火力发电厂气力输灰系统
- 格式:pptx
- 大小:10.05 MB
- 文档页数:40
电厂气力输灰系统常见问题及改进措施电厂气力输灰系统常见问题及改进措施一输灰系统常见问题及解决思路一.1 输灰管路漏泄输灰系统管路原设计采用不等管径的100mm的碳钢管,未考虑防磨,在机组投入运行后,煤质灰分较大,偏离设计值,运行中输灰压力一定,为输灰管路堵塞,运行人员被迫减少输灰系统进料阀的下料时间,减少进料量,少量的输灰在高压空气的吹动下,对输灰管路的膨胀节、输灰管路造成严重磨损。
为减少漏泄,专业认真研究分析认为:在当前的煤炭市场情况下,改变煤质适应输灰系统运行是不可能的事情,只有通过对输灰管路的耐磨性改造来适应恶劣的煤质,通过考察认为陶瓷具有良好的磨损性能,并且在当地就可以取材,在生产现场可以加工。
在保证输灰管路通流面积不变的情况下,在碳钢管、膨胀节内衬12.7mm陶瓷,增加输灰管路的耐磨性,经过更换陶瓷管路,输灰管路的漏泄得到了遏制,基本上消除了管路漏泄。
一.2 圆顶阀损坏原设计输灰系统进料阀--圆顶阀球面圆顶由耐磨材料制造,表面进行硬化处理,利用其光滑坚硬的表面,可保证与橡胶密封圈有良好的接触,以保证可靠的密封,当阀门关闭时,密封圈充气实现弹性变形,实现密封。
在实际运行中由于煤质灰分大,坚硬的煤灰颗粒对圆顶阀球面磨损较大,在圆顶阀球面磨出沟痕,运行中在此处产生漏气现象,输灰系统压力不能正常建立,输灰系统不能正常工作。
密封圈损坏原因分析:一.2.1 密封胶圈高温损坏省煤器进料阀密封圈损坏,灰温度高,冷却水压力小,易堵塞,流量不足,导致密封胶圈高温损坏;一.2.2 密封胶圈灰料磨损损坏当半球体旋转到位,密封圈没有充压间隔时,灰中颗粒若积到球体工作面上,密封胶圈充压后密封不严,当进行正压输灰时,浓相灰气混合物漏入磨损胶圈。
一.2.3 杂物导致密封胶圈损坏检修工作后,焊接的焊渣掉落到半球体工作面上引起密封不严,磨损密封圈。
一.2.4 机械卡涩导致损坏气动装置卡涩或半球体机械卡涩时,盘动半球体检查中,若不将密封胶圈内压缩空气排出,半球体会研磨损坏密封胶圈。
气力输灰系统运行的常见故障及处理对策摘要由于气力输灰系统具有无污染、低能耗、高效率等优势,因此当前在火电厂中广泛应用,已经逐渐取替传统的水力除灰形式。
但是在气力输灰系统运行中,常遇到各种故障问题,如果不及时处理,将影响工作效率与运行可靠性,因此需引起足够重视。
本文结合笔者实际工作经验,对气力输灰系统的常见故障及原因进行分析,以便有针对性地提出处理对策。
关键词气力输灰系统;故障;原因;处理1 气力输灰系统的运行原理当气力输灰系统初始运行过程中,进料阀中的密封圈开始泄压,延迟约3s~5s之后,将进料阀打开,开始进行落料过程,当落料的数量或者时间达到了事先设置的数值,则将进料阀关闭,3s之后再对进料阀的密封圈进行适当充压,如果密封压力的开关已经发出信号,再依次打开出料阀、进气阀以及补气阀,再次完成物料输送;如果输送压力的开关发出信号,那么整个输送过程完毕,将进气阀与补气阀关闭,等待约3s~5s之后关闭出料阀,此时系统重复进入下一个循环过程。
2 常见故障原因与处理对策堵管是气力输灰系统中最常见也最棘手的问题,如果输送管路中的压力开关已经探测确定输送的压力高于设定的压力,并在一段时间内不断上升,则系统将发出堵管报警。
具体原因及处理对策分析如下。
2.1 灰源问题一方面,沉降灰问题。
如果烟气通过没有投入使用的电除尘器,则其中一部分的重力将大于烟气的浮力,因此降落在灰斗上,形成灰层;既有电除尘发生故障之后产生的沉降灰,也有锅炉点火过程中由于煤油的混烧而产生沉降灰;如果由于前者造成,则一般灰尘的颗粒较大,表面非常粗糙,极易引发事故;如果由于后者造成,则灰尘的粘性较强,灰粒会在输送过程中逐渐下降,引发堵管问题。
这种情况下,应适当优化进料的时间,注意将发送器灰量形成的压力控制在一定范围内(一般为≤0.15MP a),尽量在短时间内将压力值降到最低点。
另一方面,灰尘温度问题。
在粉煤灰的表面形成了大量的孔隙与裂缝,这种情况下将对水存有极强吸附作用;如果灰分较低的情况下,那么S03气体、水蒸汽等存在于飞灰的表面,就可能产生结露现象,加大灰尘粘性,产生一定摩擦力,流动阻力随之增强,流动性急剧下降,引发堵管问题。
火力发电厂气力除灰系统的相关问题探究摘要:基于目前火力发电厂气力除灰系统运行过程中出现的问题,文章分析了系统灰质与灰量的控制问题以及系统设备应用问题,并提出了在故障工况下系统应采用怎样的应变控制措施,来提高气力除灰系统的效率。
其目的是为相关建设者提供一些理论依据。
关键词:火力发电厂;气力除灰系统;灰质与灰量引言现阶段,随着科学技术水平的不断发展,人们对火力发电厂气力除灰系统的作用需求越来越大。
然而,系统在实际运行使用过程中易受飞灰堆积密度、平均粒径、阀门以及空压站设备的影响,而出现系统出力明显下降问题。
为此,相关人员应加大灰质灰量、系统设备应用控制问题的研究,并注重对外界环境影响的控制,来提高系统建设使用的安全稳定性。
这是实现当前现代化经济建设背景下工业快速稳定发展目标的关键,建设人员应将其作为重点研究对象。
1.火力发电厂气力除灰系统中灰质与灰量控制问题现阶段,国内火力发电厂的输灰系统设计应用大多忽略了对灰质的考虑。
即将堆积密度取0.75t/m3,并同时忽略飞灰粒径所带来的影响。
相关研究表明,火力发电厂除灰系统中的飞灰堆积密度和平均粒径上升后,会导致气力输送系统出力出现明显的下降问题,进而造成严重磨损现象。
具体来说,当飞灰堆积的密度与平均粒径上升到一定值时,飞灰无法以正压浓相的状态进行输送,而是采用稀相输送的方式,这就大幅度增加了系统的气耗,进而使出力受到影响。
为此,火力发电厂除灰系统中灰质与灰量控制人员应从设计阶段入手,即尽可能收集同类电厂的粉煤灰以及相同的煤质,并通过1:1的工业模拟试验,来得出准确的飞灰堆积密度和平均粒径。
这样一来,就能使火力发电厂的除灰系统设计应用具有一定可靠性。
此外,对于入场的煤质的控制,需在进行磨煤机以及电除尘等设备选型时留有余量,并提高锅炉燃烧调整的合理性,来防止大颗粒物进入除灰系统[1]。
对于灰量增加问题,相关人员可通过及时调整输送工艺以及缩短等待实践,来加大系统出力的效果。
电厂气力输灰系统(正压密相气力输送系统)是我公司根据SDGJ11—90《火力发电厂除灰设计技术规定》、JB/T8470—96《正压密相气力输送系统》的要求,结合我公司多年来的气力输送系统设计、制造的实践经验研制开发的。
主要用于火力发电厂或热电厂及水泥行业,该系统的功能是将锅炉省煤器、电除尘器灰斗内的粉煤灰收集下来,粉煤灰在仓泵内流态化并均匀进入输灰管路,粉煤灰的流灰态化和存气性较好,在输灰过程中呈整体灰柱的形式。
用正压密相气力输灰的方式输送至灰库贮存。
该系统还可以满足用户将锅炉电除尘器不同的电场收集下来的粉煤灰,按粗细灰分开输送及存放的要求。
该系统适用于炉底渣、石灰石粉、水泥生料、矿粉、粮食等粉粒状物料的输送。
正压密相气力输送系统从结构流程上主要分气源及净化系统、输送仓泵系统、输送管道系统、灰库接收系统、控制系统五大部分。
控制系统的控制方式分为集中控制和现场控制,集中控制分为全自动和手动两种控制方式。
正压密相气力输灰系统与同类产品及机械输送相比较,具有以下优点:1、固气比(混合比)高,当输送管路长度在200米以内时,固气比可达40:1以上。
输送距离在450m以内时,固气比可达25:1。
2、运行时工作压力低(一般在0.1~0.2MPa),流速低。
在提高输送效率的同时,有效地减少了管道的磨损,降低了压缩空气耗量。
3、系统自动化程度高,操作简单灵活,利用PLC程序控制对整个输送过程实行全自动控制。
4、关键部件,如进料阀、泵体、控制元件等寿命长,均按通用规范设计,互换性、通用性强。
PLC控制模块、料位计、压力变送器、电磁阀等主要元件都采用进口件或进口组件。
5、输送管路布置灵活,能方便地实行集中、分散、大高度、长距离输送。
6、由于在密封管道中输送物料,可以严格保证物料品质,使其不受潮、对外无粉尘污染、不受各种气候条件影响,有利于生产和环境的保护。
7、输送设备内采用金属孔板夹持耐高温化学纤维结构的流化板,具有空隙率高,流化阻力小、效率高,且寿命长的独特优点。
火电厂气力输灰不畅的原因与对策摘要:火力发电厂在当今经济社会的发展中发挥着十分重要的作用,为经济社会的发展和人们的正常生活提供实用的电力资源。
由于我国火力发电机组一般规模较大,为了使资源得到深入利用,气力除灰被大多数火力发电厂广泛应用。
这是由于气力除灰具有受空间位置和输送线路的限值较小,也因其较为可靠。
但也有一些因素会造成气力除灰受阻,严重影响除尘器和机组的安全高效运行。
本文将对气力除灰不畅这个问题进行讨论,并相应的给出自己的建议。
关键词:火电厂气力除灰;不畅原因;解决措施引言随着我国经济的发展、工业的进步,大力推动了部分化工业的发展,其中就包括火力发电厂发电工程的发展。
这项工程在我国有十分优良的前景,并且在一定程度上节约资源,是国家重点培养的工程之一。
而人们的日常生活更离不开火电厂发电提供的资源。
在管理方面,国家严格要求,制定严密的运行方案与合理的运行系统,运行成本较低,且使用规模大,应用较为广泛,但在其中的火电厂气力除灰系统中,也存在着不足之处。
火电厂气力除灰的原理为:利用正压气力输送系统,制造气体的电离,使灰尘获得离子从而向电极靠拢,最后振打灰尘,将灰尘输送进入排气管道从而达到排灰目的。
而气力除灰系统的主要部件为灰库本体及排气过滤系统、除尘器的系统等组成,工作处理分为四个阶段:进料阶段,加压阶段,输送阶段,吹扫阶段。
进料阶段为,打开进料阀门,电除尘器粉尘送入仓泵,仓泵触碰高位料信号,阀门就会关闭,然后进入加压阶段,将空气压缩,送到仓泵内,与气体混合,进入输灰管道,最后送入灰库,在仓泵的压强作用下,结束输送过程。
最后打开气阀,用空气对管道和仓泵内的残留灰尘进行吹扫。
通过这一系列系统运作来完成除灰效果[1]。
1、火电厂气力除灰工作原理及系统组成气力除灰系统工作原理:在一定条件下,流动的气体能输送重度很大的固体,并且能输送相当长的一段距离,利用压缩空气的动压能和静压能或两者联合进行物料输送。
气力除灰系统主要由除尘器的飞灰处理系统、库顶卸料和排气系统、灰库气化风系统、库底卸料系统、控制用气系统、空压机系统、控制系统等组成。
对火电厂气力输灰系统的相关问题分析摘要:近些年,火电厂输灰系统大多采用气力输灰替代传统的水利输灰,这不仅有利于干灰的收集利用,也节约了大量的水资源。
但是在当前的火电厂气力输灰系统的运行过程中也出现很多问题。
本文提出了火电厂气力输灰系统的工作原理,并深入探讨火电厂输灰系统设计的主要问题。
关键词:火电厂;气力输灰系统;磨损一、引言随着科学技术水平的不断发展,人们对火电厂气力输灰系统的作用需求越来越大。
然而,系统在实际运行使用过程中易受飞灰堆积密度、平均粒径、阀门以及空压站设备的影响,进而出现系统出力明显下降问题。
此外,在一些特殊情况下或一些故障出现情况下,输灰系统的应变能力存在较多不足,其应有的作用很难发挥出来。
因此,相关人员应加大灰质灰量、系统设备应用控制问题的研究,并注重控制对外界环境的影响,来分担气力输灰系统风险,保证输灰过程的安全、稳定、连续。
二、气力输灰系统工作原理(1)系统运行前,先进行初始化调整(确保所有阀门都处于关闭状态,输送气源和仪用气源压力必须要比所设定的压力大)。
(2)进料圆顶阀的密封圈泄压,延时1―2秒,打开进料圆顶阀和气动平衡阀,物料进入发送器至料位计动作(或达到设定的时间),关闭进料圆顶阀和平衡阀,延时6~8秒,进料圆顶阀的密封圈充压至设定压力(一般为0.45MPa以上),至此就结束了进料过程。
(3)出料圆顶阀的密封圈泄压,延时1―2秒,打开出料圆顶阀,当出料圆顶阀开到位后,打开补气阀,压缩空气导入发送器,进行灰气预混合,延时5―6秒后,打开进气阀,输送空气导入发送器,开始进行输送,当管道的输送压力下降至设定压力时,延时6―8秒吹扫后,将进气阀关闭,至此完成了输送过程。
(4)延时3―5秒,将出料圆顶阀关闭后,出料圆顶阀密封圈充压,准备进入到下一次循环。
三、火电厂输灰系统设计主要问题分析1、气力输灰系统的运行问题由于电煤需求受市场变化影响较大,各火电厂实际使用的煤种往往不同于设计校核煤种,这一情况就会引起磨煤机、除尘、输灰、脱硫等一系列辅助设备出力不够的问题。
火电厂气力输灰系统改造探索与优化摘要本文主要阐明了火电厂内输灰系统在运转中存在的输灰系统磨耗损伤严重、内管掉落等故障问题;经过对输灰系统实际运转状况进行分析,对输灰系统进行针对性的改良,改进调节运转方法,让输灰系统的运转更具备安全性以及稳定性,有效减少输灰系统的能源消耗。
项目改进经验可以提供给其他火电厂借鉴。
关键词:双套管;内管;气力输灰系统1.输灰系统存在的问题自从机组投组后,输灰系统慢慢的呈现出一些问题,主要体现在下列几方面:1.输灰管道内壁磨耗损伤严重,输灰弯头的磨耗损伤更加严重,经常会出现漏灰的情况,且大程度的污染了周围环境;2.输灰管里面双套内管掉落的比较多,阀门与灰仓给料机阻塞;3.输灰系统里面非常容易出现灰堵塞的情况,为了满足输送灰量的要求,只有不断提升输送灰量的次数,输送灰量供气压力会大幅度上升,会加重管道的磨耗损伤,导致输灰的能源消耗变高,对机组的安全、经济以及环保运转产生严重的影响。
1.输灰系统故障原因分析2.1输灰管道磨损机理及因素1.粉体本质:灰的颗粒组成、样式、硬度与附着力都会在一定程度上产生磨耗损伤的影响。
灰颗粒的硬度越强,对于输灰管道的磨耗率就越高,粉煤灰和钢管的硬度比小于 1.1,算是软磨料磨耗损伤之一;灰颗粒的体积越大,样式棱角多,也会加大输灰管道的磨损速度,伴着灰颗粒数量的增多,磨损速度也在不断的上涨,倾斜的概率也会随之增加;灰颗粒的冲击角也会产生一定的磨耗损伤,这和磨损机理与材料的性能有关[1]。
2.输送形态:主要是管道里面灰气的混合比例与流动速度。
对于粉煤灰来说,钢管的磨损和灰颗粒流动速度的2.5次方成正比,其中速度是产生磨耗损伤影响最大的;在定量的灰气混合比例之下,灰气的混合比例越大,磨耗损伤的程度就越严重,所以在输送灰量的早期和后期,会产生比较大的磨耗损伤影响。
浓度高与输送流动速度慢也是双套管的特征之一,它增加了灰气比例,下降了输灰的流动速度,降低了进气压力以及降低磨耗损伤。
火电厂气力输灰不畅原因分析及解决措施青海省湟中区 810000摘要:随着我国经济的快速发展和社会的稳步进步,火电厂发电需求不断增加。
然而,目前火电厂发电仍存在多个问题之一即气力除灰不畅。
气力除灰不畅的出现必然导致除尘器的效率下降,进而引发堵塞和引风机的损坏,甚至导致电厂机组停运。
本文分析了导致气力除灰不畅的实际生产原因,并介绍了采取的相应措施,并提出了针对气力除灰不畅的建议。
关键词:火电厂;气力除灰;技术;不畅;火力发电厂在现代经济社会中起着重要作用,为经济社会发展和人们的生活提供电力资源。
为满足国家规定,火电厂需要选择和设计符合要求的除灰系统,这不仅方便施工和节约资源,还可以降低生产成本,实现最大化的经营效益。
由于我国火力发电机组通常规模较大,为了充分利用资源,大多数火电厂广泛采用气力除灰系统。
这是因为气力除灰具有受空间位置和输送线路限制较小,而且相对可靠。
然而,某些因素可能导致气力除灰受阻,严重影响除尘器和机组的安全高效运行。
本文对我国火力发电厂气力除灰不畅的原因进行了分析,并提出了针对性的有效对策。
1 火电厂气力除灰工作原理及系统组成气力除灰系统利用压缩空气的动压能和静压能,或者两者的联合作用,在一定条件下实现固体物料的输送。
系统主要由除尘器的飞灰处理系统、库顶卸料和排气系统、灰库气化风系统、库底卸料系统、控制用气系统、空压机系统和控制系统等组成。
通过压缩空气作为动力源,粉煤灰经过密闭管道从电除尘器输送至仓泵,并被除去后送入灰库,再通过库底卸料器和双轴搅拌机进行排灰,从而实现无污染的灰尘排放。
系统的工作过程包括以下几个阶段。
首先是进料阶段,打开进料阀,关闭进气和出料阀,使粉煤灰进入仓泵。
当仓泵内灰位达到高料位置时,高料位信号触发,进料阀自动关闭,进料过程结束。
然后是加压阶段,进料阶段结束后,关闭进料阀,打开进气阀和助吹阀,将压缩空气送入仓泵,使仓泵内的飞灰呈流态。
接下来是输送阶段,打开出料阀,混合物经输灰管道被输送至灰库。
气力输灰系统论文气力输灰系统应用论文:气力输灰系统在中小型火力发电厂的应用【摘要】文章首先对气力除灰系统进行概述,在此基础上,对其工作原理、工作特点、及工作效果和作用进行分析,主要探讨了气力输灰系统在中小型火力发电厂的应用。
【关键词】气力输灰系统;应用;火力发电厂1.气力除灰系统概述①大庆油田热电厂有3台200mw发电机组,电除尘分成双室四电场,一.二.电场灰斗各配置一台ct2.5型气力喷射泵。
三电场各配置一台ct②系统配置4座φ12 m的平底接收灰库,每座灰库底下设置2个卸灰口,一个口设置一台散装机,将干灰装车外运,在每个灰库的库顶设置一台dmc72型脉冲式布袋除尘器用于输送排气,并设置压力真空释放阀和高低料位计,气化槽气化系统设置2台罗茨风机。
2.系统工作原理2.1ct2.5型低压力连续输送泵工作原理该输送泵由均匀给料器和送料器两部分组成。
给料器完成均衡给料,并具有锁气功能,他将物料由常压压入低正压系统中,送料器利用喷嘴,将物料与输送气体均匀混合,并将物料送入到输送管内,利用气力压差使物料沿管道送到受料目的地。
该系统选用罗茨风机作为输灰的压力源。
2.2脉冲式布袋除尘器工作原理含尘气体由灰斗上部进风口进入后,在挡风板的作用下,气流向上流动,流速降低,部分大颗粒粉尘由于惯性力的作用被分离出来落入灰斗。
含尘气体进入中箱体经滤袋的过滤净化,粉尘被阻留在滤袋的外表面,净化后的气体经滤袋口进入上箱体,由出风口排出。
压缩空气由固定螺杆式空压机提供,气包压力≤0.40mpa空压机自动启动,气包压力≥0.75mpa空压机自动停止,实现无人值守。
2.3电气控制原理罗茨风机的控制,以1#罗茨风机为例进行说明,转换开关s1在就地位置时,按启动和停止按钮就可以控制罗茨风机的启停。
转换开关s1在远方位置,启动罗茨风机时,用鼠标点击罗茨风机画面,电脑屏幕上弹出一个对话框,点击对话框中的“启动”软按钮,启动信号输入plc,plc的输入点q1.4指示灯亮,中间继电器k213吸合,罗茨风机启动,风机运行状态信号通过中间继电器k1传送回plc,plc输入点i0.6指示灯亮;停止罗茨风机时,点击对话框中的“停止”软按钮,停止信号输入plc,plc的输入点q1.5指示灯亮,中间继电器k214吸合,罗茨风机停止运转。
气力输灰系统堵塞的原因及调整方法一、简述:---热电气力输灰系统流程为:除尘器及省煤器灰斗排灰经设在每个灰斗下的仓泵通过管道由压缩空气直接输送至储灰库或厂外综合利用车间。
系统运行完全由DCS集中自动控制。
输送压缩空气由全厂压缩空气气源中心的4台输灰空压机供给。
除尘器输灰仓泵布置在除尘仓泵间0m,省煤器输灰仓泵布置在锅炉房22.4m平台上。
每套除灰系统的设计出力为锅炉BMCR工况下燃烧校核煤种2h排灰量的120%,即每套除灰系统的设计出力为80t/h,电除尘器一电场输灰系统设计出力60t/h,二电场输灰系统设计出力满足电除尘器一电场设备故障工况下的输灰要求。
二、原因:(一)非设备原因:1、气源:气力输灰系统输送用气的压力、流量及空气品质对输送特性有很大影响,压缩空气需经过滤、干燥等一系列处理并且气量应留有一定的富裕量。
气力输送通过气来输送、气源压力必须克服仓泵的阻力、管道的阻力以及气力输灰灰库的压力,如果压头不够,则容易发生堵管。
气量不足,使灰气比增大,输送浓度过大,造成管道阻力增大,易发生堵管。
气压过大,灰气比减小,管道磨损加剧。
气源有杂质、含油含水量大会使灰粒相互黏介,流动阻力骤增,造成堵管。
所以发现气源含油含水量大时,应对压缩空气系统进行检查,若发现某台空压机管路有油或水排出,应关闭其出口门,尽快隔离,同时联系检修人员进行处理。
日常巡检应定期打开储气罐排污门,检查排气中油水含量。
2、灰特性变化常见的造成堵管的主要有沉降灰,多发生于锅炉吹灰阶段及未投运的高压电场的仓泵,主要是指重力大于烟气浮力而降落于灰斗的灰,包括锅炉点火阶段沉降的灰和电除尘故障停运后沉降的灰。
沉降灰一般颗粒粗大,表面粗糙,氨逃逸过大灰粘性大,在输送过程中,压力的逐渐降低,造成灰粒的逐渐沉降,使滑移层变厚,阻力增大,而静压头未增大,滑移状态变缓,使上部流道缩小,流速增大,虽有带动飞灰重新飞扬的作用,但此时的上下速差骤增,速度梯度增大,易发生堵管。
火电厂气力输灰系统改造探索与优化发布时间:2021-07-23T07:23:57.927Z 来源:《中国电业》(发电)》2021年第7期作者:张印飞[导读] 气力除灰系统作为火电机组辅网系统重要的组成部分,是火电机组实现节能环保的重要一环,气力除灰系统的程控必须稳定可靠。
贵州西能纳雍二厂维护部贵州省贵阳市 550081摘要:随着经济和科技水平的快速发展,火力发电作为消耗煤炭资源的发电形式,在我国电力市场中占有很大比重。
随着我国经济的飞速发展,人们对电力的需求越来越大,国家新建了很多大容量、高参数的火力发电机组,发电量随之迅速增长。
同时,也大大加剧了煤炭的消耗,环境问题越来越突出。
燃煤机组在发电过程中会产生大量的粉煤灰,气力除灰系统可将发电过程中产生的灰及时清除运走,使其可以回收利用。
但除灰现场工作环境恶劣,且需要控制的阀门设备数量众多,工艺流程也比较复杂,因此需要设计一种自动控制系统。
关键词:气力除灰;PLC;自动清堵;程序优化引言气力除灰系统作为火电机组辅网系统重要的组成部分,是火电机组实现节能环保的重要一环,气力除灰系统的程控必须稳定可靠。
燃煤电站项目气力除灰控制系统为研究对象,介绍了除灰系统的工艺以及PLC控制系统的组成、控制逻辑说明、程序编写方案等,并着重介绍了除灰系统的自动清堵功能,通过PLC程序上的优化,不但提高了自动化水平、减少人工操作环节、而且降低了堵管的概率,从而保证了除灰的效率,提高了系统的稳定性。
1原理和特点1.1气力除灰系统的原理气力除灰系统是以压缩空气作为输送介质并提供输送动力,将锅炉各集灰斗内的干灰输送到指定地点的一套完整的输送装置。
待输送的干灰通过料仓进入仓泵内,经流化气管流态化的压缩空气通过仓泵下部的主风管,经喷嘴高速进入扩散混合室。
仓泵内流化的干灰在料仓内干灰的料压和喷嘴的负压的共同作用下进入扩散混合室与气流混合,被气流携带经输灰管道输送至灰库。
气力除灰系统是火电厂的重要辅机系统。
热电厂气力输灰系统的改造摘要:随着科技的飞速发展,以及国家绿色环保理念不断深入,锅炉辅机系统的改造和完善越加受到关注及重视。
热电厂锅炉调试使用初期,气力输灰系统出现许多问题,为了保障锅炉连续生产运行,就原输灰系统改造创新,新型输灰系统不仅保障了锅炉的正常运行,还减轻了系统维护工作量,解决了旧系统存在的问题。
关键词:气力输灰系统;创新改造一、气力输灰系统存在问题输灰系统分灰斗、气动控制阀,带有密封圈的气动阀。
该系统由除尘器、仓泵、气源、管道、灰库等组成,采用PLc集中控制方式,实现系统设备协调有序运行。
系统采用仓泵作为关键输送设备,仓泵直接连接在各除尘器灰斗下,接受电除尘和布袋除尘收集的灰尘,同时采用压缩机作为动力源,通过密闭管道,在高浓度、低流速的状态下把飞灰输送至贮灰库。
系统各个气动阀输灰过程中不能正常开关。
气力输灰控制系统主要是靠气动阀控制,所以气动阀的正常动作对输灰系统至关重要。
投产初期气力输灰系统自动运行中频繁出现气动阀开关不灵敏。
经多次观察分析,利用压缩空气将仓泵中的灰尘输送至灰库这一环节中,压缩空气的压力会急剧下降,同时仪用气压力也随之下降,使各个气动阀不能正常开关从而导致输灰系统失控。
所以,稳定的仪用气压是保证输灰系统正常运行的关键。
二、力输灰系统存在问题的改进措施1、除灰系统简介。
该厂2×300MW锅炉设计飞灰堆积密度0.7kg/m3,输灰系统采用正压浓相上引式气力输送方式将除尘器飞灰输送到灰库,粗、细灰分排。
以一台炉为一个单元,每台炉设一套正压浓相气力输送系统,考虑了燃用校核煤种产灰量50%的裕量,系统最大出力设计25t/h,其中一电场占80%,二电场占16%,三电场占3.2%,四电场占0.8%。
一电场故障时,一电场占10%,二电场占72%,三电场占14.4%,四电场占3.6%。
每台炉设两根输灰管道,一电场四个仓泵为一个输送单元,一根输灰管道输送至原灰库,同时飞灰可通过库顶管道切换阀进入粗灰库。
火力发电厂气力输灰用压缩空气系统设计选型计算和探讨摘要:气力输送系统的动力源来自压缩空气,压缩空气的能耗即是气力输送系统的能耗,压缩空气系统的选型设计是否得当直接决定着气力输送系统的经济性和稳定性。
文章提出火力电厂气力输灰用压缩空气系统设计的计算方法以及探讨其节能设计研究方向,供同行在设计和评介气力输送系统优劣中参考和讨论。
关键词:气力输送;压缩空气;系统设计火力发电厂中气力除灰系统具有输送距离远,输送量大,系统所需供料设备少,能耗低等特点,成为国内乃至全世界燃煤电厂最广泛采用的一种干除灰方式。
气力输灰系统是采用经压缩并处理后的空气作为推动物料输送的动力源,压缩空气系统的能耗即使气力输送系统的能耗。
压缩空气系统的经济性和稳定性直接决定着气力输送系统的经济性和稳定性。
因此,在设计气力除灰系统时,首先要正确设计系统的耗气量,然后再经过合理的选型以及配管计算,为气力输灰系统提供压力、流速适当的压缩空气,为输送系统安全、可靠运行提供保障。
1 压缩空气耗气量计算方法气力输送耗气量主要取决于气力输送系统输送时的平均灰气比,灰气比通常可以根据以下经验公式计算:kg/kg公式(1-1)式中为输送管道的当量长度,单位为m。
输送系统的额定汽耗量计算以纯输送用气计算汽耗量,不含系统用仪用空气量。
kg/h 公式(1-2)式中为气力输送系统出力t/h换算成压缩空气系统出力通用单位:m3/min公式(1-3)式中为当地自由空气密度kg/m3,按下式计算:kg/m3 公式(1-4)式中:——为标准状态下,温度为0ºC时空气比重=1.293kg/m3B——为当地大气压(Pa)——为当地标准大气压(Pa)——为当地年平均温度ºC。
输送系统总汽耗量计算考虑系统的漏风系数,以及后处理气量损失,系统的总汽耗量为:m3/min公式(1-5)式中:——漏风系数,通常取1.1;——因后处理气量损失而考虑的系数,可取1.12。