高吸水性树脂的性能及应用
- 格式:pdf
- 大小:160.67 KB
- 文档页数:8
简述高吸水性树脂的吸水和保水机理高吸水性树脂具有较强的吸附性能,对油和水的亲合力很大,因此常用作脱水剂,还用于制造纸张等。
下面就由小编为大家介绍关于高吸水性树脂的吸水和保水机理,希望大家喜欢!一、吸水性树脂在吸附和解吸过程中,分子的运动情况不同。
1。
表面活性剂——阳离子基团分子定向排列在可见光区,可与水分子形成氢键缔合。
这种结构特点使得它在水中保持高度的亲水性。
表面活性剂的亲水基与水分子相互作用的结果,使表面活性剂表现出两个重要的特征:(1)一般来说,与水分子形成氢键缔合的物质在水中有更高的溶解度,并且容易迁移到有利的水环境中。
(2)在吸水过程中,这些水化产物之间的静电斥力比水分子与水化产物之间的作用力小。
因此,表面活性剂能够通过静电引力的作用从水中吸收水分子。
2。
高分子聚合物——电荷转移(共价键)吸水性树脂基本上是多糖,带正电荷,在溶液中能自由移动。
当溶液中加入高分子聚合物时,带负电的高分子链会与溶液中的阳离子基团进行吸附、电子交换或缔合,因而使溶液中的阴离子和水分子获得相应的吸附或解吸。
如果吸水过程完全是电子转移过程,则此时的吸水速率取决于聚合物吸附水分子的数目。
不溶性高吸水性树脂吸水是靠吸收外界水分子而达到其饱和浓度的。
吸水速率不受温度变化的影响,但随着溶液浓度增大,吸水速率增大。
因此,这类高吸水性树脂主要用作高级洗涤剂。
高吸水性树脂在吸收水分子后,溶液浓度虽然会降低,但其保水性能优良,可以防止水分损失,减少溶液的蒸发损失。
所以该类高吸水性树脂适宜用作化妆品的乳剂和牙膏。
由于不溶性高吸水性树脂吸水后存在剩余树脂,所以将不溶性高吸水性树脂配成固含量较高的乳液,用作涂料时,涂层的透明性和耐水性都比较好。
二、保水性树脂在吸水和解吸过程中,分子的运动情况不同。
1、表面活性剂——阳离子基团分子定向排列在可见光区,可与水分子形成氢键缔合。
这种结构特点使得它在水中保持高度的亲水性。
高吸水性高分子材料材料学吕岩1411093004摘要:在这篇综述中,探究的领域是高吸水性高分子材料,其中主要指的是高吸水性树脂。
大体概述了其发展、结构,分类,吸水原理等;及几类简单的高吸水性树脂的制备方法。
如淀粉类、纤维素类、共聚合类等。
高吸水性树脂是一种新型功能高分子材料,由于它能吸收自身质量几百至上千倍的水,且吸水膨胀后生成的凝胶具有优良的保水性,因而广泛地应用于农业、医疗卫生、园艺、建筑材料、食品加工等多个领域。
关键词:高吸水性树脂原理性能制备广泛应用Super absorbent polymer materialsMaterial science lvyan 1411093004Abstract:In this review, I explore the area about super absorbent polymer materials, mainly refers to the superabsorbent resin. Generally overview of its development, structure, classification, principle of absorbing water, etc.; And at the same time introduce some simple method of preparation of superabsorbent resin. Such as starch, cellulose, copolymerization, etc. Super absorbent resin is a kind of new functional polymer material, because it can absorb hundreds to thousands of times the mass of the water, and it has good water retention. So it has been widely used in agriculture, health care, gardening, building materials, food processing and other fields.Keywords: Super absorbent resin Principle PerformancePreparation Super extensive applications引言高吸水性高分子材料(Super Absorbent Polymer简称SAP)主要指高吸水性树脂,也称为超强吸水剂、高吸水性聚合物一种具有优异吸水能力和保水能力的新型功能高分子材料。
高吸水性树脂神奇的功能高分子材料—高吸水性树脂随着科学技术和国民经济的发展,高分子材料已经渗透到各个领域。
各种塑料制品、薄膜、人造皮革、合成橡胶、合成纤维等已经成为人们生活中不可缺少的材料。
功能高分子材料是20世纪60年代发展起来的新型领域,是高分子材料渗透到电子、生物、能源等领域后开发涌现出的一种新型材料。
功能高分子有时也称为精细高分子或特种高分子,至今还没有一个准确的定义,一般是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。
高吸水性树脂就是一种新型的功能高分子材料,它具有优异的吸水、保水功能,可吸收自身重量几百倍、上千倍,最高可以达到5300倍的水,即使挤压也很难脱水,被冠予“超级吸附剂”的桂冠。
高吸水性树脂的种类很多,所用原料及工艺方法也各不相同。
主要类型有聚丙烯酸酯类、聚乙烯醇类、醋酸乙烯共聚物类、聚氨酯类、聚环氧乙烷类、淀粉接校共聚物类等,此外还有与橡胶共混的复合性吸水材料。
在上述各种类型中,研究开发较多的为聚丙烯酸酯类。
该树脂系以丙烯酸和烧碱为主要原料,采用逆向聚合法而制得。
由于工艺较为简单,易于操作,制得的树脂吸水率高,生产成本较低,因此发展非常迅速。
高吸水性树脂是一种白色或徽黄色、无毒无味的中性小颗粒。
它与海绵、沙布、脱脂棉等吸水材料的物理吸水性不同,是通过化学作用吸水的。
所以树脂一旦吸水成为膨胀的凝胶体,即使在外力作用下也很难脱水,因此可用作农业、园林、苗不移植用保水剂。
在蔬菜,花卉种植中,预先在土壤中撒千分之几的高吸水性树脂,可使蔬菜长势旺盛,增加产量。
在植树造林中,各种苗木移植期间往往因为保管不善而干枯死亡。
如果将刚出土的苗木用高吸水性树脂的水凝胶液进行保水处理,其成活率可显著提高。
有人做过山茶花、珊瑚树的移植试验。
吸水树脂用途高吸水树脂的用途及价格高分子吸水树脂因其具有吸水量大,保水能力强和分之聚合物的许多性能,如:力学性能,可塑性,易加工和便于使用等,近二十年来发展速度,被广泛应用与一次性卫生用品,农用领域,光电缆业和防水行业。
一次性卫生用品是高分子吸水树脂的主要的也是较为成熟的应用领域,约占高分子吸水树脂总用量的70%-80% ,主要是婴幼儿护理卫生用品,妇女护理卫生用品和成人失禁卫生用品。
由于上述产品所处理的液体不是简单的水,而是含有盐,矿物质以及血液的混合物。
所以,我们在测试高分子吸水树脂和尿裤时使用的是生理盐水和人造血浆,以更符合实际使用时的状况。
尿裤的技术要求尿裤是以木浆和高分子吸水树脂为主构成的吸收芯体,以及无妨布,纸巾,松紧带和粘合剂等组成。
消费者对尿裤的要求是婴儿穿戴时不产生渗漏和吸水及保水性,并使婴儿皮肤表面干爽,穿戴舒适。
尿裤生产商对尿裤产品的性能要求主要表现在保水性能,穿渗速度,液体扩散和防漏等。
而尿裤的原材料对尿裤的每一种性能所作的贡献是不同的,如表面导流层的无妨布对穿渗速度,液体扩散范围影响比较大,而高分子吸水树脂会对尿裤等回渗性能产生比较大的影响,大约有 70% 的贡献来自吸收树脂。
高分子吸水树脂的性能高分子吸水树脂的出现带动了尿裤使用和生产的革命,由于它的高吸水性以及良好的保水性能使现代的一次性尿裤为母亲带来方便的同时也为婴儿带来干孀和舒适。
作为尿裤原材料的高分子吸水树脂具有许多特性,如:吸收速率,吸收量,加压下的吸收量和保水量。
吸收速率:它显示高分子吸水树脂在某个时间段中最大的吸收量,一般数据是以开始的30s,60s 或180s 内1g 高分子吸水树脂所能吸收的生理盐水。
吸收量:它显示1g 高分子吸水树脂最大的所能吸收的生理盐水量。
加压下的吸收量(0.70pa) :它显示在受到0.7pa 压力的情况下,1g 高分子吸水树脂最大的吸收量。
这是因为婴儿在很多情况下是坐着或躺着的,而这时尿液往往是在人体的压迫下吸收尿液。
简介发展历史编辑本段简介高吸水性树脂是一种新型的高分子材料,聚丙烯酸钠盐SUPER-ABSORBENT POLYMER,1976年,日本三洋化成是全球最早研究和生产吸水性树脂的厂家.编辑本段发展历史1950年微架桥聚合丙烯酸(增粘剂)的工业化(Goodrich 公司;USA)1960年亲水性高分子上市,架桥聚氧化乙烯(土壤保水剂),架桥聚乙烯醇(人工水晶体)增粘剂1974美国农业部发表了吸水性树脂的研究成果. 1978年世界上最早的吸水性树脂的商业化生产开始 (三洋化成) 吸水性树脂1982年用于纸尿裤的需求增大。
高分子凝胶的相转移理论的发表(田中豊一)90年代高分子学会开始成立「高分子凝胶研究会」(对于机能性凝胶的研究发表日趋活跃)机能性凝胶它能够吸收自身重量几百倍至千倍的水分,无毒、无害、无污染;吸水能力特强,保水能力特高,通过丙烯酸聚合得到的高分子量聚合物→高保水量,高负荷下吸收量的平衡,所吸水分不能被简单的物理方法挤出,并且可反复释水、吸水。
应用于农林业方面,可在植物根部形成“微型水库”。
高吸水性树脂除了吸水,还能吸收肥料、农药,并缓慢的释放出来以增加肥效和药效。
高吸水性树脂以其优越的性能,广泛用于农林业生产、城市园林绿化、抗旱保水、防沙治沙,并发挥巨大的作用。
此外,高吸水性树脂还可应用于医疗卫生、石油开采、建筑材料、交通运输等许多领域。
现有的高吸水性树脂的厂家有:三大雅精细化学品有限公司、日本触媒、得米化工、住友精化、巴斯夫、台塑这几大公司占了全球产量的99%,其中三大雅占55%。
高吸水性树脂目录简介发展历史编辑本段简介高吸水性树脂是一种新型的高分子材料,聚丙烯酸钠盐SUPER-ABSORBENT POLYMER,1976年,日本三洋化成是全球最早研究和生产吸水性树脂的厂家.编辑本段发展历史1950年微架桥聚合丙烯酸(增粘剂)的工业化(Goodrich 公司;USA)1960年亲水性高分子上市,架桥聚氧化乙烯(土壤保水剂),架桥聚乙烯醇(人工水晶体)增粘剂1974美国农业部发表了吸水性树脂的研究成果. 1978年世界上最早的吸水性树脂的商业化生产开始 (三洋化成) 吸水性树脂1982年用于纸尿裤的需求增大。
高分子吸水树脂SAP剖析高吸水性树脂(英文名为Super Absorbent Resin,简写为SAR),或者称为高吸水性聚合物(英文名为Super Absorbent Polymer,简写为SAP),是一种含有羧基等强亲水性基团并具有一定交联度的水溶胀型高分子聚合物。
与传统吸水材料如海绵、纤维素、硅胶相比,它不溶于水,也不溶于有机溶剂,却又有着奇特的吸水性能和保水能力,同时又具备高分子材料的优点。
高吸水性树脂的吸水量高,可达到自重的千倍以上,而且保水性强,即使在受热、加压条件下也不易失水,对光、热、酸碱的稳定性好,还具有良好的生物降解性能。
高吸水性树脂的开发与研究只有几十年的历史。
是一种典型的功能高分子材料,具有一般高分子化合物的基本特性。
它能够吸收并保持自身质量数百倍乃至数千倍的水分或都数十倍的盐水,并且能够保水贮水,即使加压也很难把水分离出来。
这是由于其分子结构上带有大量具有很强亲水性的化学基团,而这些化学基团又可形成各种相应的复杂结构,从而赋予该材料良好的高吸水和高保水特性。
高吸水性树脂与水有很强的亲和力使它在个人卫生用品方面得到广泛应用,并在农业、土木建筑、保鲜材料、改造环境等方面的应用也显示出广阔的前景。
如婴儿纸尿片、老年失禁纸尿片布、妇女用卫生巾等,广大发展中国家在这方面的需求不断增长,各国纷纷扩大生产,增加研究和开发力度。
高吸水性树脂作为通讯电缆的防水剂、湿度调节剂、凝胶转动装置、活体酶载体、人造雪等方面也得到了大量的研究和应用。
高吸水性树脂在农艺园林方面的应用也已表现出令人鼓舞的前景,它有利于节水灌溉、降低植物死亡率、提高土壤保肥保水能力、提高作物发芽率等。
高吸水树脂在沙漠治理方面的应用更是具有无可估量的社会效益。
由此可见进一步开发高吸水性树脂仍然有很重大的意义。
1.国外状况高吸水树脂的研究开发始于20世纪60年代后期。
1966年美国农业部北方研究所Fan-ta等进行了淀粉接枝丙烯腈的研究,从此开始了高吸水树脂的发展。
聚丙烯酸钠高吸水树脂的应用及影响因素摘要:聚丙烯酸钠高吸水树脂因其重要的性质在工业生产和生活占据越来越重要的作用。
本文综述了聚丙烯酸钠高吸水树脂制备过程中吸水性的影响因素,还简单介绍了高吸水性树脂子不同领域的应用概况。
关键字:聚丙烯酸钠;吸水树脂;制备;应用高吸水性树脂是一种具有超强吸水能力的功能性高分子材料,受压时保水性能优良,已广泛应用于卫生用品、农林园艺、土木建筑、轻工化工等领域[1-2]。
目前高吸水性树脂主要有两大类,一类是淀粉或纤维素与乙烯基单体的接枝共聚物,另一类为合成树脂,当前则绝大多数为聚丙烯酸盐类合成树脂。
1. 聚丙烯酸钠高吸水树脂吸水性的影响因素1.水油比对吸水率的影响水油比(丙烯酸与环己烷的质量比)的变化主要影响反应的散热情况和聚合物分子量的,由于在聚合中,水油比大,聚合反应速率慢,聚合物分子量小,甚至溶于水,故吸水率较低。
而且由于水油比大,生产效率低,同时也给后面的干燥工序增加负担[3]。
水油比小,由于聚合过程中散热困难,产生副交联,而使吸水率降低。
2.交联剂用最对吸水率的影响因为树脂是三维立体网络结构,当交联剂用量太少时,聚合物未能形成网络结构,宏观上表现为水溶性。
随着交联剂用量的增加,分子链网络逐渐形成,故吸水率逐渐上升。
形成三维网络结构时,吸水率达到最大值。
随着交联剂用量的进一步增加,聚合物网络结构中的交联点增多,交联点之间的网链变短,网络结构中的微孔变小,故吸水率逐渐下降[3]。
3.引发剂用最对吸水率的影响引发剂的用量不仅影响反应速率、转化率、分子量的大小,而且会影响到反应是否会发生爆聚。
由于引发剂用量较小时,反应活性中心少,反应速度慢,甚至不反应,导致转化率及交联用均匀度低,故吸水率也低。
而且由于引发剂少,引发反应困难,诱导期相对较长,造成反应积累到一定程度突然快速反应,产生爆聚。
引发剂用量太多时,反应活性中心多,反应速度快,反应转化率也较高,但引发剂用量过多会增加大分子自由基终止的机会,[3]使分子量下降,链端数目增加,甚至会出现水溶性,从而使吸水剂的吸水率降低。
吸水性强的材料吸水性强的材料是指具有较高吸水性能的材料,可以迅速吸收周围的水分,并将其储存起来。
这种材料在许多领域中都有广泛的应用,如纸张、纺织品、环境保护等。
下面将介绍几种吸水性强的材料。
首先是高吸水性树脂。
高吸水性树脂(superabsorbent polymer,简称SAP)是一种具有吸水性能的聚合物材料。
它可以吸收大量的水分,甚至可以吸收自身几百倍的重量。
高吸水性树脂广泛用于婴儿尿布、卫生巾、成人尿不湿等吸水材料中,能够迅速吸收体液,保持干燥,并有效地防止泄露。
其次是竹纤维。
竹纤维是从竹子中提取的一种天然纤维材料,具有较高的吸水性和透气性。
竹纤维可以吸收空气中的水分,使空气湿度保持在适宜的范围内,有助于调节室内湿度。
此外,竹纤维还具有抗菌性能和防臭效果,适用于制作毛巾、浴巾等吸水性材料。
再次是活性炭。
活性炭是一种多孔材料,具有很大的比表面积,能够吸附各种有机物和气体。
活性炭对水分的吸附能力也很强,可以将水分中的有害物质、异味物质吸附提取出来,保持环境清洁和空气的新鲜。
活性炭广泛用于水质净化、空气净化等领域,是一种重要的吸水性材料。
最后是微纳米纤维材料。
微纳米纤维材料是一种高密度纤维网络结构的材料,具有较大的比表面积和微米级的孔隙结构,能够迅速吸收周围的水分。
微纳米纤维材料具有柔软性、透气性和耐久性等优点,适用于制作吸水毛巾、吸水布等产品。
此外,微纳米纤维材料还可以应用于生物医学领域,例如制作人工皮肤、生物医用材料等。
总之,吸水性强的材料在日常生活和工业生产中有着广泛的应用。
高吸水性树脂、竹纤维、活性炭和微纳米纤维材料是几种典型的吸水性材料,它们各具特点,在不同领域中发挥着重要作用。
高吸水性树脂工艺比较高吸水性树脂(SPA)又称超强吸水剂,是一种新型的功能高分子材料。
吸水倍数可达自身质量的数百乃至数千倍。
最早的高吸水性树脂是1974年美国学业部北方研究所研制的淀粉接枝丙烯腈共聚物的水解物,但20世纪80年代初却是日本的高吸水性树脂开发技术占据了主导地位。
虽然高吸水性树脂的开发时间较短,但各方面发展非常快,如1983年世界总产量为6000t,到1987年仅日本的产量就达到了36000t;目前全世界生产高吸水性树脂的厂家达30-40个,主要分布在日本、美国及欧洲;产品从淀粉接枝丙烯腈发展到淀粉接枝丙烯酸、交联纤维素类、聚丙烯酸盐、共聚物水解、聚醚、聚氨酯等类;高吸水性树脂的吸水率从80年代的百倍提高到目前的四五千倍。
我国开展高吸水性树脂研制的时间较短(20世纪80年代初开始),但研究、生产单位已达数十家,高吸水性树脂的专利已达数十种。
1999年的累计产量已达近千吨,但仍存在品种单一、质量参差不齐等问题,缺少高功能的产品,某些含量的指标偏高。
目前世界上占主导地位的是聚丙烯酸盐类高吸水性树脂。
1 高吸水性树脂生产方法1.1 天然高分子的接枝通过天然高分子的接枝改性合成的高吸水性树脂的优点是成本较低、产物超过使用周期可以分解,缺点是工艺复杂、产品易腐败,强度较差。
天然高分子的接枝主要有以下几种方法。
淀粉-丙烯腈接枝共聚物:淀粉-丙烯腈接枝共聚物的水解产物是世界上第一个开发的高吸水性树脂。
特点是吸水倍数高(1000-3000倍)、成本低。
缺点是水解工艺比较复杂,干燥效率低。
合成所用的硝酸铈铵是至今淀粉接枝不饱和单体最有效的引发剂,其工艺过程为:淀粉糊化→冷却→接枝共聚→加压水解→冷却→酸化→离心分离→中和→干燥→成品包装。
如果采用三价锰盐-硫酸亚铁铵双氧水组成的复合引发体系,则接枝效率可达95%。
合成时需要控制引发剂用量、加入方式、温度、淀粉种类和丙烯腈用量等。
但关键是控制共聚物的皂化方法和皂化程度。
一、高吸水性树脂简介高吸水性树脂(在石油行业也称水膨体、体膨型聚合物、预交联凝胶等)是上世纪70年代迅速发展的一类新型功能高分子材料,它含有强亲水性基团,并具有一定的交联度,不溶于水,也不溶于有机溶剂,其特点是能够吸收达到自身总量的几百倍乃至几千倍的水,并且吸水速度快,吸水后成为一种被水高度溶胀的无色透明凝胶,即使施加压力也难以使水挤出,显示奇特的吸水、保水功能。
因此它一出现,便在农林园艺、医疗及生理卫生、建材、食品等领域得到广泛的应用。
高吸水树脂的制备方法主要有溶液聚合法、悬浮聚合法、反相悬浮聚合法和本体聚合法等。
高吸水性树脂的合成方法主要有本体聚合、溶液聚合、反相悬浮聚合和反相乳液聚合等几种方法。
高吸水树脂的溶液聚合方法主要有:反相悬浮聚合、反相乳液聚合和水溶液聚合。
吸水后的树脂内部存在3种状态的水,即结合水、束缚水、自由水。
结合水是水以一系列分子层在凝胶的内外表面溶剂化所形成的;在结合水的外层也有一层水,也具有一定的定向性,称为束缚水;最外层为自由水,由于与树脂以氢键结合,形成一体,故很难挥发。
温度升高,使分子热运动加剧,一部分自由水就挥发掉了,保水率下降。
目前根据制备高吸水性树脂的原料来源不同,高吸水性树脂大致可分为三大系列:淀粉系、纤维素系和合成树脂系。
淀粉类制备工艺复杂,产品耐热性能差,易腐烂变质,难以长期保存;纤维素类综合吸水性能相对较差;合成树脂类,尤其是聚丙烯酸盐类则由于原料来源丰富、价格低廉、能够防腐防变、长期保存、综合吸水性能优良等特点,因而成为当前研究的重点。
合成树脂系高吸水性树脂的主要产品有聚丙烯酸类:聚丙烯酸盐、聚丙烯酰胺、丙烯酸与丙烯酰胺共聚;聚乙烯醇类:聚乙烯醇一酸酐交联共聚;醋酸乙烯一丙烯酸脂共聚水解等。
树脂的反复吸液性能测定所谓反复吸液能力是指树脂能够吸液、释放所吸液体并能多次重复进行这一过程的能力,它可用重复吸液次数和每次的吸液率来表示。
随着吸液次数的增加,吸水率略呈下降趋势,这是由于当树脂第一次吸液后,水分子进入树脂内部,部分水与树脂分子链上的亲水基团形成氢键,使之从自由水转变为结合水,在第一次吸液过滤后的干燥过程中,结合水无法全部除去,导致在尚未进行第二次吸水前其网络内就有少量水存在,降低了树脂结构内外的渗透压差值,使吸水推动力下降,故后一次吸水量减少。
高吸水性树脂的性能及应用 叶良隐 02300021 [摘 要]综述了高吸水树脂的制备、结构及吸水机理,介绍了高吸水树脂在各方面的应用,并提出了目前的主要研究趋势。 [关键词]高吸水树脂;吸水机理;发展;制备;应用。
高吸水性树脂也称超强吸水性聚合物(SuperabsorbentPolymers ),简写为SAP。它是一种含有羧基、羟基等强亲水性基团并具有一定交联度的水溶胀型的高分子聚合物,不溶于水也不溶于有机溶剂,能够吸收自身重量的几百倍甚至上千倍的水,且吸水膨胀后生成的凝胶具有良好的保水性和耐候性,一旦吸水膨胀成水凝胶 ,即使加压也难以将水分离出来。同时 ,高吸水性树脂可循环使用。因此 ,越来越受到人们的关注。目前 ,超强吸水树脂已在工业、农业、林业、卫生用品等领域中得到广泛应用 ,并显示出更为广阔的发展前景[1]。
1. SAR的结构与吸水机理 1.1 SAR的交联网络结构 SAR 与传统的吸水材料不同,它可以吸收比自身重几百倍甚至几千倍的水。在处于吸水状态时其保水性好,在压力下水也不会从中溢出。而传统的吸水材料只能吸收自身重量的 20倍的水。树脂的高吸水性主要与它的化学结构和聚集态中极性基团的分散状态有关,它具有低交联度亲水性的三维空间网络结构[2]。它是由化学交联和聚合物分子链间的相互缠绕物理交联构成。吸水前,高分子链相互缠绕在一起,彼此交联成网状结构,从而达到整体上的紧固程度;吸水后,聚合物可以看成是高分子电解质组成的离子网络和水的构成物。在这种离子网络中存在可移动离子对,它们是由高分子电解质离子组成的[3]。
1.2 SAR的吸水机理 关于SAR的吸水机理存在不同的说法。其中有两种占主要地位,金益芬等[3]认为SAR吸水有3个原动力:水润湿、毛细管效应和渗透压。高吸水能力主要由这3个方面的因素决定。水润湿是所有物质吸水的必要条件,聚合物对水的亲和力大,必须含有多个亲水基团(如—OH,—COOH等);毛细管效应的作用则是让水容易迅速地扩散到聚合物中去;渗透压可以使水通过毛细管扩散、渗透到聚合物内部或者渗透压以水连续向稀释聚合物固有的电解质浓度方向发动。刘廷栋等[2]则认为当水与高分子表面接触时主要有3种相互作用:一是水分子与高分子电负性强的氧原子形成氢键;二是水分子与疏水基团相互作用;三是水分子与亲水基团的相互作用。上述两种理论虽然表述不相同,但二者的理论都是建立在高吸水聚合物的主体网络结构基础之上的,实质是相同的。
2.高吸水性树脂的发展 高吸水性树脂是一种具有特殊功能的高分子化合物 ,其起源也是在高分子化合物出现以后。1961年美国农业部北方研究中心的Russell等人从淀粉接枝丙烯腈首先开始研究 ,其后 Fanta等人在前人研究工作的基础上继续进行了淀粉接枝丙烯腈的研究,发现接枝产物加碱水解后生成的产物具有优良的吸水性能,这种树脂的最大特点是高吸水性和很强的保水性,并于 1966年首先发表了淀粉改性物质具有优越的吸水能力的论文,指出淀粉衍生物具有优越的吸水能力,吸水后形成的凝胶膨润体保水性很强,且具有吸湿放湿性。这些特性超过了以往的高 吸水性树脂。该产品最初在HenkelCorporation公司工业化获得成功,其商品名为SGP(Starch Graft Polymer) ,至1981年已达年产几千吨StarchGraftPol的生产能力。首次开发成功后 ,紧接着世界各国对高吸水性树脂在体系、种类、制备方法、性能改进、应用领域等方面进行了大量的研究工作 ,并取得了一系列的研究成果。1976年,ChatterjeeP.等人用含羧基和酰胺基的单体接枝纤维素,得到的高吸水性树脂应用于尿布、吸血巾等卫生用品领域中。 1977年,Lindsay等人用淀粉接枝丙烯腈,得到的接枝共聚物可以大大减小卫生用品的体积,并研究了这种高吸水性树脂加压下的保水性。1978年,日本三洋化成公司考虑到丙烯腈单体残留在聚合物中有毒性,卫生上不安全 ,所以提出了不同的方法来制备高吸水性树脂,提出了淀粉、丙烯酸、交联性的单体接枝共聚反应的合成方法,并于1979年在日本名古屋投产了1000t/a的生产设备,随后,又研究了将丙烯酰胺、含磺酸基单体在淀粉链上进行接枝共聚合成超强吸水剂的方法。 我国高吸水性树脂的研究从20世纪80年代初开始,如中国科学院兰州化学物理研究所、吉林石油化工研究所和航天部101所等研究制备出了吸水倍率为1000倍的高吸水性树脂。中国科学院北京化学所、新疆化学研究所、湖北化学研究所、北京化工大学等也相继开展了这方面的研究工作,多数研究吸水类型为淀粉接枝丙烯腈皂化水解物,淀粉接枝丙烯酸、丙烯腈水解物、聚丙烯酸盐、聚乙烯醇衍生物等。湖南湘潭大学自1981年开展了合成吸水剂的研究,先后对淀粉系、纤维系、合成系的吸水剂性能和合成方法进行了研究,制备出了淀粉接枝丙烯腈水解物、淀粉接枝丙烯酸盐、淀粉与丙烯酸及丙烯酰胺、顺丁烯二酸酐等四元接枝共聚物、纤维素接枝丙烯酸盐、聚乙烯醇变性物、聚丙烯酸盐交联物等三大系列8个品种,其吸蒸馏水性能从40~2000g/g,吸盐水的能力从15~160g/g不等,具有优越的性能。兰州大学也从20世纪80年代对淀粉接枝丙烯腈、丙烯酸盐、丙烯酰胺、醋酸乙烯酯等制备超强吸水剂进行了系统地研究 ,产品的性能也非常优异。 20世纪90年代至今,超强吸水剂的合成研究和应用就更为广泛,在吸水剂的性能改进和提高、制备方法的简化实用、应用领域的不断拓宽上进展很快。欣凯等人以过硫酸铵为引发剂,环氧氯丙烷为交联剂,先将丙烯酸钠、丙烯酰胺进行预聚,再加入淀粉的二步聚合法制备超强吸水剂,所得产品对去离子水及0.9%食盐水的吸水率最高分别为2800g/g和160g/g,且吸水速度快,可用作农用保水剂、土壤改良剂和增粘剂,更适用于生理卫生用品和纸尿布。 森政雄在橡胶类粘合剂中分散由内藏有药物的水溶性的囊壁物质形成的微囊及淀粉接枝丙烯酸共聚物的吸水性树脂制成药物控制释放型透皮吸收制剂。伊藤喜一等人将丙烯酸系单体在惰性烃溶剂中,以HLB=2~12 的山梨糖醇酐脂肪酸酯和C—20~50的烷烃和/或烯烃与 α、β—不饱和多元羧酸酐的共聚物或其衍生物作表面活性剂进行油包水型反相悬浮聚合制备超强吸水剂。张林栋等人[5]把高吸水性树脂施入土壤中,不仅可使土壤具有良好的吸水和保水性能,还可降低土壤容重、调节空气及热量的分布,在玉米田中施入高吸水性树脂,可增产 20.36%。刘延栋等人[2]以丙烯酸盐为原料,过硫酸盐为引发剂,N,N—亚甲基双丙烯酰胺为交联剂,司班为悬浮剂,轻油为分散介质,采用反相悬浮聚合法和共沸脱水法合成球状聚丙烯酸盐类高吸水性树脂,并对合成条件进行了筛选。杨通在等人[4]将淀粉和丙烯酸辐射接枝共聚制备高吸水性树脂,并对辐射剂量率、单体浓度、单体配比、单体中和度和淀粉种类对树脂吸水率的影响进行了研究。苏州大学的朱秀林等人[6]侧重于提高吸盐水能力和吸水速率等方面的研究,主要采用反相悬浮聚合法,此工艺适用于实验室中高吸水性树脂的制备,但不易工业化,即使工业化也有有机溶剂回收处理等问题。兰州大学柳明珠等人以简单的生产工艺、较低的生产成本开发出性能良好的“福民牌吸水保水剂”,该产品已得到国家科技部等的肯定 ,并被列为全国重点科技成果在全国推广。其合成工艺为在不通氮的情况下采用水溶液聚合法,该工艺较悬浮聚合法容易工业化。同时,他们还对耐盐性高吸水性树脂进行了大量的研究。用反相悬浮聚合法制备了聚丙烯酸钠高吸水性树脂,对0.9%食盐水的吸收倍率为75倍[7]。
3 高吸水性树脂的分类 高吸水性树脂从诞生起发展到现在,种类繁多,产品的性能各异,应用各有侧重点,分类比较复杂。根据现有品种及其发展按以下几个方面进行分类 。 3.1 按原料来源分类 高吸水性树脂从原料来源来分,有三大系列,分别是淀粉系、纤维素系、合成聚合物系。 3.1.1淀粉类 对天然淀粉进行改性制备SAR是成本较低的一种方法,主要有两种形式:一是在淀粉上引入亲水基团(AA或AM),并使其有一定的交联度;另一种是先对淀粉进行部分交联,再引入羟甲基亲水性基团得到SAR,该方法原料来源丰富,成本低,吸水率高,其缺点是耐热性与其保水性能差,使用中易受微生物分解而失去吸水保水能力。 3.1.2纤维素类 纤维素类SAR也包括两种类型,一种是纤维素与亲水性单体接枝共聚,另一种是氯醋酸与纤维素反应引入羟甲基再用交联剂交联而得,该类树脂的主要特点是可以制成高吸水织物,与合成纤维混纺,改善最终产品的性能。 3.1.3其他种类 此类主要是指淀粉、纤维素以外的多糖类SAR,其中有些接枝物也有较好的吸水能力,但迄今为止,成功的例子不多。 以上3种天然物系列SAR的分子结构单元中都存在多糖单元,所以产品易腐败是此类树脂的主要缺点。 3.2 按亲水化方法分类 高吸水性树脂从亲水化方法来分 ,有四大系列。分别是:1. 亲水性单体的聚合物(如聚丙烯酸盐、聚丙烯酰胺、醋酸乙烯/ 顺丁烯二酸酐共聚物、丙烯酸/丙烯酰胺的共聚物等); 2. 疏水性聚合物的羧甲基化反应物(如纤维素羧甲基化反应、淀粉羧甲基化反应、聚乙烯醇/顺丁烯二酸酐的反应等);3 疏水性聚合物接枝聚合亲水性单体共聚物(如淀粉/丙烯酸/丙烯酰胺/顺酐接枝共聚物、聚乙烯醇接枝丙烯酸盐、纤维素接枝丙烯酰胺、纤维素接枝丙烯酸盐、淀粉接枝丙烯酸盐、淀粉接枝丙烯酰胺等);4. 含腈基、酯基、酰胺基的高分子水解反应物(如聚丙烯酰胺的水解物、纤维素接枝丙烯腈的水解物、淀粉接枝丙烯腈的水解物、丙烯酸酯/醋酸乙烯酯共聚物的水解等)。 3.3 按交联方法分类 高吸水性树脂按不溶化方法分为用交联剂进行网状化反应、自交联网状化反应、放射线照射网状化反应和水溶性聚合物导入疏水基或结晶结构等四种。其中用交联剂进行网状化反