值与平均值之差。但习惯上常将两者混用而不加区别。根据误差的种类、性质以及产生的原因,可将误差分为系统误差、偶然误差和过失误差三种。 系统误差: 这种误差是由于某种特殊原因所造成的恒定偏差,或者偏大或者偏小,其数值总可设法 加以确定,因而一般说来,它们对测量结果的影响可用改正量来校正。系统误差起因很多,例如: (1)仪器误差。这是由于仪器构造不够完善,示数部分的刻度划分得不够准确所引起,如天平零点的移动,气压表的真空度不高,温度计、移液管、滴定管的刻度不够准确等。 (2)测量方法本身的限制。如根据理想气体方程式测量某蒸汽的相对分子质量时,由于实际气体对理想气体有偏差,不用外推法求得的相对分子质量总较实际的相对分子质量为大。 (3 )个人习惯性误差。这是由于观测者有自己的习惯和特点所引起,如记录某一信号的时间总是滞后、有人对颜色的感觉不灵敏、滴定等当点总是偏高等。 系统误差决定测量结果的准确度。它恒偏于一方,偏正或偏负,测量次数的增加并不能 使之消除。通常是用几种不同的实验技术或用不同的实验方法或改变实验条件、调换仪器等 以确定有无系统误差存在,并确定其性质,设法消除或使之减 少,以提高准确度。 偶然误差: 在实验时即使采用了完善的仪器,选择了恰当的方法,经 过了精细的观测,仍会有一定的误差存在。这是由于实验者的感官的灵 敏度有限或技巧不够熟练、仪器的准确度限制以及许 多不能预料的其他因素对测量的影响所引起的。这类误差称为 偶然误差。它在实验中总是存在的,无法完全避免,但它服从几 率分布。偶然误差是可变的,有时大,有时小,有时正,有 时负。但如果多次测量,便会发现数据的分布符合一般统计规律。这种规律可用图I一1中的典型曲线表示,此曲线称为误差的正态分布曲线,此曲线的函数形式为: y= y = 式中:h称为精确度指数,b为标准误差,h与b的关系为:h= 。 自图I 一1中的曲线可以出: (1)误差小的比误差大的出现机会多,故误差的几率与误差大小有关。个别特别大的误差出现的次数极少。 (2)由于正态分布曲线与y轴对称,因此数值大小相同,符号相反的正、负误差出现的机率近于相等。如以m代表无限多次测量结果的平均值,在没有系统误差的情况下,它可以代表真值。b为无限多次测量所得标准误差。由数理统计方法分析可以得出,误差在土

相关主题
文本预览
相关文档 最新文档