初中数学试卷_平行四边形的判定(1)
- 格式:doc
- 大小:97.00 KB
- 文档页数:4
一、选择题1.如图,在ABCD 中,AB AD ≠,对角线AC 与BD 相交于点O ,OE BD ⊥交AD 于E ,若ABE △的周长为12cm ,则ABCD 的周长是( )A .24cmB .40cmC .48cmD .无法确定 2.如图,在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB=6,BC=10,则EF 长为( )A .1B .1.5C .2D .2.53.如图,作ABC 关于直线对称的图形A B C ''',接着A B C '''沿着平行于直线l 的方向向下平移,在这个变换过程中两个对应三角形的对应点应具有的性质是( )A .对应点连线相等B .对应点连线互相平行C .对应点连线垂直于直线lD .对应点连线被直线平分4.已知如图:为估计池塘的宽度BC ,在池塘的一侧取一点A ,再分别取AB 、AC 的中点D 、E ,测得DE 的长度为20米,则池塘的宽BC 的长为( )A .30米B .60米C .40米D .25米 5.如图,设M 是ABCD 边AB 上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定 6.在四边形ABCD 中,若∠A 与∠C 之和等于四边形外角和的一半,∠B 比∠D 大15°,则∠B 的度数等于( )A .150°B .97.5°C .82.5°D .67.5° 7.如图,平行四边形ABCD 的周长为36cm ,若点E 是AB 的中点,则线段OE 与线段AE的和为( )A .18cmB .12cmC .9cmD .6cm 8.在ABCD 中,6AB =,4=AD ,则ABCD 的周长为( ) A .10B .20C .24D .12 9.已知在四边形ABCD 中,3AB =,5CD =,M ,N 分别是AD ,BC 的中点,则线段MN的取值范围是( )A .14MN <<B .14MN <≤C .28MN <<D .28MN <≤ 10.某三角形三条中位线的长分别为3、4、5,则此三角形的面积为( ) A .6B .12C .24D .48 11.已知长方形的长和宽分别为a 和b ,其周长为4,则222a ab b ++的值为( )A .2B .4C .8D .16 12.在Rt ABC 中,45A ∠=︒,90C ∠=︒,点D 在BC 边上(不与点C ,B 重合),点P 、点Q 分别是AC ,AB 边上的动点,当DPQ 的周长最小时,PDQ ∠的度数是( )A .70°B .90°C .100°D .120°二、填空题13.已知,如图,//,AB DC AF 平分,BAE DF ∠平分CDE ∠,且AFD ∠比∠E 的2倍多30°,则AED =∠_____度.14.如图,五边形ABCDE 中,//AE BC ,则C D E ∠+∠+∠的度数为__________.15.如图,ABC 的中线AD 与高CE 交于点F ,AE EF =,2FD =,24ACF S =△,则AB 的长为__________.16.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则A DB '∠=________.17.已知平行四边形ABCD 中,∠A 的平分线交BC 于点E ,若AB =AE ,则∠BAD =_____度.18.一个多边形的每一个外角都等于30°,则这个多边形的边数是__.19.将正三角形、正方形、正五边形,按如图所示的位置摆放,且每一个图形的一个顶点都在另一个图形的一条边上,则123∠+∠+∠=__________度.20.如图,1角硬币边缘镌刻的是正九边形,则这个正九边形每个内角的度数是________.三、解答题21.如图,在ABC 中,,AB AC =,D 为CA 延长线上一点,DE BC ⊥于点E ,交AB 于点F .(1)求证:ADF 是等腰三角形;(2)若5AF BF ==,2BE =,求线段DE 的长.22.如图,已知1,23180BDE ︒∠=∠∠+∠=.(1)证明://AD EF .(2)若DA 平分BDE ∠,FE AF ⊥于点F ,140∠=︒,求BAC ∠的度数. 23.综合与实践图形变换的基本方式有:平移变换、旋转变换、轴对称变换在数学综合与实践课上,张老师将两块含30°角的全等三角尺按图1方式摆放在一起,其中∠ADB=∠CBD=30°,∠ABD=∠BDC=90°同时,要求班内各小组对图形进一步操作变换并提出问题,请你帮各小组进行解答,(独立思考)(1)张老师首先提出问题:图1中,四边形ABCD 是平行四边形吗?说明理由; (提出问题)(2)如图2.“励志”小组将Rt BCD 沿射线DB 方向平移到Rt B C D '''的位置,分别连接,AB DC '',进一步提出问题:四边形AB C D ''是平行四边形吗?说明理由;(拓展延伸)(3)“慎密”小组提出的问题是:如图3,两个全等的三角尺重叠放在△ABD 的位置,将其中一个三角尺绕着点B 按逆时针方向旋转至△C D B 的位置,使点A 恰好落在边CB '上,AD 与BB '相交于点F ,若AD=8cm ,求BF 的长.24.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 且与AB 、CD 分别相交于点E 、F ,连接EC .(1)求证:OE =OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求平行四边形ABCD 的周长.25.如图,在平行四边形ABCD 中,E 、F 为对角线BD 上的两点,且∠BAF =∠DCE .求证:BE =DF .26.已知,在四边形ABCD 中,160A C ︒∠+∠=,BE ,DF 分别为四边形ABCD 的外角CBN ∠,MDC ∠的平分线.(1)如图1,若//BE DF ,求C ∠的度数;(2)如图2,若BE ,DF 交于点G ,且//BE AD ,//DF AB ,求C ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平行四边形的性质,及OE BD ⊥交AD 于E 可以证明OE 是线段BD 的垂直平分线,再根据垂直平分线的性质,可以得到BE DE =,再利用线段间的关系可以证明ABCD 的周长为ABE △周长的两倍.【详解】解:∵四边形ABCD 为平行四边形∴AO CO =,BO DO =;∵OE BD ⊥交AD 于E ;∴OE 是线段BD 的垂直平分线,∴BE DE =;∴AE ED AE BE +=+;∴ABE △的周长为12AE BE +=∴ABCD 的周长为2()21224AB AD +=⨯=.故选:A.【点睛】本题主要考查平行四边形的性质和垂直平分线的性质,具有一定的综合性,属于中等题型. 2.C解析:C【分析】根据平行四边形的性质可得AFB FBC ∠=∠,由角平分线可得ABF FBC ∠=∠,所以AFB ABF ∠=∠,所以6AF AB ==,同理可得6DE CD ==,则根据EF AF DF AD =+-即可求解.【详解】∵四边形ABCD 是平行四边形,∴//AD BC ,10AD BC ==,6DC AB ==,∴AFB FBC ∠=∠,∴BF 平分ABC ∠,∴ABF FBC ∠=∠,∴AFB ABF ∠=∠,∴6AF AB ==,同理可得6DE DC ==,∴66102EF AF DE AD =+-=+-=.故选:C .【点睛】本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.3.D解析:D【分析】作点A 关于直线l 的对称点D ,交直线l 于F ,将点D 向下平移得到点A ',连接A A '交直线l 于E ,则AD 被对称轴垂直平分,利用EF 是△A A 'D 的中位线,得到AE=E A ', 同理可知:图形中对应点连线被直线平分.【详解】根据题意,作点A 关于直线l 的对称点D ,交直线l 于F ,将点D 向下平移得到点A ',连接A A '交直线l 于E ,∵A 、D 关于直线l 对称,∴AD 被对称轴垂直平分,又∵EF ∥A 'D ,∴EF 是△A A 'D 的中位线,∴AE=E A ',即A A '被对称轴平分,同理可知:图形中对应点连线被直线平分,故选:D ..【点睛】此题考查平移的性质,轴对称的性质,三角形中位线的性质,熟练掌握各性质是解题的关键.4.C解析:C【分析】根据三角形中位线定理可得DE=12BC ,代入数据可得答案. 【详解】解:∵线段AB ,AC 的中点为D ,E ,∴DE=12BC , ∵DE=20米,∴BC=40米,故选:C .【点睛】此题主要考查了三角形中位线定理,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半.5.A解析:A【分析】如图(见解析),过点M 作//MN BC ,交CD 于点N ,先根据平行四边形的判定可得四边形AMND 和四边形BMNC 都是平行四边形,再根据平行四边形的性质即可得.【详解】如图,过点M 作//MN BC ,交CD 于点N ,四边形ABCD 是平行四边形,//,//AB CD AD BC ∴,////AD BC MN ∴,∴四边形AMND 和四边形BMNC 都是平行四边形,12,DMN CMN S S SS ∴==, 12DMN CMN S S SS S ∴=+=+,故选:A.【点睛】本题考查了平行四边形的判定与性质,通过作辅助线,构造平行四边形是解题关键.6.B解析:B【分析】根据∠A与∠C之和等于四边形外角和的一半,四边形的外角和为360°,得到∠A+∠C=180°,根据四边形的内角和为360°∠B+∠D=360°-(∠A+∠C)=180°①,根据∠B 比∠D大15°,得到∠B-∠D=15°②,所以①+②得:2∠B=195°,所以∠B=97.5°.【详解】解:∵∠A与∠C之和等于四边形外角和的一半,四边形的外角和为360°,∴∠A+∠C=180°,∴∠B+∠D=360°﹣(∠A+∠C)=180°①,∵∠B比∠D大15°,∴∠B﹣∠D=15°②,①+②得:2∠B=195°,∴∠B=97.5°.故选:B.【点睛】本题考查了多边形的内角与外角,解决本题的关键是熟记四边形的内角和与外角和.7.C解析:C【分析】结合已知证明EO是△ABC的中位线,进而得出答案.【详解】解:∵平行四边形ABCD的周长为36cm,∴AB+BC=18cm,∵四边形ABCD是平行四边形,∴O是AC的中点,又∵点E是AB的中点,∴EO是△ABC的中位线,∴EO=12BC,AE=12AB,∴AE+EO =12×18=9(cm ). 故选:C .【点睛】 本题考查了平行四边形的性质和中位线定理,熟知“平行四边形的对角线互相平分”和“三角形的中位线平行于第三边,且等于第三边的一半”是解题关键.8.B解析:B【分析】根据平行四边形的性质得出ABCD 的周长为:2AB+2AD ,求解即可.【详解】解:∵四边形ABCD 为平行四边形,∴AB=CD=6,AD=BC=4, ∴ABCD 的周长为:2AB+2AD=2(6+4)=20,故选B .【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.9.B解析:B【分析】利用中位线定理作出辅助线,利用三边关系可得MN 的取值范围.【详解】连接BD ,过M 作MG ∥AB ,连接NG .∵M 是边AD 的中点,AB=3,MG ∥AB ,∴MG 是△ABD 的中位线,BG=GD ,1322MG AB ==; ∵N 是BC 的中点,BG=GD ,CD=5,∴NG 是△BCD 的中位线,1522NG CD ==,在△MNG 中,由三角形三边关系可知NG-MG <MN <MG+NG ,即53532222MN -<<+, ∴14MN <<,当MN=MG+NG ,即MN=4时,四边形ABCD 是梯形,故线段MN 长的取值范围是1<MN≤4.故选B .【点睛】 解答此题的关键是根据题意作出辅助线,利用三角形中位线定理及三角形三边关系解答. 10.C解析:C【分析】先根据三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半,即求出原三角形的边长分别为6、8、10,再根据勾股定理的逆定理判断原三角形的形状,即可根据三角形面积公式求得面积.【详解】解:∵三角形三条中位线的长为3、4、5,∴原三角形三条边长为3264285210⨯=⨯=⨯=,,,2226810+=,∴此三角形为直角三角形,168242S ∴=⨯⨯=, 故选C .【点睛】本题考查的是三角形的中位线定理、勾股定理的逆定理,属于基础应用题,熟知性质定理是解题的关键.11.B解析:B【分析】由题意可以得到a+b 的值,再利用完全平方公式可以得到答案.【详解】解:由题意可得:2(a+b)=4,∴a+b=2,∴()2222224a ab b a b ++=+==, 故选B .【点睛】本题考查长方形周长与完全平方公式的综合应用,灵活应用有关知识求解是解题关键 .12.B解析:B【分析】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=135°,求得∠E+∠F=45°,根据等腰三角形的性质即可得到结论.【详解】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=45°,∴∠EDF=135°,∴∠E+∠F=45°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=45°,∴∠PDQ=135°-45°=90°,故选:B.【点睛】本题考查了轴对称-最短路线问题,等腰三角形的性质,三角形内角和定理,四边形内角和定理,正确的作出图形是解题的关键.二、填空题13.60【分析】过F作FG∥AB即可得出AB∥GF∥CD再根据平行线的性质以及角平分线的定义即可得到∠AFD=∠3+∠4依据四边形内角和等于360°即可得出∠AED的度数【详解】解:如图所示过F作FG∥解析:60【分析】过F作FG∥AB,即可得出AB∥GF∥CD,再根据平行线的性质以及角平分线的定义,即可得到∠AFD=∠3+∠4,依据四边形内角和等于360°,即可得出∠AED的度数.【详解】解:如图所示,过F 作FG ∥AB ,∵AB ∥DC ,∴AB ∥GF ∥CD ,∴∠1=∠DFG ,∠2=∠AFG ,∴∠AFD=∠1+∠2,∵AF 平分∠BAE ,DF 平分∠CDE ,∴∠1=∠3,∠2=∠4,设∠E=α,则∠AFD=2α+30°,∴∠AFD=∠3+∠4=2α+30°,∵四边形AEDF 中,∠E+∠3+∠4+∠AFD=360°,∴α+2(2α+30°)=360°,解得α=60°,故答案为:60.【点睛】本题主要考查了平行线的性质以及四边形内角和的综合应用,解决问题的关键是作辅助线构造内错角,运用四边形内角和进行计算求解.14.【分析】根据求出根据多边形内角和公式求出五边形的内角和即可得到答案【详解】∵∴∵五边形内角和=∴==故答案为:【点睛】此题考查两直线平行同旁内角互补多边形内角和公式熟记多边形内角和计算公式是解题的关键 解析:360︒【分析】根据//AE BC 求出180A B ∠+∠=︒,根据多边形内角和公式求出五边形ABCDE 的内角和,即可得到答案.【详解】∵//AE BC ,∴180A B ∠+∠=︒,∵五边形内角和=5218540(0)-⨯︒=︒,∴C D E ∠+∠+∠=540180︒-︒=360︒,故答案为:360︒.【点睛】此题考查两直线平行同旁内角互补,多边形内角和公式,熟记多边形内角和计算公式是解题的关键.15.【分析】延长AD 作交于点H 过点D 作根据题意可证明是等腰直角三角形结合中位线的性质证明继而证明是等腰直角三角形由勾股定理解得再根据三角形面积公式解得CH 的值设EF=x 由线段和差关系得到从而解出x 的值即 解析:62【分析】延长AD ,作AH CH ⊥交于点H ,过点D 作DQ CF ⊥,根据题意可证明AEF 是等腰直角三角形,结合中位线的性质,证明//DQ BE ,继而证明FDQ 是等腰直角三角形,由勾股定理解得2FQ DQ ==,再根据三角形面积公式解得CH 的值,设EF=x ,由线段和差关系得到EF FQ FC FQ +=-,从而解出x 的值即可.【详解】延长AD ,作AH CH ⊥交于点H ,过点D 作DQ CF ⊥,CE AB ⊥且AE=AF ,AEF ∴是等腰直角三角形,45EAF EFA ∴∠=∠=︒又90DQC BEC ∠=∠=︒,D 为BC 中点,//DQ BE ∴,且Q 为CE 中点EQ CQ ∴= 即:EF+FQ=FC-FQ45AEF ∠=︒45QFD ∴∠=︒FDQ ∴是等腰直角三角形,又2FD =2FQ DQ ∴==设EF=x ,在等腰直角三角形AEF 中,AE=EF=x ,2AF x =1242ACF S AF CH ∴=⋅⋅= 242CH x ∴=在等腰直角三角形FHC 中,48CF x∴= EF FQ FC FQ +=-48x x ∴=2248480x x ∴=∴+-=x ∴=x =-(舍去)EF AE ∴==1//,2QE BE QE BE =BE ∴=AB ∴==故答案为:【点睛】本题考查等腰直角三角形的判定与性质、中位线的性质、勾股定理等知识,是重要考点,有一定难度,掌握相关知识是解题关键.16.10°【分析】由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=45°再利用三角形的内角和求解【详解】解:由对折可得:∠A=∠CA′D=50°∠ACD=∠A′CD=×90°=45°∴∠ADC解析:10°【分析】由对折可得:∠A=∠CA ′D=50°,∠ACD=∠A ′CD=45°,再利用三角形的内角和求解.【详解】解:由对折可得:∠A=∠CA′D=50°,∠ACD=∠A′CD=12×90°=45°, ∴∠ADC=∠A′DC=180°−45°−50°=85°,∴∠A′DB=180°−85°×2=10°.故答案为:10°.【点睛】本题利用对折考查轴对称的性质,三角形的内角和定理,掌握以上知识是解题的关键. 17.120【分析】由平行四边形的性质和已知条件易证△ABE 为等边三角形则∠BAE =60°进而可求出∠BAD 的度数【详解】解:∵四边形ABCD 是平行四边形∴AD ∥BC ∴∠EAD =∠AEB ∵AE 平分∠BAD解析:120【分析】由平行四边形的性质和已知条件易证△ABE为等边三角形,则∠BAE=60°,进而可求出∠BAD的度数.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAD=∠AEB,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠BAE=∠AEB,∴AB=EB,∵AB=AE,∴AB=AE=BE,∴△ABE是等边三角形,∴∠BAE=60°,∴∠BAD=2∠BAE=120°,故答案为:120.【点睛】本题主要考查了平行四边形的性质、平行线的性质、角平分线的定义以及等边三角形的判定和性质,正确证明△ABE是等边三角形是解题关键.18.12【分析】多边形的外角和为360°而多边形的每一个外角都等于30°由此做除法得出多边形的边数【详解】∵360°÷30°=12∴这个多边形为十二边形故答案为:12【点睛】本题考查了多边形的内角与外角解析:12【分析】多边形的外角和为360°,而多边形的每一个外角都等于30°,由此做除法得出多边形的边数.【详解】∵360°÷30°=12,∴这个多边形为十二边形,故答案为:12.【点睛】本题考查了多边形的内角与外角.关键是明确多边形的外角和为360°.19.102°【分析】根据领补角的定义正多边形的内角和及三角形内角和进行求解即可【详解】解:由题意得如图所示正五边形的每个内角为108°正方形的每个内角为90°正三角形的每个内角为60°所以因为所以可得故解析:102°【分析】根据领补角的定义、正多边形的内角和及三角形内角和进行求解即可.【详解】 解:由题意得,如图所示,正五边形的每个内角为108°,正方形的每个内角为90°,正三角形的每个内角为60°,所以2418010872∠+∠=︒-︒=︒,3618060120∠+∠=︒-︒=︒,151809090∠+∠=︒-︒=︒,因为54+6180∠+∠∠=︒,所以可得1+2372+120+90180102∠∠+∠=︒︒︒-︒=︒. 故答案为102°.【点睛】本题主要考查三角形内角和、正多边形的内角,关键是根据图形得到角之间的等量关系,然后利用三角形内角和进行求解即可.20.140°【分析】先根据多边形内角和定理:求出该多边形的内角和再求出每一个内角的度数【详解】解:该正九边形内角和=180°×(9-2)=1260°则每个内角的度数=故答案为:140°【点睛】本题主要考解析:140°【分析】先根据多边形内角和定理:180(2)n ︒•-求出该多边形的内角和,再求出每一个内角的度数.【详解】解:该正九边形内角和=180°×(9-2)=1260°,则每个内角的度数=12601409︒=︒. 故答案为:140°.【点睛】本题主要考查了多边形的内角和定理:180°•(n-2),比较简单,解答本题的关键是直接根据内角和公式计算可得内角和. 三、解答题21.(1)证明见解析;(2)321DE =.【分析】(1)根据等边对等角和直角三角形两锐角互余可得∠D=∠BFE ,再等量代换可得∠D=∠AFD ,根据等角对等边即可证明;(2)过A 作AH ⊥BC ,根据中位线定理可得EH=2,根据三线合一可得EC ,再根据勾股定理可求.【详解】解:(1)∵AB=AC ,∴∠B=∠C ,∵DE ⊥BC , ∴∠C+∠D=90°,∠B+∠BFE=90°,∴∠D=∠BFE ,又∵∠BFE=∠AFD ,∴∠D=∠AFD ,∴AD=AF ,即△ADF 为等腰三角形;(2)过A 作AH ⊥BC ,∵5AF BF ==,DE ⊥BC ,∴EF//AH ,∴EF 是△BAH 的中位线,∵BE=2,∴EH=2,∵AB=AC ,∴BC=4BE=8,EC=HC+HE=BH+EH=6,∵DA=AF=5,AC=AB=10,∴DC=AD+AC=15,∴22156321DE =-=.【点睛】本题考查中位线定理、勾股定理、等腰三角形的性质和判定等.(1)中注意等边对等角,以及等角对等边的使用;(2)中能正确作出辅助线是解题关键.22.(1)见解析;(2)70°【分析】(1)根据平行线的判定得出AC//DE ,根据平行线的性质得出∠2=∠ADE ,求出∠3+∠ADE=180°,根据平行线的判定得出即可;(2)求出∠BDE 的度数,求出∠2的度数,求出∠3的度数,根据四边形的内角和定理求出∠B ,再根据三角形内角和定理求出即可.【详解】(1)证明:∵∠1=∠BDE ,∴AC//DE ,∴∠2=∠ADE ,∵∠2+∠3=180°,∴∠3+∠ADE=180°,∴AD//EF ;(2)∵∠1=∠BDE ,∠1=40°,∴∠BDE=40°,∵DA 平分∠BDE ,∴∠ADE=12∠BDE=20°, ∴∠2=∠ADE=20°,∵∠2+∠3=180°∴∠3=160°,∵FE ⊥AF ,∴∠F=90°,∴∠B=360°-90°-160°-40°=70°,在△ABC 中,∠BAC=180°-∠1-∠B=180°-40°-70°=70°.【点睛】本题考查了平行线的性质和判定,多边形的内角和定理,角平分线的定义,能灵活运用知识点进行推理和计算是解此题的关键.23.(1)是,理由见解析;(2)是,理由见解析;(3)【分析】(1)根据全等三角形性质得,AB=CD .AD=BC ,所以四边形ABCD 是平行四边形;(2)根据平移的性质得//,BC B C BC B C ''''=,故//,AD B C AD B C ''''=,可得四边形AB C D ''是平行四边形;(3)根据直角三角形性质可证60,30,90ABC ABF AFB ︒︒︒∠=∠=∠=,根据勾股定理可得BF =【详解】解:(1)四边形ABCD 是平行四边形理由:因为两块三角尺全等,所以AB=CD .AD=BC所以四边形ABCD 是平行四边形(2)四边形AB C D ''是平行四边形理由:四边形ABCD 是平行四边形,所以AD//BC ,AD=BC由平移的性质得//,BC B C BC B C ''''=//,AD B C AD B C ''''∴=所以四边形AB C D ''是平行四边形.(3)因为∠ADB=∠CB'D'=30°.∠ABD=∠B'D'C=90°.所以∠C=∠BAD=60°,.因为AD=8.所以AB=BC=4.所以60BAC ︒∠=.60,30,90ABC ABF AFB ︒︒︒∴∠=∠=∠=在Rt ABF ∆中,根据勾股定理得,BF =所以BF的长为【点睛】考核知识点:平行四边形判定.理解平行四边形的判定方法是关键.24.(1)证明见解析;(2)20.【分析】(1)根据平行四边形的性质得出OD=OB ,DC ∥AB ,推出∠FDO=∠EBO ,证△DFO ≌△BEO 即可;(2)由平行四边形的性质得出AB=CD ,AD=BC ,OA=OC ,由线段垂直平分线的性质得出AE=CE ,由已知条件得出BC+AB=10,即可得出平行四边形ABCD 的周长.【详解】解:(1)∵四边形ABCD 是平行四边形,∴OD=OB ,DC ∥AB ,∴∠FDO=∠EBO ,在△DFO 和△BEO 中,{FDO EBOOD OB FOD EOB∠=∠=∠=∠,∴△DFO ≌△BEO (ASA ),∴OE=OF .(2)解:∵四边形ABCD 是平行四边形,∴AB=CD ,AD=BC ,OA=OC ,∵EF ⊥AC ,∴AE=CE ,∵△BEC 的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴平行四边形ABCD 的周长=2(BC+AB )=20.25.详见解析.【分析】利用平行四边形的性质可得AB =CD ,AB ∥CD 然后证明△ABF ≌△CDE ,进而可得BF =DE ,再利用等式的性质进行计算即可.【详解】证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∴∠ABF =∠CDE ,在△ABF 和△CDE 中BAF DCE AB CD ABF EDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△CDE (ASA ),∴ED =BF ,∴BD ﹣CF =BD ﹣DE ,∴BE =DF .【点睛】此题主要考查了平行四边形的性质,关键是掌握平行四边形对边平行且相等.26.(1)80C ∠=︒;(2)120C ∠=︒.【分析】(1)如图1,过点C 作CH ∥DF ,根据四边形的内角和为360°,求出∠MDC+∠CBN=160°,利用角平分线的定义可得:∠FDC+∠CBE=80°,最后根据平行线的性质可得结论;(2)如图2,连接GC 并延长,同理得:∠MDC+∠CBN=160°,∠FDC+∠CBE=80°,求出∠DGB=40°,可得结论.【详解】(1)如图1,过点C 作CH ∥DF ,∵BE ∥DF ,∴BE ∥DF ∥CH ,∴∠FDC=∠DCH ,∠BCH=∠EBC ,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC ,∵BE ,DF 分别为四边形ABCD 的外角∠CBN ,∠MDC 的平分线,∴∠FDC=12∠CDM,∠EBC=12∠CBN,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°-160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)如图2,连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°-40°=120°.【点睛】本题考查了平行线的性质及其判定,多边形的内角和公式,三角形外角的性质,角平分线的定义,利用多边形的内角和公式和平行线的性质是解题关键.。
18.1.2平行四边形的判定(1)例1 如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.例2 如图,在ABCD中,E,F,G,H分别是各边上的点,且AE=CG,BF=DH.求证:四边形EFGH是平行四边形.例3 如图,在ABCD中,点E,F在对角线AC上,且AE=CF.求证:∠EDF=∠FBE.基础巩固1.如图,在ABCD中,点E,F在对角线AC上,且AE=CF.(1)求证:DE=BF;(2)求证:四边形DEBF是平行四边形.2.如图,AE,CF分别是ABCD的内角∠DAB,∠BCD的平分线,求证:四边形AECF 是平行四边形.3.如图,过ABCD的对角线的交点O作直线EF,分别交AD于点E,交BC于点F,点G,H分别为OD,OB的中点.求证:四边形EHFG是平行四边形.能力提升1.下面给出四边形ABCD中∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD 是平行四边形的是( )A.1:2:3:4 B.2:3:2:3 C.2:3:3:2 D.1:2:2:32.如图,已知点O是四边形ABCD对角线的交点,下面给出的条件中,不能判定四边形ABCD是平行四边形的是( )A. AB∥CD,AD//BCB.AB=CD,AD=BCC. AB=AD,BC=CDD.AO=CO,BO=DO(2题图)(3题图)3.如图是由6个全等的正三角形拼成的图形,则图中平行四边形有( )A.6个B.8个C.10个D.12个4.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②一组对边平行,一组对角相等的四边形是平行四边形;③两组对角相等的四边形是平行四边形;④有一个角与相邻的两个角都互补的四边形是平行四边形.其中真命题有( )A.1个B.2个C.3个D.4个5.把两个全等的非等腰三角形拼成平行四边形,可拼成不同平行四边形的个数为( ) A.1 B.2 C.3 D.46.如图,在ABCD中,E,F是对角线BD上不同的两点,下列条件中,不能得到四边形AECF一定为平行四边形的是( )A.BE=DF B.AE=CF C.AF∥CE D.∠BAE=∠DCF(6题图)(7题图)7.如图,点D、E分别在△ABC的边AB、AC上,点F在DE的延长线上.若DE=EF,AE=EC,则由可知四边形ADCF是平行四边形.8.在四边形ABCD中,AC、BD相交于点O.(1)若AD=8cm,AB=4cm,则当BC= cm,CD= cm时,四边形ABCD为平行四边形;(2)若AC=6cm,BD=8cm,则当AO= cm,DO=____cm时,四边形ABCD为平行四边形.9.如图,在四边形ABCD中,AB∥CD,对角线AC、BD交于点O,EF过点O交AB于点E,交CD于点F,且OE=OF.求证:四边形ABCD是平行四边形.10.如图,在△ABC中,BD平分∠ABC,DE∥BC交AC于点D,交AB于点E,EF∥AC 交BC于点F.求证:BE=CF.11.如图,在ABCD中,M,N分别是CD,AB上的点,E,F是AC上不同的两点,CM=AN,AE=CF.求证:四边形MENF是平行四边形.12.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE上BC,CE∥AD.若AC=2,CE=4,求四边形ACEB的周长.13.如图,在ABCD中,E,F,G,H分别是四条边上的点,且AE=CF,BG=DH.求证:EF与GH互相平分.14.如图,在四边形PONM中,MO⊥ON于点O,各边长如图所示,则判定四边形PONM 是平行四边形的理由是(14题图)(15题图)15.如图,等边△ABC的边长为8,P是△ABC内一点,PD∥AC,PE∥AB,PF∥BC,点D,E,F分别在AB,BC,AC上,则PD+PE+PF的长为16.一个四边形的四条边长依次是a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是17. 如图,在△ABC中,D为BC的中点,AB=5,AD=6.AC=13.(1)求证:AB⊥AD;(2)求△ABC的面积,18.1.2平行四边形的判定(2)例1如图,点E,F是平行四边形ABCD的对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:四边形AECF是平行四边形例2 如图,已知E、F、M、N分别是四边形ABCD四边的中点.求证:四边形EFMN是平行四边形.基础巩固1.如图,在ABCD中,E、F分别是BC、AD上的点,且BE=DF,判定四边形AECF 是平行四边形最简单的方法是( )A.一组对边平行且相等的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.两组对边分别平行的四边形是平行四边形D.两组对角分别相等的四边形是平行四边形2.如图,为测量池塘边A,B两点间的距离,小明在池塘的一侧选取一点O,测得OA,OB 的中点分别是点D,E,且DE=14m,则A,B两点间的距离是( )A.18m B.24m C.28m D.30m3.如图,点B,E,C,F在同一条直线上,AB∥DE,AC∥DF,BE=CF,连接AD.证:四边形ABED是平行四边形。
数学:19.1平行四边形课时练(人教新课标八年级下)课时一平行四边形的性质(一) 一、选择题1.平行四边形的两邻角的角平分线相交所成的角为( ) A.锐角 B.直角 C.钝角 D.不能确定2.平行四边形的周长为24cm ,相邻两边的差为2cm ,则平行四边形的各边长为( ) A.4cm ,4cm ,8cm ,8cm B.5cm ,5cm ,7cm ,7cm C.5.5cm ,5.5cm ,6.5cm ,6.5cm D.3cm ,3cm ,9cm ,9cm3. 如图所示,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32° .则∠ABC 、∠CAB 的度数分别为( )A.28°,120°B.120°,28°C.32°,120°D.120°,32° 4. 在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( )DA.1∶2∶3∶4B.1∶2∶2∶1C.1∶1∶2∶2D.2∶1∶2∶1 5下面的性质中,平行四边形不一定具有的是( )A.对角互补B.邻角互补C.对角相等D.对边相等.6.在□ABCD 中,∠A 的平分线交DC 于E ,若∠DEA=30°,则∠B =( ) A100° B.120° C.135° D.150° 二、填空题7. .如图所示,A ′B ′∥AB ,B ′C ′∥BC ,C ′A ′∥CA ,图中有 个平行四边形8. 已知:平行四边形一边AB =12 cm,它的长是周长的61,则BC =______ cm,CD =______ cm. 9.平行四边形的一组对角度数之和为200°,则平行四边形中较大的角为 . 10.. ABCD 中,若∠A ∶∠B =1∶3,那么∠A =________,∠B =________, ∠C =________,∠D =________.11. 如图所示,,在ABCD 中,对角线AC 、BD 相交于点O ,图中全等三角形共有________对12.如图所示,在ABCD 中,∠B =110°,延长AD 至F ,CD 至E ,连结EF ,则∠E+∠F= 三、解答题13. 在四边形ABCD 中,AB ∥CD ,∠A =∠C ,求证:四边形ABCD 是平行四边形. 14. 在□ABCD 中, ∠A+∠C=160°, , 求∠A,∠C,∠B,∠D 的度数第3题图 第7题图 第11题图 第12题图第14题图15. .如图所示,四边形ABCD 是平行四边形,BD ⊥AD ,求BC ,CD 及OB 的长.16. 如图,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.课时一答案:一、1.B ,提示:平行四边形的两邻角的和为180°,所以它们的角平分线的夹角为90°;2.B ,提示:设相邻两边为,,ycm xcm 根据题意得⎩⎨⎧=-=+212y x y x ,解得⎩⎨⎧==57y x ;3. B ,提示:根据平行四边形的性质对角相等得∠D =∠ABC=120°,邻角互补得∠CAB +∠CAD+∠D =180°,则∠CAB =180°-32°-120°=28°;4. D ,提示:根据平行四边形的对角相等,得对角的比值相等故选D ;5.A ;6.B ,由题意得∠A =60°,根据平行四边形的邻角互补,得∠B =180°-60°=120°; 二、7.3个即四边形ABCB ′,C ′BCA ,ABA ′C 都是平行四边形;8.24 ,CD =12;9.100°,提示:先求出对角为100°,另一组对角为80°,所以较大的为100°;10.45°,135°,45°,135°11.4;15.70°,提示:根据平行四边形的对角互补得∠B=∠ADC=110°,则∠FDC=70°,再根据三角形的外角等于其不相邻的两个角的和,故为∠E+∠F=70°;三、13. 证明:∵AB ∥CD ,∴∠A+∠D=180°,又∵∠A =∠C,∴∠C+∠D=180°, ∴AD ∥CB, ∴四边形ABCD 是平行四边形.. 14.解:在□ABCD 中, ∠A =∠C,又∵∠A+∠C=160°∴∠A =∠C=80°∵在□ABCD 中AD ∥CB,∴∠A+∠B=180°, ∴∠B =∠D=180°-∠A=180°-80°=100° 15. 解:∵ABCD ,∴BC =AD =12,CD =AB =13,OB=21BD ∵BD ⊥AD ,∴BD =22AD AB -=221213-=5∴OB =25 16. AE =CF ;证明∵四边形ABCD 为平行四边形,∴AF ∥CE ,又∵AE ∥CF ∴四边形AECF 为平行四边形,AE=CF ;第15题图 第16题图课时二:平行四边形的性质(二)1. 如图所示,如果该平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长x 的取值范围是________.2.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.63. 如图,在□ABCD 中,对角线AC ,BD 相交于点O ,MN 是过O 点的直线,交BC 于M ,交AD 于N ,BM =2,AN =2.8,求BC 和AD 的长.4.平行四边形的周长为25cm ,对边的距离分别为2cm 、3cm为( )A.15cm 2B.25cm 2C.30cm 2D.50cm 25. 如图所示,已知ABCD 的对角线交于O ,过O 作直线交AB 、CD 的反向延长线于E 、F ,求证:OE =OF .6. 如图所示,在□ABCD 中,O 是对角线AC 、BD 的交点,BE ⊥AC ,DF ⊥AC ,垂足分别为E 、F .那么OE 与OF 是否相等?为什么?7.已知O 为平行四边形ABCD 对角线的交点,△AOB 的面积为1,则平行四边形的面积为( )第1题图第2题图 第3题图 第5题图 第6题图A.1B.2C.3D.48.平行四边形的对角线分别为y x ,,一边长为12,则y x ,的值可能是下列各组数中的( ) A.8与14 B.10与14 C.18与20 D.10与28 9. □ABCD 中,若,6,10,30cm AB cm BC B ===∠ο则□ABCD 的面积是 .10. 如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45°,且AE+AF =22,则平行四边形ABCD 的周长是 .11.如图所示,已知D 是等腰三角形ABC 底边BC 上的一点,点E ,F 分别在AC,AB 上,且DE ∥AB ,DF ∥AC 求证:DE+DF=AB12. 如图,□ABCD O 为D 的对角线AC 的中点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,•点E 、F 在直线MN 上,且OE=OF .(1)图中共有几对全等三角形,请把它们都写出来; (2)求证:∠MAE=∠NCF .课时二答案:1. 10<x <22,提示:根据三角形的三边关系得11215<<x ,解得2210<<x ;2. B ;3. BC =AD =4.8;4.A ;提示:根据面积法求出邻边的比为3∶2,则邻边为7.5,5,则面积为7.5×2=15cm 2;5. 证明:∵ABCD ,∴OA =OC ,DF ∥EB ∴∠E =∠F ,又∵∠EOA =∠FOC ∴△OAE ≌△OCF ,∴OE =OF ;6. OE =OF , 在□ABCD 中,OB=OD ,∵BE ⊥AC ,DF ⊥AC ∴∠BEO =∠DFO ,又∠BOE =∠DOF ,∴△BOE ≌△DOF ,∴OE =OF .7.D ,提示:因为平行四边形的对角线把平行四边形分成面积相等的4个小三角形,所以平行四边形的面积为4;8.C ,提示:根据三角形的两边之和大于第三边,两边之差小于第三第10题图 第11题图边,若y x >,则⎪⎪⎩⎪⎪⎨⎧<->+12221222yx yx ,所以符合条件的y x ,可能是18与20;9.302cm ;10.8;11.证明:∵DE ∥AB ,DF ∥AC∴四边形AEDF 是平行四边形,∴DF=AE ,又∵DE ∥AB ,∴∠B=∠EDC ,又∵AB=AC,∴∠B=∠C ,∴∠C=∠EDC ,∴DE=CE ,∴DF+DE=AE+CE=AC=AB. 12. 解:(1)有4对全等三角形.分别为△AMO ≌△CNO ,△OCF ≌△OAE ,△AME ≌△CNF ,△ABC ≌△CDA . (2)证明:∵OA=OC ,∠1=∠2,OE=OF , ∴△OAE ≌△OCF ,∴∠EAO=∠FCO . 在YABCD 中,AB ∥CD ,∴∠BAO=∠DCO ,∴∠EAM=∠NCF . 课时三平行四边形的判定(一) 一、选择题1.下列条件中不能判定四边形ABCD 为平行四边形的是( ) A.AB=CD,AD=BC B.AB ∥CD ,AB=CD C.AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC2.已知:四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;② AB=CD, ③AD=BC ,④∠A=∠C ,⑤∠B=∠D ,能使四边形ABCD 成为平行四边形的条件的个数是( ) A.4 B.3 C.2 D.13.把两个全等的非等腰三角形拼成平行四边形,可拼成的不同平行四边形的个数为( ) A.1 B.2 C.3 D.44. 在四边形ABCD 中,AC 与BD 相交于点O ,如果只给出条件“AB ∥CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下六个说法中,正确的说法有( )(1)如果再加上条件“AD ∥BC ”,那么四边形ABCD 一定是平行四边形; (2)如果再加上条件“AB =CD ”,那么四边形ABCD 一定是平行四边形;(3)如果再加上条件“∠DAB =∠DCB ”那么四边形ABCD 一定是平行四边形; (4)如果再加上“BC =AD ”,那么四边形ABCD 一定是平行四边形; (5)如果再加上条件“AO =CO ”,那么四边形ABCD 一定是平行四边形; (6)如果再加上条件“∠DBA =∠CAB ”,那么四边形ABCD 一定是平行四边形. A.3个 B.4个 C.5个 D.6个 二、填空题5.已知:四边形ABCD 中,AD ∥BC ,要使四边形ABCD 为平行四边形, 需要增加条件 .(只需填上一个你认为正确的即可).6.如图所示,ABCD 中,BE ⊥CD,BF ⊥AD,垂足分别为E 、F ,∠EBF=60°AF=3cm ,CE=4.5cm ,则∠C= ,AB= cm ,BC= cm .7.如图所示,在ABCD 中,E,F 分别是对角线BD 上的两点, 且BE=DF ,要证明四边形AECF 是平行四边形,最简单的方法 是根据 来证明.第6题图第7题图8. 将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______. 三、解答题9.已知:如图所示,在ABCD 中,E 、F 分别为AB 、CD 的中点,求证四边形AECF 是平行四边形.10. 如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥BD 于F ,求证:四边形AECF 为平行四边形.11. 如图所示,平行四边形ABCD 的对角线A C 、BD 相交于点O,E 、F 是直线AC 上的两点,并且AE=CF,求证:四边形BFDE 是平行四边形.12. 如图,E F ,是平行四边形ABCD 的对角线AC 上的点,CE AF .请你猜想:BE 与DF 有怎样的位置..关系和数量..关系? 并对你的猜想加以证明:课时三答案:一、1.C ;2.B ,提示:AD ∥BC ,添加条件①③④能使四边形ABCD 成为平行四边形;3.C ;4.B ;二、5. AD =BC (或AB ∥CD 或∠A=∠C 或∠B=∠D );6.30°,6,9;7.对角线互相平分;8. 3; 三、9.在ABCD 中,AD=CB,AB=CD,∠D =∠B ,∵E 、F 分别为AB 、CD 的中点,∴DF=BE , 又∵AB ∥CD ,AB=CD ,∴AE=CF ,∴四边形AECF 是平行四边形. 10. 证明:∵ABCD∴AB =CD ,AB ∥CD ∴∠1=∠2AE ⊥BD ,CF ⊥BD第9题图 第10题图 第11题图ABC DE F第12题图∴∠AEB =∠CFD =90°,AE ∥CF ∴△AEB ≌△CFD ,∴AE =CF ∴AECF 为平行四边形11. 证明:∵四边形ABCD 是平行四边形,∴OA=OC,OB=OD又∵AE=CF ,∴OE=OF ∴四边形BFDE 是平行四边形. 12. 猜想:BE DF ∥,BE DF = 证明:证法一:如图第12-1.Q 四边形ABCD 是平行四边形. BC AD ∴= 12∠=∠ 又CE AF =Q BCE DAF ∴△≌△ BE DF ∴= 34∠=∠BE DF ∴∥证法二:如图第12-2.连结BD ,交AC 于点O ,连结DE ,BF . Q 四边形ABCD 是平行四边形 BO OD ∴=,AO CO = 又AF CE =Q AE CF ∴= EO FO ∴=∴四边形BEDF 是平行四边形BE DF ∴∥ 课时四平行四边形的判定(二)1.如图所示,D 、E 、F 为△ABC 的三边中点, 则图中平行四边形有( ) A.1个 B2个 C 3个 D.4个2. D 、E 、F 为△ABC 的三边中点,L 、M 、N 分别是△DEF 三边的中点,若△ABC 的周长为20cm ,则△LMN 的周长是( ) A.15cm B.12cm C.10cm D.5cm3.已知等腰三角形的两条中位线长分别为3和5, 则此等腰三角形的周长为 .4.□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别是OB 、OD 的中点,四边形AECF 是_______.5. 如图,DE ∥BC ,AE =EC ,延长DE 到F ,使EF =DE , 连结AF 、FC 、CD ,则图中四边形ADCF 是______.ABCDEF第12-2OAB CDE F 第12-1 2 3 4 1第1题图第5题图6. 如图,在□ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线相交于点F (1)求证:△ABE ≌△DFE ;(2)试连结BD 、AF ,判断四边形ABDF 的形状,并证明你的结论.7. 如图所示,某城市部分街道示意图,AF ∥BC ,EC ⊥BC ,BA ∥DE ,BD ∥AE ,EF=FC ,甲、乙两人同时从B 站乘车到F 站,甲乘1路车,路线是B →A →E →F ,乙乘2路,路线是B →D →C →F ,假设两车速度相同,途中耽误时间相同,那么谁先到达F 站,请说明理由.8. 如图所示,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD=CD ,∠ADB=90°,CH ⊥AB 于H ,CH 交AD 于F . (1)求证:CD ∥AB ; (2)求证:△BDE ≌△ACE ; (3)若O 为AB 中点,求证:OF=12BE .9.. 已知如图:在ABCD 中,延长AB 到E ,延长CD 到F ,使BE =DF ,则线段AC 与EF 是否互相平分?说明理由.第6题图 第7题图 第8题图 第9题图10. 如图所示,□ABCD 的对角线AC 、BD 交于O ,EF 过点O 交AD 于E ,交BC 于F ,G 是OA 的中点,H 是OC 的中点,四边形EGFH 是平行四边形,说明理由.11.如图所示,平行四边形ABCD 中,M 、N 分别为AD 、BC 的中点,连结AN 、DN 、BM 、CM ,且AN 、BM 交于点P ,CM 、DN 交于点Q .四边形MGNP 是平行四边形吗?为什么?课时四答案:1.C;2.D ,提示:根据三角形中位线的性质定理:;21,21DEF LMN ABC DEF L L L L ∆∆∆∆==3.26或22,提示:当两腰上的中位线长为3时,则底边长为6,腰长为10,三角形的周长为26,当两腰上的中位线长为5时,则底边长为10,腰长为6,三角形的周长为22;4.平行四边形 ;5.平行四边形;6.证明:(1)∵ 四边形ABCD 是平行四边形,∴AB ∥CF . ∴∠1=∠2,∠3=∠4 ∵E 是AD 的中点,∴ AE=DE . ∴△ABE ≌△DFE .(2)四边形ABDF 是平行四边形.∵△ABE ≌△DFE ∴AB=DF 又AB ∥CF .∴四边形ABDF 是平行四边形. 7.解:∵BA ∥DE ,BD ∥AE ,∴四边形ABDE 是平行四边形 ∴AB=DE ,BD=AE ,又EF=FC 且AF ∥BC ,EC ⊥BC ,∴DE=DC , ∴EA+AE+EF=BD+DC+CF ,∴二人同时到达F 站.8.证明:(1)∵BD=CD ,∴∠BCD=∠1.∵ ∠l=∠2,∠BCD=∠2.∴CD ∥AB . (2) ∵ CD ∥AB ∴∠CDA=∠3.第10题图第10题图 第11题图∠BCD=∠2=∠3.且BE=AE.且∠CDA=∠BCD.∴DE=CE.在△BDE和△ACE中,DE=CE,∠DEB=∠CEA,BE=AE.∴△BDE≌△ACE (3) ∵△BDE≌△ACE∠4=∠1,∠ACE=∠BDE=90°.∴∠ACH=90°一∠BCH又CH⊥AB,.∴∠2=90°一∠BCH∴∠ACH=∠2=∠1=∠4.AF=CF∵∠AEC=90°一∠4,∠ECF=90°一∠ACH∠ACH=∠4 ∠AEC=∠ECF.CF=EF.∴EF=AFO为AB中点,OF为△ABE的中位线∴OF=12BE9.线段AC与EF互相平分.理由是:∵四边形ABCD是平行四边形.∴AB∥CD,即AE∥CF,AB=CD,∵BE=DF,∴AE=CF∴四边形AECF是平行四边形,∴AC与EF互相平分.10.是平行四边形,△AOE≌△COF.11是平行四边形,四边形AMCN、BMDN是平行四边形.。
一、选择题1.已知平行四边形ABCD 中,∠A +∠C =110°,则∠B 的度数为( )A .125°B .135°C .145°D .155°2.在平面直角坐标系中,已知四边形AMNB 各顶点坐标分别是:(0,2)(2,2),(3,),(3,)A B M a N b -,,且1,MN a b =<,那么四边形AMNB 周长的最小值为( )A .625+B .613+C .34251++D .34131++ 3.正多边形的每个外角为60度,则多边形为( )边形.A .4B .6C .8D .10 4.下面关于平行四边形的说法中,不正确的是( )A .对角线互相平分的四边形是平行四边形B .有一组对边平行,一组对角相等的四边形是平行四边形C .有一组对边相等,一组对角相等的四边形是平行四边形D .有两组对角相等的四边形是平行四边形5.若一个正多边形的每个内角度数都为135°,则这个正多边形的边数是( ) A .6 B .8 C .10 D .126.如图,在下列条件中,能判定四边形ABCD 是平行四边形的是( )A .AD//BC ,AB=CDB .∠AOB=∠COD ,∠AOD=∠COBC .OA=OC ,OB=ODD .AB=AD ,CB=CD 7.如图,在□ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A .4B .3C .52D .28.如图,设M 是ABCD 边AB 上任意一点,设AMD ∆的面积为1S ,BMC ∆的面积为2S ,CDM ∆的面积为S ,则( )A .12S S S =+B .12S S S >+C .12S S S <+D .不能确定 9.如图,平行四边形ABCD 中,AE 平分∠BAD 交边BC 于点E ,已知AD =7,CE =3,则AB 的长是( )A .7B .3C .3.5D .4 10.如果一个多边形的每一个外角都等于45°,则这个多边形的边数为( )A .3B .4C .5D .8 11.如图.ABCD 的周长为60,,cm AC BD 相交于点,O EO BD ⊥交AD 于点E ,则ABE ∆的周长为( )A .30cmB .60cmC .40cmD .20cm 12.如图,在□ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是( )A .7B .10C .11D .12 二、填空题13.如图是一块正多边形的碎瓷片,经测得30ACB ∠=︒,则这个正多边形的边数是_________.14.如果一个多边形所有内角和与外角和共为2520°,那么从这个多边形的一个顶点出发共有_________条对角线15.如图,在ABC 中,60BAC ∠=︒,BAC ∠的平分线AD 与边BC 的垂直平分线MD 相交于点D ,DE AB ⊥交AB 的延长线于点E ,DF AC ⊥于点F ,现有下列结论:①120EDF ∠=︒;②DM 平分EDF ∠;③DE DF AD +=;④2AB AC AE +>;其中正确的有________(请将正确结论的序号填写在横线上).16.如图,在平行四边形ABCD 中,点M 为边AD 上一点,AM =2MD ,点E ,点F 分别是BM ,CM 中点,若EF =6,则AM 的长为_____.17.一个n 边形的每一个内角等于108°,那么n=_____.18.某数学学习小组发现:通过连多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题.如果从某个多边形的一个顶点出发的对角钱共有3条,那么该多边形的内角和是______度.19.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为__________.20.若正多边形的内角和等于720︒,那么它的每一个外角是 __________︒三、解答题21.如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,延长BC 到点E ,使CE BC =,连接DE .(1)求证:四边形ACED 是平行四边形;(2)已知5AB =,6AC =,若12CD BE =,求BDE 的周长. 22.已知在四边形ABCD 中,90A C ∠=∠=︒.(1)如图1,若BE 平分ABC ∠,DF 平分ADC ∠的邻补角,请写出BE 与DF 的位置关系并证明;(2)如图2,若BF 、DE 分别平分ABC ∠、ADC ∠的邻补角,判断DE 与BF 位置关系并证明;(3)如图3,若BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角(即11,55CDE CDN CBE CBM ∠=∠∠=∠),求E ∠度数.23.如图,五边形ABCDE 的内角都相等,EF 平分∠AED .求证:EF ⊥BC .24.在平面直角坐标系中,ABC ∆的三个项点的位置如图所示,现将ABC ∆沿'AA 的方向平移,使得点A 移至图中的点'A 的位置.(1)在直角坐标系中,画出平移后所得'''A B C ∆ (其中','B C 分别是,B C 的对应点). (2)求ABC ∆的面积.(3)以A B C D 、、、为顶点构造平行四边形,则D 点坐标为__________.25.如图1,在平面直角坐标系中,直线AB 与 x 轴、y 轴相交于A(6,0)、B(0,2)两点,动点C 在线段OA 上(不 与 )O 、A 重合 ),将线段CB 绕着点C 顺时针旋转 90° 得到CD ,当点D 恰好落在直线AB 时,过 点D 作DE ⊥x 轴于点E .(1)求证:BOC CED ∆≅∆;(2)求经过A 、B 两点的一次函数表达式,如图2,将BCD ∆沿x 轴正方向平移得B C D '''∆,当直线B′C′经过点D 时,求点D 的坐标、B C D '''∆的面积;(3)若点P 在y 轴上,点Q 在直线AB 上,是否存在以C 、D 、P 、Q 为顶点的四边形是平行四边形?若存在,通过画图说明理由,并指出点Q 的个数.26.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE=DF . 求证:四边形BECF 是平行四边形.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.【详解】解:∵四边形ABCD 是平行四边形,∴∠A+∠B=180°,∠A=∠C ,∵∠A+∠C=110°,∴∠A=∠C=55°,∴∠B=125°.故选:A .【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键. 2.A解析:A【分析】如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,则此时四边形AMNB 的周长最短,再利用勾股定理可得:AB ==25A B ==,利用AMNB C 四边形2AB MN A B =++从而可得答案.【详解】解:如图,把()02A -,向上平移一个单位得:()101A -,,作1A 关于直线3x =的对称点()261A -,, 连接2A B ,交直线3x =于N , 连接1A N ,122A N BN A N BN A B ∴+=+=,由111//MN AA MN AA ==,, ∴ 四边形1AMNA 是平行四边形,12,A N AM A N ∴==所以此时:四边形AMNB 的周长最短,()()()2022261A B A --,,,,,,AB ∴==25A B ==,2AMNB C AM AB BN MN A N BN AB MN =+++=+++四边形2AB MN A B =++15 6.=+=故选:.A【点睛】本题考查的是图形与坐标,勾股定理的应用,轴对称的性质,平行四边形的判定与性质,掌握以上知识是解题的关键.3.B解析:B【分析】利用多边形的外角和360除以外角60得到多边形的边数.【详解】=6,多边形的边数为36060故选:B.【点睛】此题考查多边形的外角和定理,正多边形的性质,利用外角和除以外角的度数求正多边形的边数是最简单的题型.4.C解析:C【分析】根据平行四边形的判定分别对各个选项进行判断即可.【详解】A、∵对角线互相平分的四边形是平行四边形,∴选项A不符合题意;B、∵有一组对边平行,一组对角相等的四边形是平行四边形,∴选项B不符合题意;C、∵有一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C符合题意;D、∵有两组对角相等的四边形是平行四边形,∴选项D不符合题意;故选:C.【点睛】本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.5.B解析:B【分析】根据题意可先求出这个正多边形的每个外角度数,再根据多边形的外角和是360°即可求出答案.【详解】解:因为一个正多边形的每个内角度数都为135°,所以这个正多边形的每个外角度数都为45°,所以这个正多边形的边数是360°÷45°=8.故选:B.【点睛】本题考查了正多边形的有关概念和多边形的外角和,属于基本题目,熟练掌握多边形的基本知识是解题的关键.6.C解析:C【分析】由平行四边形的判定可求解.【详解】A、由AD∥BC,AB=CD不能判定四边形ABCD为平行四边形;B、由∠AOB=∠COD,∠AOD=∠COB不能判定四边形ABCD为平行四边形;C、由OA=OC,OB=OD能判定四边形ABCD为平行四边形;D、AB=AD,CB=CD不能判定四边形ABCD为平行四边形;故选:C.【点睛】本题考查了平行四边形的判定定理,注意:平行四边形的判定定理有:①有两组对边分别平行的四边形是平行四边形,②有两组对边分别相等的四边形是平行四边形,③有两组对角分别相等的四边形是平行四边形,④有一组对边平行且相等的四边形是平行四边形,⑤对角线互相平分的四边形是平行四边形.7.A解析:A【分析】根据平行四边形性质得出AB=DC,AD//BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【详解】解:∵四边形ABCD是平行四边形,∴AB=DC,AD//BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE ,∴∠DEC=∠DCE ,∴DE=DC=AB ,∵AD=2AB=2CD ,CD=DE ,∴AD=2DE ,∴AE=DE=4,∴DC=AB=DE=4,故选A .【点睛】本题考查了平行四边形性质,平行线性质,角平分线的定义,等腰三角形的判定的应用,关键是求出DE=AE=DC .8.A解析:A【分析】如图(见解析),过点M 作//MN BC ,交CD 于点N ,先根据平行四边形的判定可得四边形AMND 和四边形BMNC 都是平行四边形,再根据平行四边形的性质即可得.【详解】如图,过点M 作//MN BC ,交CD 于点N ,四边形ABCD 是平行四边形,//,//AB CD AD BC ∴,////AD BC MN ∴,∴四边形AMND 和四边形BMNC 都是平行四边形,12,DMN CMN S S SS ∴==, 12DMN CMN S S SS S ∴=+=+, 故选:A .【点睛】本题考查了平行四边形的判定与性质,通过作辅助线,构造平行四边形是解题关键. 9.D解析:D【分析】先根据角平分线及平行四边形的性质得出∠BAE=∠AEB ,再由等角对等边得出BE=AB ,从而由EC 的长求出BE 即可解答.【详解】解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=7,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∵EC=3,∴BE=BC-EC=7-3=4,∴AB=4,故选D.【点睛】本题主要考查了角平分线、平行四边形的性质及等腰三角形的判定,根据已知得出∠BAE=∠AEB是解决问题的关键.10.D解析:D【分析】根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【详解】解:多边形的边数是:3608 45,故选D.11.A解析:A【分析】根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,结合OE⊥BD可说明EO是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE=DE,再利用平行四边形ABCD的周长为60cm可得AB+AD=30cm,进而可得△ABE的周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,又∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=DE,∴AE+ED=AE+BE,∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴△ABE的周长=AB+AE+BE=AB+AD=30cm,故选:A.【点睛】此题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形的对边相等,平行四边形的对角线互相平分.12.B解析:B【分析】由平行四边形的性质得出DC=AB=4,AD=BC=6,由线段垂直平分线的性质得出AE=CE ,得出△CDE 的周长=AD+DC ,即可得出结果.【详解】∵四边形ABCD 是平行四边形,∴DC=AB=4,AD=BC=6,∵AC 的垂直平分线交AD 于点E ,∴AE=CE ,∴△CDE 的周长=DE+CE+DC=DE+AE+DC=AD+DC=6+4=10;故选:B .【点睛】本题考查了平行四边形的性质、线段垂直平分线的性质、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.二、填空题13.12【分析】根据瓷片为正多边形及可知正多边形的外角为进而可求得正多边形的边数【详解】如图延长BC 可知∠1为正多边形的外角∵瓷片为正多边形∴AD=DB=BC ∠ADB=∠DBC ∴四边形ACBD 为等腰梯形解析:12【分析】根据瓷片为正多边形及=30ACB ∠︒,可知正多边形的外角为30︒,进而可求得正多边形的边数.【详解】如图,延长BC ,可知∠1为正多边形的外角,∵瓷片为正多边形,∴AD=DB=BC ,∠ADB=∠DBC ,∴四边形ACBD 为等腰梯形,∴BD ∥AC ,∴∠1==30ACB ∠︒,∴正多边形的边数为:360=1230︒︒, 故答案为:12.【点睛】本题考查正多边形的外角和,掌握相关知识点是解题的关键. 14.11【分析】先根据题意求出多边形的边数再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答【详解】设多边形的边数为n 则有(n-2)•180+360=2520解得:n=1414-3=11即从这个多解析:11【分析】先根据题意求出多边形的边数,再根据从n 边形一个顶点出发共有(n-3)条对角线即可解答.【详解】设多边形的边数为n ,则有(n -2)•180+360=2520,解得:n =14,14-3=11,即从这个多边形的一个顶点出发共有11条对角线,故答案为11.【点睛】本题考查了多边形的内角和与外角和、多边形的对角线,得到多边形的边数是解本题的关键.15.①③【分析】由四边形内角和定理可求出;若DM 平分∠EDF 则∠EDM=60°从而得到∠ABC 为等边三角形条件不足不能确定故②错误;由题意可知∠EAD=∠FAD=30°故此可知ED=ADDF=AD 从而可解析:①③【分析】由四边形内角和定理可求出120EDF ∠=︒;若DM 平分∠EDF ,则∠EDM=60°,从而得到∠ABC 为等边三角形,条件不足,不能确定,故②错误;由题意可知∠EAD=∠FAD=30°,故此可知ED=12AD ,DF=12AD ,从而可证明③正确;连接BD 、DC ,然后证明△EBD ≌△CFD ,从而得到BE=FC ,从而可得AB+AC=2AE ,故可判断④.【详解】解:如图所示:连接BD 、DC .(1)∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°,∵∠EAF=60°,∠EAF+∠AED+∠AFD+∠EDF=360°∴∠EDF=360°-∠EAF-∠AED-∠AFD=360°-60°-90°-90°=120°,故①正确;②由题意可知:∠EDA=∠ADF=60°.假设MD 平分∠EDF ,则∠ADM=30°.则∠EDM=60°,又∵∠E=∠BMD=90°,∴∠EBM=120°.∴∠ABC=60°.∵∠ABC 是否等于60°不知道,∴不能判定MD 平分∠EDF ,故②错误;③∵∠EAC=60°,AD 平分∠BAC ,∴∠EAD=∠FAD=30°.∵DE ⊥AB ,∴∠AED=90°.∵∠AED=90°,∠EAD=30°,∴ED=12AD . 同理:DF=12AD . ∴DE+DF=AD .故③正确.④∵DM 是BC 的垂直平分线,∴DB=DC .在Rt △BED 和Rt △CFD 中DE DF BD DC ⎧⎨⎩==, ∴Rt △BED ≌Rt △CFD .∴BE=FC .∴AB+AC=AE-BE+AF+FC又∵AE=AF ,BE=FC ,∴AB+AC=2AE .故④错误.因此正确的结论是:①③,故答案为:①③.【点睛】本题主要考查的是全等三角形的性质和判定、角平分线的性质、线段垂直平分线的性质以及四边形的内角和等知识,掌握本题的辅助线的作法是解题的关键.16.8【分析】利用三角形中位线的性质得到再根据平行四边形的性质求解即可;【详解】∵点E 点F 分别是BMCM 中点∴EF 是△BCM 的中位线∴∵四边形ABCD 是平行四边形∴又∵∴故答案是8【点睛】本题主要考查了解析:8【分析】利用三角形中位线的性质得到22612BC EF ==⨯=,再根据平行四边形的性质求解即可;【详解】∵点E ,点F 分别是BM ,CM 中点,∴EF 是△BCM 的中位线,∴22612BC EF ==⨯=,∵四边形ABCD 是平行四边形,∴12AD BC ==,又∵2AM MD =, ∴2212833AM AD ==⨯=. 故答案是8.【点睛】 本题主要考查了三角形中位线的性质,平行四边形的性质,准确判定计算是解题的关键. 17.5【分析】首先求得外角的度数然后利用360度除以外角的度数即可求得【详解】解:外角的度数是:180°﹣108°=72°则n==5故答案为5【点睛】本题考查根据多边形的内角和计算公式求多边形的边数解答解析:5【分析】首先求得外角的度数,然后利用360度除以外角的度数即可求得.【详解】解:外角的度数是:180°﹣108°=72°,则n=36072︒︒=5, 故答案为5.【点睛】 本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.18.720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数然后求内角和【详解】∵多边形的一个顶点出发的对角线共有(n-3)条∴n-3=3∴n=6∴内角和=(6-2)×180°=720°故解析:720【分析】由多边形的一个顶点出发的对角线共有(n-3)条可求出边数,然后求内角和.【详解】∵多边形的一个顶点出发的对角线共有(n-3)条,∴n-3=3,∴n=6,∴内角和=(6-2)×180°=720°,故答案是:720.【点睛】本题运用了多边形的内角和定理,关键是要知道多边形的一个顶点出发的对角线共有(n-3)条.19.60°【分析】先根据平行四边形的性质得出∠A+∠B=180°∠A=∠C再由∠B=2∠A可求出∠A的度数进而可求出∠C的度数【详解】解:如下图∵四边形ABCD是平行四边形∴∠A+∠B=180°∠A=∠解析:60°【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C,再由∠B=2∠A可求出∠A的度数,进而可求出∠C的度数.【详解】解:如下图,∵四边形ABCD是平行四边形,∴∠A+∠B=180°,∠A=∠C,∵∠B=2∠A,∴∠A+2∠A=180°,∴∠A=∠C=60°.故答案为:60°.【点睛】本题考查的是平行四边形的性质.熟知平行四边形的对角相等,邻角互补是解答此题的关键.20.60【分析】首先设此多边形为n边形根据题意得:180(n-2)=720即可求得n=6再由多边形的外角和等于360°即可求得答案【详解】解:设此多边形为n边形根据题意得:180(n-2)=720解得:解析:60【分析】首先设此多边形为n边形,根据题意得:180(n-2)=720,即可求得n=6,再由多边形的外角和等于360°,即可求得答案.【详解】解:设此多边形为n边形,根据题意得:180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角等于:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.三、解答题21.(1)见解析;(2)24【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,结合CE=BC,得到AD=CE,可证明四边形ACED是平行四边形;(2)根据四边形ACED是平行四边形得到DE=AC=6,再证明∠BDE=90°,得到BE=2CD=2AB=10,利用勾股定理求出BD,可得△BDE的周长.【详解】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CE=BC,∴AD=CE=BC,∵AD∥BC,∴AD∥CE,∴四边形ACED是平行四边形;(2)∵四边形ACED是平行四边形,∴DE=AC=6,∵CD=BC=CE=1BE,2∴∠CBD=∠CDB,∠CDE=∠CED,∴∠BDE=∠CDB+∠CDE=1180⨯︒=90°,2∴BE=2CD=2AB=10,∴BD =22BE DE -=8,∴△BDE 的周长=BD +BE +DE =8+10+6=24.【点睛】本题考查了平行四边形的性质与判定、三角形周长的计算;熟练掌握平行四边形的性质,并能进行推理论证与计算是解决问题的关键.22.(1)BE DF ⊥,证明见解析;(2)//DE BF ,证明见解析;(3)54°【分析】(1)结论:BE ⊥DF ,如图1中,延长BE 交FD 的延长线于H ,证明∠DEG+∠EDG=90°即可;(2)结论:DE//BF ,如图2中,连接BD ,只要证明∠EDB+∠FBD=180°即可;(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒,利用五等分线的定义可求36CDE CBE ∠+∠=︒,由三角形的外角性质得BCD CBE CDE E ∠=∠+∠+∠,代入数值计算即可.【详解】(1)BE DF ⊥.证明:延长BE 、FD 交于G .在四边形ABCD 中,360A ABC C ADC ,90A C ∠=∠=︒,180ABC ADC ∴∠+∠=︒.180ADC CDN ∠+∠=︒,ABC CDN ∴∠=∠.BE 平分ABC ∠,DF 平分CDN ∠,12ABE ABC ∴∠=∠,12FDN CDN ∠=∠, ABE FDN ∴∠=∠,∵∠ABE+∠AEB=90°,∠AEB=∠DEG ,∠FDN=∠EDG ,∴∠DEG+∠EDG=90°,∴∠EGD=90°,即BE ⊥DF .(2)//DE BF .证明:连接DB .180ABC MBC ∠+∠=︒,180ADC CDN ∠+∠=︒.又180ABC ADC ∠+∠=︒,180MBC CDN ∴∠+∠=︒.BF 、DF 平分ABC ∠、ADC ∠的邻补角,12CBF MBC ∴∠=∠,12CDE CDN ∠=∠,90CBF CDE ∴∠+∠=︒.在Rt BDC 中,90CDB DBC ∠+∠=︒,180CDB DBC CBF CDE ∴∠+∠+∠+∠=︒,180EDB DBF ∴∠+∠=︒,//DE BF ∴.(3)延长DC 交BE 于H .由(1)得:180CDN CBM ∠+∠=︒. BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角, 1180365CDE CBE ∴∠+∠=⨯︒=︒, 由三角形的外角性质得,BHD CDE E ∠=∠+∠,BCD BHD CBE ∠=∠+∠,BCD CBE CDE E ∴∠=∠+∠+∠,903654E ∴∠=︒-︒=︒.【点睛】本题考查多边形内角和,三角形外角的性质,三角形内角和定理,平行线的判定等知识,解题的关键是学会添加常用辅助线.23.证明见详解【分析】根据多边形内角和度数可得每一个角的度数,然后再利用四边形DFBC 内角和计算出∠EFC 的度数即可证明.【详解】解:解:∵五边形ABCDE 的内角都相等,∴∠C=∠D=∠AED=180°×(5-2)÷5=108°,又 EF 平分∠AED∴°1542FED AED ∠=∠= ∴在四边形DFBC 中°=360-D-C-FED EFC ∠∠∠∠=90°∴EF ⊥BC【点睛】此题主要考查了多边形内角和,关键是掌握多边形内角和定理:(n-2)•180° (n≥3且n 为整数).24.(1)画图见解析;(2)5.5;(3) (-1,-1),(5,3),(-3,5).【分析】(1)'AA 长度为32,将,B C 沿着'AA 平行方向分别平移32个单位长度即可; (2)应用割补法,ABC ∆的面积等于大矩形面积减去三个小三角形面积;(3)分别以ABC ∆的三边为对角线讨论,因此应该有三种情况.【详解】(1)如图,△A′B′C′为所作;(2)△ABC 的面积11134413231 5.5222=⨯-⨯⨯-⨯⨯-⨯⨯=; (3)分别以AB 、AC 、BC 三边为对角线,平移另外两条边, 第一种情况:以AC 为对角线,平移AB 和BC ,得到交点1D (-1,-1);第二种情况:以BC 为对角线,平移AB 和AC ,得到交点2D (5,3);第三种情况:以AB 为对角线,平移AC 和BC ,得到交点3D (-3,5);因此,点1D 、2D 、3D 的坐标分别为:(-1,-1),(5,3),(-3,5).【点睛】本题考查了平移变换,割补法求组合图形的面积,以及平行四边形的判定,要注意应以三角形三边分别为平行四边形的对角线,不要漏掉条件.25.(1)见解析;(2)D (3,1),B C D '''∆的面积为52;(3)存在,满足条件点Q 存在三个点,如图所示见解析.【分析】(1)根据同角的余角相等得到BCO CDE ∠=∠,通过AAS 即可得到结论;(2)通过待定系数法求出直线 AB 的一次函数式,设 OC= ED =m ,从而得到点D 的坐标,进而即可求出B C D '''∆的面积;(3)分别以CD 为平行四边形的边和对角线,画出图形,即可得到结论.【详解】(1)证明:如图 1 中,90BOC BCD CED ︒∠=∠=∠=90OCB DCE ︒∴∠+∠=,90DCE CDE ︒∠+∠=BCO CDE ∴∠=∠BC CD =BOC CED ∴∆≅∆(2)设直线 AB 的一次函数式为:y kx b =+∵直线 AB 与 x 轴, y 轴交于 A(6,0) , B(0,2)两点,∴062k b b =+⎧⎨=⎩,解得:132kb ⎧=-⎪⎨⎪=⎩ ∴可求得直线 AB 的一次函数式为:123y x =-+ BOC CED ∆≅∆∵BO=CE=2,设 OC= ED =m ,则 D( m+2,m ),把D(m+2,m) 代入得到123y x =-+,得m=1, ∴D(3,1)∴等腰直角 △BCD 腰长:5CB CD ==, ∵B C D '''∆与△BCD 的全等,∴B C D '''∆的面积=△BCD 的面积=52;(3)满足条件点 Q 存在三个点,如图所示【点睛】本题主要考查一次函数的图象和性质、三角形全等的判定和性质定理以及平行四边形的性质,熟练掌握全等三角形的判定和性质定理以及平行四边形的性质,以及分类讨论思想是解题的关键.26.证明见详解.【分析】通过全等三角形(△AEB ≌△DFC )的对应边相等证得BE=CF ,由“在同一平面内,同垂直于同一条直线的两条直线相互平行”证得BE ∥CF .则四边形BECF 是平行四边形.【详解】证明:∵BE ⊥AD ,CF ⊥AD ,∴∠AEB=∠DFC=90°,∵AB ∥CD ,∴∠A=∠D ,在△AEB 与△DFC 中,AEB DFC AE DFA D ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEB ≌△DFC (ASA ),∴BE=CF .∵BE ⊥AD ,CF ⊥AD ,∴BE ∥CF .∴四边形BECF 是平行四边形.【点睛】本题考查了平行四边形的判定、全等三角形的判定与性质.一组对边平行且相等的四边形是平行四边形.。
18.2 平行四边形的判定(重点练)一.选择题(共10小题)1.(2021秋•杜尔伯特县期末)下列不能判定一个四边形是平行四边形的是()A.两组对边分别平行的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行另一组对边相等的四边形是平行四边形D.对角线互相平分的四边形是平行四边形2.(2021春•大名县期末)下列条件中,不能判定四边形是平行四边形的是()A.两组对边分别平行B.一组对边平行,另一组对边相等C.两组对边分别相等D.一组对边平行且相等3.(2021•奉贤区三模)已知在四边形ABCD中,AB∥CD,添加下列一个条件后,一定能判定四边形ABCD是平行四边形的是()A.AD=BC B.AC=BD C.∠A=∠C D.∠A=∠B 4.(2021春•满洲里市期末)四边形ABCD中,AD∥BC.要判别四边形ABCD是平行四边形,还需满足条件()A.∠A+∠C=180°B.∠B+∠A=180°C.∠A=∠D D.∠B=∠D 5.(2021春•越秀区校级期中)如图,D、E、F是△ABC各边的中点,连接DE、EF、FD,则图中共有()个平行四边形.A.1B.2C.3D.46.(2021•广州模拟)如图,E、F分别是平行四边形ABCD的边AD、BC上的点,且BE∥DF,AC分别交BE、DF于点G、H.下列结论:①四边形BFDE是平行四边形;②△AGE≌△CHF;③BG=DH;④S△AGE:S△CDH=GE:DH,其中正确的个数是()A.1个B.2个C.3个D.4个7.(2021秋•龙凤区期末)下面关于平行四边形的说法中,不正确的是()A.对角线互相平分的四边形是平行四边形B.有一组对边平行,一组对角相等的四边形是平行四边形C.有一组对边相等,一组对角相等的四边形是平行四边形D.有两组对角相等的四边形是平行四边形8.(2021•河北)如图1,▱ABCD中,AD>AB,∠ABC为锐角.要在对角线BD上找点N,M,使四边形ANCM为平行四边形,现有图2中的甲、乙、丙三种方案,则正确的方案()A.甲、乙、丙都是B.只有甲、乙才是C.只有甲、丙才是D.只有乙、丙才是9.(2021春•扶沟县期末)已知:四边形ABCD的对角线AC、BD相交于点O,则下列条件不能判定四边形ABCD是平行四边形的是()A.AB∥CD,AD=BC B.AB=CD,AD=BCC.AO=CO,BO=DO D.∠ABD=∠CDB,∠ADB=∠CBD 10.(2021•烈山区模拟)已知,凸四边形ABCD,给出下列四个条件:①AB=CD,AD=BC②AB=CD,AD∥BC③AB∥CD,∠A=∠C④AB=CD,∠A=∠C能判断四边形ABCD是平行四边形的个数是()A.1B.2C.3D.4二.填空题(共10小题)11.(2021春•海淀区校级期中)如果四边形ABCD中∠A、∠B、∠C、∠D的大小之比是2:3:2:3,那么四边形ABCD是平行四边形,判定的依据是.12.(2021春•德惠市期末)如图,点D是直线l外一点,在l上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是.13.(2020秋•东坡区期末)在△ABC中,AB=3,AC=4,点D是BC边的中点,则中线AD的长度的取值范围是.14.(2021春•綦江区期中)在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D =.15.(2021春•乾安县期末)四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需满足的条件是(横线只需填一个你认为合适的条件即可)16.(2021春•准格尔旗期末)如图,方格纸中每个最小正方形的边长为l,则两平行直线AB、CD之间的距离是.17.(2021春•遂宁期末)如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止).在运动以后,当t =时以P、D、Q、B四点组成的四边形为平行四边形.18.(2021春•平阴县期末)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,点F从点B出发沿射线BC以2cm/s的速度运动.如果点E、F同时出发,设运动时间为t(s)当t=s时,以A、C、E、F为顶点四边形是平行四边形.19.(2021春•淮北期末)如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为.20.(2021春•夏津县期末)如图,在▱ABCD中,E,F是对角线AC上的两点且AE=CF,在①BE=DF;②BE∥DF;③AB=DE;④四边形EBFD为平行四边形;⑤S△ADE=S△ABE;⑥AF =CE.这些结论中正确的是.三.解答题(共10小题)21.(2021春•汉阳区期末)如图,E,F分别是平行四边形ABCD的边AD、BC边上的点,且AE=CF,连接BE,DF.求证:四边形BFDE是平行四边形.22.(2021春•邯郸期末)如图,已知四边形ABCD为平行四边形,AE,CF分别平分∠BAD和∠BCD,交BD于点E,F,连接AF,CE.(1)若∠BCF=65°,求∠ABC的度数;(2)求证:四边形AECF是平行四边形.23.(2021春•宜兴市期中)如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.24.(2021春•甘孜州期末)如图,▱ABCD的对角线AC、BD交于点O,M,N分别是AB、AD 的中点.(1)求证:四边形AMON是平行四边形;(2)若AC=6,BD=4,∠AOB=90°,求四边形AMON的周长.25.(2021秋•任城区期末)如图,在四边形ABCD中,AD∥BC,对角线AC、BD交于点O,且AO=OC,过点O作EF⊥BD,交AD于点E,交BC于点F.(1)求证:四边形ABCD为平行四边形;(2)连接BE,若∠BAD=100°,∠DBF=2∠ABE,求∠ABE的度数.26.(2021•内江)如图,点A、D、C、B在同一条直线上,AC=BD,AE=BF,AE∥BF.求证:(1)△ADE≌△BCF;(2)四边形DECF是平行四边形.27.(2021春•越秀区校级期中)如图,平行四边形ABCD中,E、F分别是AD,BC的中点,求证:四边形BFDE是平行四边形.28.(2021•陕西模拟)如图,在四边形ABCD中,AD∥BC、点E为CD边上的中点,连接AE并延长,与BC的延长线交于点F,连接AC、DF,求证:四边形ACFD是平行四边形.29.(2021春•滕州市期末)已知,如图,在平行四边形ABCD中,点G,H分别是AB,CD的中点,点E,F在对角线AC上,且AE=CF.(1)求证:四边形EGFH是平行四边形.(2)连接BD交AC于点O,若BD=12,AE=EF﹣CF,求EG的长.30.(2021•永嘉县校级模拟)在▱ABCD中,E、F分别在DC、AB上,且DE=BF,求证:四边形AFCE是平行四边形.。
BDCAO图1FEDCBA图2F E D CBA HG FEOAB C DOM ABCD图1FE DCB A4321图3F ED CBA H G 图2F E DCB A八年级数学下册平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵ , ∴四边形ABCD 是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.5)定理:两组对角分别相等的四边形是平行四边形∵∴四边形ABCD 是平行四边形. 二、平行四边形性质与判定的综合应用例1: 如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。
求证:四边形BFDE 是平行四边形变式一:在□ABCD 中,E ,F 为AC 上两点,BE//DF .求证:四边形BEDF 为平行四边形.变式二:在□ABCD 中,E,F 分别是AC 上两点,BE ⊥AC 于E ,DF ⊥AC 于F.求证:四边形BEDF 为平行四边形想一想:在□ABCD 中, E ,F 为AC 上两点, BE =DF .那么可以证明四边形 BEDF 是平行四边形吗?例2:如图,平行四边形ABCD 中,AF =CH ,DE =BG 。
求证:EG 和HF 互相平分。
练习1、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,那么请说明AM=DC 且AM ∥DC:1、以不在同一直线上的三点为顶点作平行四边形,最多能作( )A 、4个B 、3个C 、2个D 、1个 2、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC = 6cm ,P ,Q 分别从A ,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形ABQP 成为平行四边形?1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。
一、选择题1.一个多边形的每一外角都等于60°,那么这个多边形的内角和为()A.1440°B.1080°C.720°D.360°2.如图,用一条宽相等的足够长的纸条,打一个结,如图1所示,然后轻轻拉紧、压平就可以得到如图2所示的正五边形ABCDE,其中∠BAE的度数是()A.90°B.108°C.120°D.135°3.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,BC=10,则EF长为()A.1 B.1.5 C.2 D.2.54.正多边形的每个外角为60度,则多边形为()边形.A.4 B.6 C.8 D.105.如图,在▱ABCD中,AB=2.6,BC=4,∠ABC的平分线交CD的延长线于点E,则DE的长为()A.2.6 B.1.4 C.3 D.26.如图,在平行四边形ABCD中,AB≠BC,点F是BC上一点,AE平分∠FAD,且点E是CD的中点,有如下结论:①AE⊥EF;②AF=CF+CD;③AF=CF+AD;④AB=BF,其中正确的是()A .①③B .②③C .②④D .①③④ 7.已知一个多边形的内角和与一个外角的和是1160度,则这个多边形是( ) A .五边形 B .六边形 C .七边形 D .八边形 8.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC 、BD 的中点重叠并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是( )A .对角线互相平分的四边形是平行四边形B .一组对边平行且相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .两组对角分别相等的四边形是平行四边形 9.四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的为( ) A .88︒,108︒,88︒ B .108︒,108︒,82︒C .88︒,92︒,92︒D .108︒,72︒,108︒ 10.如图,□ABCD 中,AB =3,BC =5,AE 平分∠BAD 交BC 于点E ,则CE 的长为( )A .1B .2C .3D .4 11.如图.ABCD 的周长为60,,cm AC BD 相交于点,O EO BD ⊥交AD 于点E ,则ABE ∆的周长为( )A .30cmB .60cmC .40cmD .20cm 12.如图,在Rt △ABC 中,∠A =30°,BC =1,点D ,E 分别是直角边BC ,AC 的中点,则DE 的长为 ( )A .1B .2C 3D .13二、填空题13.科技小组制作了一个机器人,它能根据指令要求行走和旋转.某一指令规定:如图,机器人先向前行走1米,然后左转45°向前行走1米,…….若机器人反复执行这一指令,则从出发到第一次回到原处,机器人共走了______米.14.边长相等的正方边形ABFG 和正五边形BCDEF 如图所示拼接在一起,则∠FGE =____°.15.一个正多边形的内角和为720︒,则这个多边形的外角的度数为______.16.如图,在四边形ABCD 中,点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,AD BC =,30PEF ∠=︒,则EPF ∠的度数是______.17.如图,在平行四边形ABCD 中,BF 平分ABC ∠,交AD 于点F ,CE 平分BCD ∠,交AD 于点E ,6AB =,2EF =,则BC 长为_________.18.三角形的三边长分别是 4cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是______________cm .19.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为__________.20.如图,平行四边形ABCD ,将四边形CDMN 沿线段MN 折叠,得到四边形QPMN ,已知68BNM ︒∠=,则AMP ∠=_______.三、解答题21.如图,已知△ABC 的三个顶点的坐标分别为A (﹣2,3)、B (﹣6,0)、C (﹣1,0).(1)画出△ABC 关于原点成中心对称的三角形△A ′B ′C ′;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形;(3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标. 22.如图,在ABCD 中,E 是边AD 的中点,BE 的延长线与CD 的延长线相交于点F .求证:DC=DF .23.如图1,在Rt ABC 中,906060B AC cm A ∠=︒=∠=︒,,,点D 从点C 出发沿CA 方向以4/cm s 的速度向点A 匀速运动,同时点E 从点A 出发沿AB 方向以2/cm s 的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D E 、运动的时间是t 秒()015t <<.过点D 作DF BC ⊥于点F ,连接DE ,EF . (1)用含t 的代数式表示下列线段:AE = ,DF = ,AD = ;(2)判断线段EF 与AC 的位置关系,并说明理由;(3)如图2,连接AF ,交DE 于点O ,设y 为ADO △与DFO 的周长差,求y 与t 的函数关系式,并求当t 为何值时,ADO △与DFO 的周长相等.(4)是否存在某一时刻t ,使得DEF 为直角三角形?若存在,请直接写出t 值;不存在,请说明理由.24.已知直线y=kx+b经过点A(5,0),B(1,4).(1)求直线AB的解析式;(2)若直线y=2x﹣4与直线AB相交于点C,求点C的坐标,并根据图象,直接写出关于x 的不等式2x﹣4>kx+b的解集.(3)动点P在y轴上运动,动点Q在x轴上运动,是否存在以P、Q、A、C为顶点,且以AC为边的平行四边形,若存在请求出P点的坐标;若不存在,请说明理由.25.在平面直角坐标系中,△ABC的位置如图所示(每个小方格都是边长为1个单位长度的正方形).(1)将△ABC沿x轴方向向左平移6个单位,画出平移后得到的△A1B1C1;(2)将△ABC绕着点A顺时针旋转90°,画出旋转后得到的△AB2C2,并直接写出点B2、C2的坐标;(3)在平面内有一动点P,使得以P、A、B、C为顶点的四边形是平行四边形,满足条件的点P的个数为_______.26.将折叠书架画出侧面示意图,AB为面板架,CD为支撑架,EF为锁定杆,F可在==.如图甲,将面板AB竖直固定时CD上移动或固定.已知8BC CE cm(AB BD ⊥),点F 恰为CD 的中点.如图乙,当17CF cm =时,EF AB ⊥.(1)求锁定杆EF 的长度;(2)求支撑架CD 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,即可求得这个多边形的边数,由多边形内角和公式可求解.【详解】解:∵一个多边形的每一个外角都等于60°,且多边形的外角和等于360°,∴这个多边形的边数是:360°÷60°=6,∴这个多边形的内角和=180°×(6-2)=720°,故选:C .【点睛】本题考查了多边形的外角和定理.此题比较简单,注意掌握多边形的外角和等于360度是关键.2.B解析:B【分析】先求出正五边形的内角和,再除以内角的个数即可得到答案.【详解】解:正五边形的内角和=5218540(0)-⨯︒=︒,∴∠BAE=5401085=︒︒, 故选:B .【点睛】 此题考查正多边形内角和公式及求正多边形的一个内角的度数,熟记多边形内角和公式是解题的关键.3.C解析:C【分析】根据平行四边形的性质可得AFB FBC ∠=∠,由角平分线可得ABF FBC ∠=∠,所以AFB ABF ∠=∠,所以6AF AB ==,同理可得6DE CD ==,则根据EF AF DF AD =+-即可求解.【详解】∵四边形ABCD 是平行四边形,∴//AD BC ,10AD BC ==,6DC AB ==,∴AFB FBC ∠=∠,∴BF 平分ABC ∠,∴ABF FBC ∠=∠,∴AFB ABF ∠=∠,∴6AF AB ==,同理可得6DE DC ==,∴66102EF AF DE AD =+-=+-=.故选:C .【点睛】本题主要考查了平行四边形的性质、角平分线的定义,解题的关键是依据数学模型“角平分线+平行线=等腰三角形”转化线段.4.B解析:B【分析】利用多边形的外角和360除以外角60得到多边形的边数.【详解】多边形的边数为36060÷=6,故选:B .【点睛】此题考查多边形的外角和定理,正多边形的性质,利用外角和除以外角的度数求正多边形的边数是最简单的题型.5.B解析:B【分析】由平行四边形ABCD 中,BE 平分∠ABC ,可证得△BCE 是等腰三角形,继而利用DE=CE-CD ,求得答案.【详解】 解:四边形ABCD 是平行四边形,AB//CD ∴,CD AB 2.6==,E ABE ∠∠∴=. BE 平分ABC ∠,ABE CBE ∴∠=∠,CBE E ∠∠∴=,CE BC 4∴==,DE CE CD 4 2.6 1.4∴=-=-=.故选:B .【点睛】此题考查了平行四边形的性质,能证得△BCE 是等腰三角形是解此题的关键.6.A解析:A【分析】首先延长AD ,交FE 的延长线于点M ,易证得△DEM ≌△CEF ,即可得EM=EF ,又由AE 平分∠FAD ,即可判定△AEM 是等腰三角形,由三线合一的知识,可得AE ⊥EF .【详解】延长AD ,交FE 的延长线于点M ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠M=∠EFC ,∵E 是CD 的中点,∴DE=CE ,在△DEM 和△CEF 中,M EFC DEM CEF DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEM ≌△CEF (AAS ),∴EM=EF ,∵AE平分∠FAD,∴AM=AF,AE⊥EF.即AF=AD+DM=CF+AD;故①,③正确,②错误.∵AF不一定是∠BAD的角平分线,∴AB不一定等于BF,故④错误.故选:A.【点睛】本题考查了平行四边形的性质、等腰三角形的判定与性质以及全等三角形的判定与性质.注意掌握辅助线的作法,注意掌握数形结合思想的应用.7.D解析:D【分析】设多边形的边数为n,多加的外角度数为x,根据内角和与外角度数的和列出方程,由多边形的边数n为整数求解可得.【详解】设多边形的边数为n,多加的外角度数为x,根据题意列方程得,(n-2)•180°+x=1160°,∵0°<x<180°,∴1160°-180°<(n-2)×180°<1160°,∴549<n−2<649,∵n是整数,∴n=8.故选:D.【点睛】本题主要考查了多边形的内角和公式,利用多边形的内角和是180°的倍数是解题的关键.8.A解析:A【分析】根据平行四边形的判定定理解答即可.【详解】由已知可得AO=CO,BO=DO,∴四边形ABCD是平行四边形,依据是:对角线互相平分的四边形是平行四边形,故选:A.【点睛】此题考查平行四边形的判定定理,熟练掌握平行四边形的五种判定定理并运用解决问题是解题的关键.9.D解析:D【分析】两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.【详解】A、第四个角是76°,有一组对角不相等,不是平行四边形;B、第四个角是72°,两组对角都不相等,不是平行四边形;C、第四个角是88°,而C中相等的两个角不是对角,不是平行四边形;D、第四个角是72°,满足两组对角分别相等,因而是平行四边形.故选:D.【点睛】本题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角的对应的位置关系,并不是有两组角相等的四边形就是平行四边形.10.B解析:B【分析】利用平行四边形性质得∠DAE=∠BEA,再利用角平分线性质证明△BAE是等腰三角形,得到BE=AB即可解题.【详解】∵四边形ABCD是平行四边形,∴AD=BC=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=3,∴CE=BC-BE=5-3=2,故选B.【点睛】本题考查了平行四边形的性质,等腰三角形的判定,属于简单题,熟悉平行线加角平分线得到等腰三角形这一常用解题模型是解题关键.11.A解析:A【分析】根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,结合OE⊥BD可说明EO是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE=DE,再利用平行四边形ABCD的周长为60cm可得AB+AD=30cm,进而可得△ABE的周长.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,又∵OE⊥BD,∴OE是线段BD的中垂线,∴BE=DE,∴AE+ED=AE+BE,∵▱ABCD的周长为60cm,∴AB+AD=30cm,∴△ABE的周长=AB+AE+BE=AB+AD=30cm,故选:A.【点睛】此题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形的对边相等,平行四边形的对角线互相平分.12.A解析:A【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【详解】解:如图∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2又∵点D. E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=1AB=12故选:A【点睛】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.二、填空题13.8【分析】结合题意根据正多边形外角和的性质计算即可得到多边形的边数经计算即可得到答案【详解】根据题意得:机器人行走的多边形外角为∴多边形的边数为:∴多边形的周长为:米故答案为:8【点睛】本题考查了正解析:8【分析】结合题意,根据正多边形外角和的性质计算,即可得到多边形的边数,经计算即可得到答案.【详解】根据题意得:机器人行走的多边形外角为45∴多边形的边数为:360=845︒︒∴多边形的周长为:188⨯=米故答案为:8.【点睛】 本题考查了正多边形的知识;解题的关键是熟练掌握正多边形外角和的性质,从而完成求解.14.9【分析】根据多边形的内角和定理计算即可;【详解】∵四边形ABFG 是正方形∴又∵五边形BCDEF 是正五边形∴正五边形的内角和为∴∴∵∴∴即∴;故答案是9【点睛】本题主要考查了多边形内角和定理准确分析 解析:9【分析】根据多边形的内角和定理计算即可;【详解】∵四边形ABFG 是正方形,∴90BFG ∠=︒,又∵五边形BCDEF 是正五边形,∴正五边形的内角和为()52180540-⨯︒=︒,∴5405108BFE ∠=︒÷=︒,∴36010890162GFE ∠=︒-︒-︒=︒,∵FG FE =,∴FGE FEG ∠=∠,∴180FGE FEG EFG ∠+∠+∠=︒,即1602180FGE ︒+∠=︒,∴9FGE ∠=︒;故答案是9.【点睛】本题主要考查了多边形内角和定理,准确分析计算是解题的关键.15.60°【分析】首先设这个正多边形的边数为n 根据多边形的内角和公式可得180(n-2)=720继而可求得答案【详解】解:设这个正多边形的边数为n ∵一个正多边形的内角和为720°∴180(n-2)=72解析:60°【分析】首先设这个正多边形的边数为n ,根据多边形的内角和公式可得180(n-2)=720,继而可求得答案.【详解】解:设这个正多边形的边数为n ,∵一个正多边形的内角和为720°,∴180(n-2)=720,解得:n=6,∴这个正多边形的每一个外角是:360°÷6=60°.故答案为:60°.【点睛】本题考查了多边形的内角和与外角和的知识.此题难度不大,注意掌握方程思想的应用,注意熟记公式是关键.16.【分析】根据中位线定理推出PE=ADPF=BC 由此得到PE=PF 推出△PEF 是等腰三角形根据三角形的内角和定理求出答案【详解】∵点是对角线的中点点分别是的中点∴PE=ADPF=BC ∵∴PE=PF ∴△解析:120︒【分析】根据中位线定理推出PE=12AD ,PF=12BC ,由此得到PE=PF ,推出△PEF 是等腰三角形,根据三角形的内角和定理求出答案.【详解】∵点P 是对角线BD 的中点,点E 、F 分别是AB 、CD 的中点,∴PE=12AD ,PF=12BC , ∵AD BC =,∴PE=PF ,∴△PEF 是等腰三角形,∴∠PFE=30PEF ∠=︒,∴EPF ∠=1803030120︒︒︒︒--=,故答案为:120︒.【点睛】此题考查三角形的中位线定义及定理,等腰三角形的判定及性质,三角形的内角和定理,熟记三角形的中位线的定义及定理是解题的关键.17.10【分析】先证明AB =AF =6DC =DE 再根据EF =AF +DE−AD 求出AD 即可得出答案【详解】∵四边形ABCD 是平行四边形∴AB =CD =6BC =ADAD ∥BC ∵BF 平分∠ABC 交AD 于FCE 平分解析:10【分析】先证明AB =AF =6,DC =DE ,再根据EF =AF +DE−AD 求出AD ,即可得出答案.【详解】∵四边形ABCD 是平行四边形,∴AB =CD =6,BC =AD ,AD ∥BC ,∵BF 平分∠ABC 交AD 于F ,CE 平分∠BCD 交AD 于E ,∴∠ABF=∠CBF=∠AFB,∠BCE=∠DCE=∠CED,∴AB=AF=6,DC=DE=6,∴EF=AF+DE−AD=6+6−AD=2.∴AD=10,∴BC=10,故答案为:10.【点睛】本题考查平行四边形的性质,等腰三角形的判定和性质等知识,解题的关键是熟练掌握这些知识的应用,属于常见题,中考常考题型.18.【分析】三角形两边中点的连线是三角形的中位线如下图DEDFEF都是△ABC的中位线根据中位线的性质可分别求出长度从而得到周长【详解】如下图在△ABC中点DEF分别是ABBCCA的中点AB=4cmBC解析:15 2【分析】三角形两边中点的连线是三角形的中位线,如下图,DE,DF,EF都是△ABC的中位线,根据中位线的性质可分别求出长度,从而得到周长.【详解】如下图,在△ABC中,点D、E、F分别是AB、BC、CA的中点,AB=4cm,BC=5cm,AC=6cm∵点D、E分别是AB、BC的中点∴DE是△BAC的中位线∴DE=12AC=3cm同理,EF=12AB=2cm,DF=1522CB=cm∴△DEF的周长=3+2+51522=cm故答案为:15 2【点睛】本题考查三角形中位线的定理,需要注意,三角形的中位线平行且等于对应底边的一半,且不可弄错边之间的关系.19.60°【分析】先根据平行四边形的性质得出∠A+∠B=180°∠A=∠C 再由∠B=2∠A 可求出∠A 的度数进而可求出∠C 的度数【详解】解:如下图∵四边形ABCD 是平行四边形∴∠A+∠B=180°∠A=∠解析:60°【分析】先根据平行四边形的性质得出∠A+∠B=180°,∠A=∠C ,再由∠B=2∠A 可求出∠A 的度数,进而可求出∠C 的度数.【详解】解:如下图,∵四边形ABCD 是平行四边形,∴∠A+∠B=180°,∠A=∠C ,∵∠B=2∠A ,∴∠A+2∠A=180°,∴∠A=∠C=60°.故答案为:60°.【点睛】本题考查的是平行四边形的性质.熟知平行四边形的对角相等,邻角互补是解答此题的关键.20.【分析】根据平行四边形的性质得得根据折叠的性质得根据平角的性质即可求解【详解】∵四边形ABCD 是平行四边形∴∴∵将四边形CDMN 沿线段MN 折叠得到四边形QPMN ∴∴故答案为【点睛】本题考察了平行四边 解析:44︒【分析】根据平行四边形的性质得//AD BC ,得68NMD ︒∠=,根据折叠的性质得68PMN NMD ︒∠=∠=,根据平角的性质即可求解.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴68NMD BNM ︒∠=∠=∵将四边形CDMN 沿线段MN 折叠,得到四边形QPMN∴68PMN NMD ︒∠=∠=∴18044AMP PMN NMD ︒∠=︒-∠-∠=故答案为44︒.【点睛】本题考察了平行四边形的性质,平行线的性质,和利用平角求解未知角的度数;其中两直线平行,同位角相等,内错角相等,同旁内角互补.三、解答题21.(1)见解析;(2)见解析;(3)第四个顶点D的坐标为(﹣7,3)或(3,3)或(﹣5,﹣3)【分析】(1)根据网格结构找出点A、B、C关于原点对称的点A′、B′、C′的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C绕坐标原点O逆时针旋转90°的对应点的位置,然后顺次连接即可,再根据平面直角坐标系写出点B的对应点的坐标;(3)分AB、BC、AC是平行四边形的对角线三种情况解答.【详解】解:(1)如图所示,先求出点A、B、C的关于点O对称的点A′(2,-3)、B′(6,0),C′(1,0),描点A′(2,-3)、B′(6,0),C′(1,0),连结A′B′、B′C′、C′A′,则△A′B′C′即为所求;(2)如图所示,求出A、B、C绕坐标原点O逆时针旋转90°后A″(-3,-2)、B″(0,-6)、C″(0,-1),描点A″(-3,-2)、B″(0,-6)、C″(0,-1),连结A″B″、B″C″、C″A″,则△A″B″C″即为所求;(3)如图所示,以AB为对角线,AB中点横坐标=2642--=-,纵坐标=30322+=,(-4,3 2),D1横坐标=-8-(-1)=-7,纵坐标=2×32-0=3,D1(-7,3),以AC为对角线,AC中点(-32,32),D2的横坐标=2×(-32)-(-6)=3,纵坐标=2×32-0=3,D2(3,3),以BC为对角线BC中点坐标为(-3.5,0)D3横坐标=2×(-3.5)-(-2)=-5,纵坐标=0-3=-3,D 3(-5,-3),第四个顶点D 的坐标为(﹣7,3)或(3,3)或(﹣5,﹣3).【点睛】本题考查中心对称性质,旋转对称性质,平行四边形性质,中点坐标公式,掌握中心对称性质,旋转对称性质,平行四边形性质,中点坐标公式,熟记性质以及网格结构准确找出对应点的位置是解题的关键.22.见解析【分析】由四边形ABCD 是平行四边形,可得AB ∥CD ,AB=DC ,易证得△DEF ≌△AEB ,则可得DF=AB ,继而证得DC=DF .【详解】证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AB=DC ,∴∠F=∠EBA ,∵E 是AD 边的中点,∴DE=AE ,在△DEF 和△AEB 中,F EBA DEF AEB DE AE ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△DEF ≌△AEB (AAS ),∴DF=AB ,∴DC=DF .【点睛】此题考查了平行四边形的性质与全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.23.(1)2t ,2t ,604t -;(2)//EF AC ,理由见解析;(3)606y t =-,10t =;(4)存在,152t s =或12t s = 【分析】 (1)根据题意直接写出AE ,AD ,在Rt CDF 中写出DF 即可;(2)根据题意可得//DF AE ,再结合(1)中结论,证得四边形ADFE 是平行四边形即可;(3)由(2)可知四边形ADFE 是平行四边形,点O 即为对角线的交点,ADO △与DFO 的周长差即为线段AD 与DF 的差,从而列出表达式再计算即可;(4)分两种情况进行讨论,当DE DF ⊥与DE FE ⊥时,各自进行计算即可.【详解】(1)同时运动t 时间时,2AE t =,4CD t =,604AD AC DC t =-=-,因为30C ∠=︒,DF BC ⊥,则122==DF CD t , 故答案为:2t ,2t ,604t -;(2)//EF AC ,理由如下: 由题:DF BC ⊥,AB BC ⊥,则//DF AB ,又E 在AB 上,//DF AE ∴,由(1)可知,随着时间变化,总有2AE DF t ==,即:DF 与AE 是平行且相等的关系,则四边形ADFE 是平行四边形,//EF AC ∴,(3)由(2)可知,四边形ADFE 是平行四边形,连接AF ,点O 即为对角线AF 和DE 的交点,则AO FO =,ADO DFO A C D F C D ∆∆∴-=-,即:6042606y t t t =--=-,若ADO △与DFO 的周长相等,则0y =,即:6060t -=,解得:10t =,606y t ∴=-,当10t =时,ADO △与DFO 的周长相等;(4)①若DE DF ⊥,即90EDF ∠=︒时,//DE BC ,则在Rt ADE △中,30ADE C ∠=∠=︒,24AD AE t ∴==,又604AD t =-,6044t t ∴-=,解得:152t =;②若DE FE ⊥,即90DEF ∠=︒时,四边形ADFE 是平行四边形,//AD EF ∴,DE AD ∴⊥,ADE ∴为直角三角形,90ADE ∠=︒,60A ∠=︒,30DEA ∴∠=︒,12AD AE ∴=, 即:604t t -=,解得:12t =,综上,当152t s =或12t s =时,DEF 为直角三角形. 【点睛】 本题考查了平行四边形的判定与性质,直角三角形的性质等,熟记基本的性质,灵活分类讨论是解题关键.24.(1)5y x =-+;(2)3x >;(3)存在,(0,2)或(0,2-).【分析】(1)利用待定系数法把点A (5,0),B (1,4)代入y kx b =+可得关于k 、b 得方程组,再解方程组即可;(2)联立两个函数解析式,再解方程组即可求得点C 的坐标;根据C 点坐标可直接得到关于x 的不等式2x ﹣4>kx +b 的解集;(3)分CQ 为对角线和CP 为对角线时两种情况讨论,利用平行四边形的性质求解即可.【详解】(1)∵直线y kx b =+经过点A (5,0),B (1,4),∴504k b k b +=⎧⎨+=⎩, 解得15k b =-⎧⎨=⎩, ∴直线AB 的解析式为:5y x =-+;(2)∵若直线24y x =-与直线AB 相交于点C ,∴524y x y x =-+⎧⎨=-⎩, 解得32x y =⎧⎨=⎩, ∴点C (3,2);根据图象:当3x >时,直线24y x=﹣在直线y kx b =+的上方, ∴不等式2x ﹣4>kx +b 的解集为:3x >;(3)存在,理由如下:当CQ 为对角线时,如图1所示:根据平行四边形的性质得PC ∥AQ ,∴点P的纵坐标与点C的纵坐标相等,此时点P的坐标为(0,2);当CP为对角线时,如图2所示:根据平行四边形的性质得PC的中点在x轴上,设点P的坐标为(0,n),则20 2n,解得2n=-,此时点P的坐标为(0,2-);综上,点P的坐标为(0,2)或(0,2-).【点睛】本题考查了平行四边形的性质,待定系数法求一次函数解析式,两直线的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息,利用数形结合思想解决问题.25.(1)见解析;(2)画图见解析;B2(4,2-),C2(1,3-);(3)3【分析】(1)分别作出A、B、C的对应点A1、B1、C1即可;(2)分别作出B,C的对应点B2、C2即可;(3)分别作出P的位置即可.【详解】解:(1)如图:(2)如图,可以得到B 2(4,2-),C 2(1,3-);(3)如图,满足条件的P 点有3个.【点睛】本题考查的是图形的变换以及平行四边形的存在性,注意掌握旋转和平移作图的知识点和正确认识平行四边形即可.26.(1)15EF cm =;(2)CD=97【分析】(1)根据第二幅图,在Rt CEF 中用勾股定理进行计算;(2)根据第一幅图,过F 作FG AB ⊥,利用中位线算出EG 长,再用勾股定理求出GF ,从而得到BD ,最后再用勾股定理求出CD .【详解】解:(1)如图,∵EF AB ⊥,17CF cm =,8BC CE cm ==, ∴2215EF CF CE cm =-=;(2)如图,过F 作FG AB ⊥,∵AB BD ⊥,∴//FG BD ,∵点F 恰为CD 的中点, ∴142CG BC cm ==,∴8412EG cm =+=, ∵15EF cm =,∴229FG EF EG cm =-=,∴218BD FG cm ==, ∴22297CD CB BD =+=.【点睛】本题考查解直角三角形的实际应用,解题的关键是构造辅助线,并熟练运用与三角形有关的性质判断进行证明求解.。
一、选择题1.如图,三个正方形围成一个直角三角形,64、400分别为所在正方形的面积,则图中字母M 所代表的正方形面积可表示为( )A .40064-B .2240064-C .2240064-D .40064+ 2.已知正方形ABCD 中,对角线4AC =,这个正方形的面积是( )A .8B .16C .82D .162 3.已知点()0,0A ,()0,4B ,()3,4C t +,()3,D t .记()N t 为ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则()N t 所有可能的值为( )A .6、7B .7、8C .6、7、8D .6、8、9 4.顺次连接矩形ABCD 各边的中点,所得四边形是( )A .平行四边形B .正方形C .矩形D .菱形 5.如图,在正方形 ABCD 内有一个四边形AECF ,AE EF ⊥, CF EF ⊥且8AE CF ==,12EF =,则图中阴影分的面积为( )A .100B .104C .152D .3046.在菱形ABCD 中,∠ABC=60゜,AC=4,则BD=( )A .3B .23C .33D .437.如图,点P 是矩形ABCD 的对角线上一点,过点P 作//EF BC ,分别交,AB CD 于,E F ,连接,PB PD ,若1,3AE PF ==,则图中阴影部分的面积为( )A .3B .6C .9D .12 8.如图,点E 为矩形ABCD 的边BC 上的点,DF AE ⊥于点F ,且DF AB =,下列结论不正确的是( )A .DE 平分AEC ∠B .ADE ∆为等腰三角形C .AF AB =D .AE BE EF =+ 9.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点D 作DH ⊥AB 于点H ,连接OH ,若OA =6,S 菱形ABCD =48,则OH 的长为( )A .4B .8C .13D .610.如图,将长方形ABCD 沿对角线BD 折叠,使点C 落在点C ′处,BC ′交AD 于E ,AD =8,AB =4,则重叠部分(即BDE )的面积为( )A .6B .7.5C .10D .2011.如图,在矩形ABCD 中,3AB =,4=AD ,ABC ∠的平分线BE 交AD 于点E .点F ,G 分别是BC ,BE 的中点,则FG 的长为( )A .2B .52C .10D .32 12.如图,将三角形纸片ABC 沿过,AB AC 边中点D 、E 的线段DE 折叠,点A 落在BC 边上的点F 处,下列结论中,一定正确的个数是( )①BDF 是等腰三角形 ②12DE BC = ③四边形ADFE 是菱形 ④2BDF FEC A ∠+∠=∠A .1B .2C .3D .4二、填空题13.如图,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的中线,E 、F 分别为DB 、BC 的中点,若AB =8,则EF =_____.14.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.15.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______.16.如图,在四边形ABCD 中,AC a =,BD b =,且AC BD ⊥顺次连接四边形ABCD 各边的中点,得到四边形1111D C B A ,再顺次连接四边形1111D C B A 各边中点,得到四边形2222A B C D …如此进行下去,得到四边形n n n n A B C D ,下列结论正确的有__________.①四边形2222A B C D 是矩形;②四边形4444A B C D 是菱形;③四边形5555A B C D 的周长是4a b +.17.如图,在ABCD 中,AC 与BD 相交于点O ,(1)若18cm,24cm AC BD ==,则AO =_______,BO =_______.又若13AB =厘米,则COD △的周长为________.(2)若AOB 的周长为30cm ,12cm AB =,则对角线AC 与BD 的和是________. 18.如图,菱形ABCD 的对角线相交于点O ,AC =12,BD =16,点P 为边BC 上一点,且P 不与写B 、C 重合.过P 作PE ⊥AC 于E ,PF ⊥BD 于F ,连结EF ,则EF 的最小值等于__________.19.把一张矩形纸片ABCD 按如图方式折叠,使顶点B 和顶点D 重合,折痕为EF .若38CDF ∠=︒,则EFD ∠ 的度数是_________.20.如图所示,在ABCD 中,AC 与BD 相交于点O ,若DAC EAC ∠=∠,4AE =,3AO =,则AEC S ∆的面积为____.三、解答题21.如图所示,小明在测量旗杆AB 的高度时发现,国旗的升降绳自然下垂到地面时,还剩余0.3米,小明走到距离国旗底部6米的C 处,把绳子拉直,绳子末端恰好位于他的头顶D 处,假设小明的身高为1.5米,求旗杆AB 的高度是多少米?22.如图,BD 为ABC 的角平分线,E 为AB 上一点,BE BC =,连结DE . (1)求证:BDC BDE ≅△△;(2)若7AB =,2CD =,90︒∠=C ,求ABD △的面积.23.如图,点E 在ABCD 内部,//,//AF BE DF CE .(1)求证:BCE ADF ≅∆;(2)求证:AEDF 1S 2ABCD S =四边形24.我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.但人们可以通过折纸把一个角三等分,今天我们就通过折纸把一个直角三等分.操作如下:第一步:如图①,对折长方形纸片ABCD ,使AD 与BC 重合,沿EF 对折后,得到折痕EF ,把纸片展平;第二步:如图②,再一次折叠纸片,使点A 落在EF 上(标记为点O ),并使折痕经过点B ;第三步:如图③,再展开纸片,得到折痕BR ,同时连接BO RO 、.这时就可以得到BR BO 、把直角ABC 三等分.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程. 已知:如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是由BAR ∆沿BR 折叠后得到的三角形 ,求证:25.如图,四边形ABCD 是平行四边形,∠BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)若BF 恰好平分∠ABE ,连接AC 、DE ,求证:四边形ACED 是平行四边形.26.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】要求图中字母所代表的正方形的面积,根据面积=边长×边长=边长的平方,设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,已知斜边和一直角边的平方,由勾股定理即可求出2a ,即可得到答案.【详解】设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,如图所示,在该直角三角形中,由勾股定理得:22240064a c b =-=-,故选:A .【点睛】本题主要考查勾股定理的应用和正方形的面积公式,解题的关键在于熟练运用勾股定理求出正方形的边长的平方.2.A解析:A【分析】根据勾股定理,可得正方形的边长,进而可得正方形的面积.【详解】∵正方形ABCD中,对角线4AC ,∴AB2+BC2=AC2,∴2AB2=42,∴AB2=8.故选:A.【点睛】本题主要考查的是正方形的性质,勾股定理,熟练掌握勾股定理是解题的关键.3.C解析:C【分析】分别求出t=1,t=1.5,t=2,t=0时的整数点,根据答案即可求出答案.【详解】解:当t=0时,A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=1.5时,A(0,0),B(0,4),C(3,5.5),D(3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;当t=2时,A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A错误,选项B错误;选项D错误,选项C正确;故选:C.【点睛】本题考查了平行四边形的性质.主要考查学生的理解能力和归纳能力.4.D解析:D【分析】利用三角形中位线定理,矩形对角线的性质,菱形的判定判断即可.【详解】如图,设矩形ABCD各边的中点依次为E,F,G,H,∴EF,FG,GH,HE分别是△ABC,△BCD,△CDA,△DAB的中位线,∴EF=12AC,FG=12BD,GH=12AC,EH=12BD,∵四边形ABCD是矩形,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH 是菱形,故选D.【点睛】本题在矩形背景考查了三角形中位线定理,菱形的判定,矩形的性质,熟练运用三角形中位线定理,矩形的性质,菱形的判定是解题的关键.5.B解析:B【分析】由题意可证四边形AECF 是平行四边形,可得AO =CO ,EO =FO =12EF =6,由勾股定理可求AO =10,可得AC =20,由阴影分的面积=S 正方形ABCD -S ▱AECF 可求解.【详解】解:连接AC ,∵AE ⊥EF ,CF ⊥EF ,∴AE ∥CF ,且AE =CF ,∴四边形AECF 是平行四边形,∴AO =CO ,EO =FO =12EF =6, ∴AO 22AE EO +10,∴AC =20, ∴阴影分的面积=S 正方形ABCD -S ▱AECF =20202⨯-8×12=104, 故选:B .【点睛】本题考查了正方形的性质以及勾股定理的应用.此题综合性较强,解题时要注意数形结合思想的应用.6.D解析:D【分析】根据菱形的性质可得到直角三角形,利用勾股定理计算即可;【详解】如图,AC 与BD 相较于点O ,∵四边形ABCD 是菱形,4AC =,∴AC BD ⊥,2AO =,又∵∠ABC=60゜,∴30ABO ∠=︒,∴24AB AO ==, ∴224223BO =-=,∴243BD BO ==;故选D .【点睛】本题主要考查了菱形的性质,结合勾股定理计算是解题的关键. 7.A解析:A【分析】先根据矩形的性质证得DFP PBE SS =,然后求解即可.【详解】解:作PM ⊥AD 于M ,交BC 于N ,∴四边形AEPM 、四边形DFPM 、四边形CFPN 和四边形BEPN 都是矩形, ∵ADC ABC S S =△△,AMP AEP SS =,PBE PBN S S =,PFD PDM S S =,PFC PCN S S =, ∴S 矩形DFPM =S 矩形BEPN ,∵PM=AE=1,PF=NC=3,∴131322DFP PBE S S ==⨯⨯=△△, ∴S 阴=33+=322, 故选:A .【点睛】 本题主要考查矩形的性质、三角形的面积等知识,证得DFP PBE S S =是解答本题的关键. 8.C解析:C【分析】根据矩形的性质及HL 定理证明Rt △DEF ≌Rt △DEC ,然后利用全等三角形的性质进行推理判断【详解】解:在矩形ABCD 中,∠C=90°,AB=CD∵DF AE ⊥于点F ,且DF AB =∴∠DFE=∠C=90°,DF=CD在Rt △DEF 和Rt △DEC 中DF DC DE DE=⎧⎨=⎩ ∴Rt △DEF ≌Rt △DEC∴∠FDE=∠CDE ,即DE 平分AEC ∠,故A 选项不符合题意;∵Rt △DEF ≌Rt △DEC∴∠FED=∠CED又∵矩形ABCD 中,AD ∥BC∴∠ADE=∠CED∴∠FED=∠ADE∴AD=AE ,即ADE ∆为等腰三角形,故B 选项不符合题意∵Rt △DEF ≌Rt △DEC∴EF=EC在矩形ABCD 中,AD=BC ,又∵AD=AE∴AE=AD=BC=BE+EC=BE+EF ,故D 选项不符合题意由于AB=CD=DF ,但在Rt △ADF 中,无法证得AF=DF ,故无法证得AB=AF ,故C 选项符合题意故选:C .【点睛】本题考查矩形的性质及三角形全等的判定和性质,掌握相关性质定理正确推理论证是解题关键. 9.A解析:A【分析】由菱形的性质得出OA =OC =6,OB =OD ,AC ⊥BD ,则AC =12,由直角三角形斜边上的中线性质得出OH =12AB ,再由菱形的面积求出BD =8,即可得出答案. 【详解】解:∵四边形ABCD 是菱形,∴OA =OC =6,OB =OD ,AC ⊥BD ,∴AC =12,∵DH ⊥AB ,∴∠BHD =90°,∴OH =12BD , ∵菱形ABCD 的面积=12×AC×BD =12×12×BD =48, ∴BD =8,∴OH =12BD =4; 故选:A .【点睛】本题考查了菱形的性质,直角三角形的性质,菱形的面积公式,关键是根据直角三角形斜边上的中线性质求得OH=12BD . 10.C解析:C【分析】由折叠结合矩形的性质先证明,BE DE =设,BE DE x == 则8,AE x =- 再利用勾股定理求解,x 从而可得BDE 的面积.【详解】 解: 长方形ABCD ,8,4,AD AB ==//,AD BC ∴,ADB CBD ∴∠=∠由对折可得:,CBD C BD '∠=∠,ADB C BD '∴∠=∠,BE DE ∴=设,BE DE x == 则8,AE x =-由222,BE AB AE =+ ()22248,x x ∴=+-1680,x ∴=5,x ∴=5,DE BE ∴== 115410.22BDE S DE AB ∴==⨯⨯= 故选:.C【点睛】本题考查的是矩形与折叠问题,勾股定理的应用,矩形的性质,掌握以上知识是解题的关键.11.C解析:C【分析】连接CE ,由矩形的性质和角平分线的性质可得AB=AE=3,可得ED=1,由勾股定理可求CE 的长,由三角形中位线定理可求FG 的长;【详解】连接CE ,如图所示:∵四边形ABCD 是矩形,∴∠BAD=∠ABC=∠D=90°,AB=CD=3,AD=BC=4,AD ∥BC ,∴∠CBE=∠AEB ,∵BE 平分∠ABC.∴∠ABE=∠CBE=45°,∴∠ABE=∠AEB=45°,∴AB=AE=3,∴ED=AD-AE=4-3=1,在Rt △CDE 中 22221310DE CD +=+∵点F 、G 分别为BC 、BE 的中点,∴FG 是△CBE 的中位线,FG=1210 故选:C【点睛】本题考查了矩形的性质,勾股定理,等腰直角三角形的判定与性质,三角形中位线的定理等知识;熟练掌握矩形的性质和三角形中位线定理,求出EC 的长度是解题的关键. 12.C解析:C【分析】根据菱形的判定和等腰三角形的判定,采用排除法,逐条分析判断.【详解】解:①∵DE ∥BC ,∴∠ADE =∠B ,∠EDF =∠BFD ,又∵△ADE ≌△FDE ,∴∠ADE =∠EDF ,AD =FD ,AE =CE ,∴∠B =∠BFD ,∴△BDF 是等腰三角形,故①正确;同理可证,△CEF 是等腰三角形,∴BD =FD =AD ,CE =FE =AE ,∴DE 是△ABC 的中位线,∴DE =12BC ,故②正确; ∵∠B =∠BFD ,∠C =∠CFE ,又∵∠A +∠B +∠C =180°,∠B +∠BFD +∠BDF =180°,∠C +∠CFE +∠CEF =180°, ∴∠BDF +∠FEC =2∠A ,故④正确.而无法证明四边形ADFE 是菱形,故③错误.所以一定正确的结论个数有3个,故选:C .【点睛】本题考查了菱形的判定,中位线定理,等腰三角形的判定和性质,菱形的判别方法是说明一个四边形为菱形的理论依据,常用三种方法:①定义;②四边相等;③对角线互相垂直平分.具体选择哪种方法需要根据已知条件来确定.二、填空题13.2【分析】根据直角三角形的性质求出再根据三角形中位线定理计算即可【详解】解:在中是斜边上的中线分别为的中点是的中位线故答案为:2【点睛】本题考查的是直角三角形的性质三角形中位线定理掌握三角形的中位线 解析:2【分析】根据直角三角形的性质求出CD ,再根据三角形中位线定理计算即可.【详解】解:在Rt ABC ∆中,90ACB ∠=︒,CD 是斜边AB 上的中线,8AB =,118422CD AB ∴==⨯=, E 、F 分别为DB 、BC 的中点,EF ∴是BCD ∆的中位线,114222EF CD ∴==⨯=, 故答案为:2.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.14.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF 故四边形的周长=AD+CD+EF 根据已知求解即可【详解】解:在平行四边形ABCD 中AD ∥BCAC 与BD 互相平分∴AO=OC ∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF ,故四边形EFCD 的周长=AD+CD+EF ,根据已知求解即可.【详解】解:在平行四边形ABCD 中,AD ∥BC ,AC 与BD 互相平分∴AO=OC ,∠DAC=∠ACB ,∠AOE=∠COF∴△AOE ≌△COF∴AE=CF ,OF=OE=2.5∴四边形EFCD 的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF =19 2.52+×2 =14.5. 故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.15.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB , ∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB ,∴43MA AE MC BC ==. ∴MA MC的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.16.②③【分析】利用三角形的中位线的性质证明四边形是矩形四边形是菱形四边形是矩形四边形是菱形从而可得到规律序号n 是奇数时四边形是矩形当序号n 是偶数时四边形是菱形再探究n 是奇数时四边形的周长即可解决问题【 解析:②③【分析】利用三角形的中位线的性质证明四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,从而可得到规律,序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,再探究n 是奇数时四边形的周长即可解决问题.【详解】解: 1111,,,A B C D 分别是,,,AB BC CD DA 的中点,1111111111//,,//,,22A B AC A B AC C D AC C D AC ∴== 11//,A D BD11111111//,,A B C D A B C D ∴=∴ 四边形1111D C B A 是平行四边形,,AC BD ⊥ 11//,A B AC 11//,A D BD1111,A B A D ∴⊥∴ 四边形1111D C B A 是矩形,1111,AC B D ∴=如图,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,∴ 2211221111,,22A B AC A D B D == 四边形2222A B C D 是平行四边形, 2222,A B A D ∴=∴ 四边形2222A B C D 是菱形,故①不符合题意,2222,A C B D ∴⊥同理可得:四边形3333A B C D 是矩形,四边形4444A B C D 是菱形,故②符合题意,······总结规律:四边形n n n n A B C D , 当序号n 是奇数时四边形是矩形,当序号n 是偶数时四边形是菱形,111111111111,,2222A B C D AC a A D B C BD b ====== ∴ 四边形1111D C B A 的周长为,a b + 如图, 四边形1111D C B A 是矩形,四边形2222A B C D 是菱形,2222,,,A B C D 分别是11111111,,,A B B C C D D A 的中点,222222112211,,,A C B D A C A D B D A B ∴⊥==由中位线的性质同理可得:33332233332211111111,,22242224A DBC BD a a D C A B A C b b ===⨯====⨯= 所以四边形3333A B C D 的周长为()1,2a b + 由规律可得:四边形5555A B C D 是矩形, 同理可得:四边形5555A B C D 的周长是()11.224a b a b +⨯+=故③符合题意. 故答案为②③.【点睛】本题考查三角形的中位线的性质,中点四边形,菱形的判定与性质,矩形的判定与性质,解题的关键是学会从特殊到一般,探究规律,利用规律解决问题.17.9cm12cm34cm36cm 【分析】(1)根据平行四边形对角线互相平分对边相等可得结果;(2)根据△AOB 的周长和AB 的长度得到AO+BO 从而得到AC+BD 【详解】解:(1)在平行四边形ABCD 中解析:9cm 12cm 34cm 36cm【分析】(1)根据平行四边形对角线互相平分,对边相等可得结果;(2)根据△AOB 的周长和AB 的长度,得到AO+BO ,从而得到AC+BD .【详解】解:(1)在平行四边形ABCD 中,∵AC=18cm ,BD=24cm ,∴AO=12AC=9cm=CO ,BO=12BD=12cm=DO , ∵AB=13cm ,∴CD=13cm ,∴COD △的周长为CO+DO+CD=9+12+13=34cm ,故答案为:9cm ,12cm ,34cm ;(2)∵△AOB 的周长为30cm ,∴AB+AO+BO=30cm ,∵AB=12cm ,∴AO+BO=30-12=18cm ,∴AC+BD=2AO+2BO=36cm .【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分,平行四边形的对边相等. 18.48【分析】连接由菱形的性质解得再根据勾股定理解得继而证明四边形为矩形得到根据垂线段最短解得当时有最小值最后根据三角形面积公式解题即可【详解】连接四边形是菱形四边形为矩形当时有最小值此时的最小值为故 解析:4.8【分析】连接OP ,由菱形的性质解得118,622BO BD OC AC ====,再根据勾股定理解得10BC =,继而证明四边形OEPF 为矩形,得到FE OP =,根据垂线段最短解得当OP BC ⊥时,OP 有最小值,最后根据三角形面积公式解题即可.【详解】连接OP ,四边形ABCD 是菱形,12,16AC BD ==,AC BD ∴⊥118,622BO BD OC AC ==== 22643610BC OB OC ∴=+=+=,,PE AC PF BD AC BD ⊥⊥⊥∴四边形OEPF 为矩形,FE OP ∴=当OP BC ⊥时,OP 有最小值,此时1122OBC S OB OC BC OP =⋅=⋅ 68 4.810OP ⨯∴== EF ∴的最小值为4.8,故答案为:4.8.【点睛】本题考查菱形的性质、矩形的判定与性质、勾股定理、垂线段最短等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.64°【分析】先根据矩形的性质求出∠CFD 的度数继而求出∠BFD 的度数根据图形折叠的性质得出∠EFD=∠BFE=∠BFD 即可得出结论【详解】解:∵ABCD 是矩形∴∠DCF=90°∵∠CDF=38°∴解析:64°【分析】先根据矩形的性质求出∠CFD 的度数,继而求出∠BFD 的度数,根据图形折叠的性质得出∠EFD=∠BFE=12∠BFD ,即可得出结论. 【详解】解:∵ABCD 是矩形,∴∠DCF=90°,∵∠CDF=38°,∴∠CFD=52°,∴∠BFD=180°-52°=128°,∵四边形EFDA 1由四边形EFBA 翻折而成,∴∠EFD=∠BFE=12∠BFD=12×128°=64°. 故答案为:64°.【点睛】本题考查的是矩形折叠问题,掌握轴对称的性质是关键.20.【分析】先证明△AEC 是等腰三角形再证OE ⊥AC 然后用勾股定理求出OE 即可求【详解】解:如图1连接OE ∵四边形ABCD 是平行四边形∴OA=OC=3AD ∥BC ∴∠DAC=∠ACB 又∵∴∠ACB=∠EA解析:37【分析】先证明△AEC 是等腰三角形,再证OE ⊥AC ,然后用勾股定理求出OE ,即可求AEC S ∆.【详解】解:如图1,连接OE ,∵四边形ABCD 是平行四边形,∴OA=OC=3,AD ∥BC ,∴∠DAC=∠ACB ,又∵DAC EAC ∠=∠,∴∠ACB=∠EAC ,∴AE=EC=4,∴△AEC 是等腰三角形,∴OE ⊥AC ,在Rt △AOE 中,由勾股定理得,AO 2+OE 2=AE 2,∴32+OE 2=42,∴∴162AEC s =⨯=故答案是:【点睛】本题综合考查了平行四边形的性质,等腰三角形的判定与性质和勾股定理等相关知识,证明△AEC 是等腰三角形是解本题的关键.三、解答题21.旗杆AB 的高度为10.6米【分析】过点D 作DE AB ⊥,垂足为E ,可证四边形BCDE 为长方形,可知 1.5BE CD ==米,设旗杆高度为x 米,则绳子长度为(0.3)AD x =+米,( 1.5)AE x =-米,在Rt ADE △中,由勾股定理,得222AE DE AD +=,222( 1.5)6(0.3)x x -+=+,解方程即可.【详解】解:过点D 作DE AB ⊥,垂足为E ,∵AB ⊥BC ,CD ⊥BC∴∠EBC=∠BCD=∠BED=90°,∴四边形BCDE 为长方形,∴ 1.5BE CD ==米,设旗杆高度为x 米,则绳子长度为(0.3)AD x =+米,( 1.5)AE AB BE x =-=-米, 在Rt ADE △中,由勾股定理,得222AE DE AD +=,∴222( 1.5)6(0.3)x x -+=+,整理得223 2.25360.60.09x x x x -++=++,即3.638.16x =,解得10.6x =.答:旗杆AB 的高度为10.6米.【点睛】本题考查勾股定理,矩形的判定与性质,一元一次方程的解法,掌握勾股定理,矩形的判定与性质,一元一次方程的解法,利用勾股定理结合旗杆与绳长的关系构造方程是解题关键.22.(1)证明见解析;(2)7【分析】(1)根据角平分线的性质可得DBC DBE ∠=∠,再根据已知条件BE BC =,BD BD =,即可证明;(2)根据(1)中结果,得2DE CD ==,90DEB C ∠=∠=︒,即可求得ABD △的面积.【详解】(1)∵BD 平分ABC ∠,∴DBC DBE ∠=∠,∴在BDC 和BDE 中,BD BD =,DBC DBE ∠=∠,BE BC =,∴BDC ≌BDE ;(2)∵BDC ≌BDE ,∴2DE CD ==,90DEB C ∠=∠=︒, ∴1172722ABD S AB DE =⋅=⨯⨯=△. 【点睛】本题考查了角平分线的性质、全等三角形的证明和性质、三角形面积等知识,解题的关键是熟练掌握运用以上知识点.23.(1)见解析;(2)见解析【分析】(1)先证明CBE DAF ∠=∠,BCE ADF ∠=∠,然后利用ASA 证明:△BCE ≌△ADF ; (2)根据点E 在ABCD 内部,可知:S △BEC +S △AED =12S ▱ABCD ,可得结论. 【详解】解:()1四边形ABCD 是平行四边形,,//AD BC AD BC =,180,ABC BAD ∴∠+∠=//,AF BE180,EAB BAF ∴∠+∠=︒,CBE DAF ∴∠=∠同理得,BCE ADF ∠=∠()BCE ADF ASA ∴∆≅∆()2点E 在ABCD 内部, ∴12BEC AED ABCD S S S ∆∆+=,由()1知: ,BCE ADF ∆≅∆BCE ADF S S ∆∆∴= ∴AEDF 1S 2ADF AED BEC AED ABCD S S S S S ∆∆∆∆=+=+=四边形.【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.24.点O 在折痕EF 上,BR BO 、把ABC ∠三等分,见解析【分析】如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是BAR ∆沿BR 折叠后得到的三角形,点O 在折痕EF 上;连接AO , 根据折叠的性质可得△AOB 为等边三角形,然后结合矩形的性质即可求证所求问题.【详解】解:已知:如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是BAR ∆沿BR 折叠后得到的三角形,点O 在折痕EF 上.求证:BR BO 、把ABC ∠三等分证明:连接AO线段EF 是长方形ABCD 对折后的折痕 ∴EF 垂直平分AB 又点O 在对称轴EF 上AO BO ∴=BOR ∆是BAR ∆沿BR 折叠后得到的三角形,12BO AB ∴=∠=∠AO BO AB ∴==ABO ∴∆是等边三角形60ABO ︒∴∠=又12ABO ∠+∠=∠1230︒∴∠=∠= 又90ABC ︒∠= 330ABC ABO ︒∴∠=∠-∠=123∴∠=∠=∠BR BO ∴、把ABC ∠三等分.【点睛】本题主要考查矩形的性质及等边三角形的性质和判定,还考查了学生的观察力和动手能力,动手操作一下,问题更容易解决.25.(1)见解析;(2)见解析【分析】(1)根据平行四边形的性质得到AB =CD ,∠DAE =∠AEB ,利用AE 平分∠BAD ,推出∠BAE =∠AEB ,得到BE=AB ,即可得到结论;(2)根据BE =AB ,BF 平分∠ABE ,得到AF =EF ,证明△ADF ≌△ECF ,推出DF =CF ,即可得到结论.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB =CD ,∴∠DAE =∠AEB ,∵AE 平分∠BAD ,∴∠BAE =∠DAE ,∴∠BAE =∠AEB ,∴BE =AB ,∴BE=CD ;(2)∵BE =AB ,BF 平分∠ABE ,∴AF =EF ,在△ADF 和△ECF 中,DAE AEB AF EFAFD EFC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADF ≌△ECF ,∴DF =CF ,又∵AF =EF ,∴四边形ACED 是平行四边形.【点睛】此题考查平行四边形的判定及性质,全等三角形的判定及性质,等腰三角形三线合一的性质,熟记各知识点并应用解决问题是解题的关键.26.(1)见解析;(2)CE=CF ,理由见解析;(3)52或122【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG ∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt △ADK ≌Rt BAG ,则AK =BG =12,DK =AG =5,∵AF +FK =AK =BG=GF=AG +AF∴FK =AG =5在R t △DFK 中,根据勾股定理可得,DF =2252DK FK +=②点F 在AB 左侧时,如图,过D 作DK ⊥AG ,交其延长线于K .方法同①,可得FK =AG =12,在R t △DFK 中,根据勾股定理可得,DF 22122DK FK +=综上所述,DF 的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.。
平行四边形的判定(一)内容解析“平行四边形的判定”是初中数学几何部分重要的内容之一,这主要体现在知识技能和思想方法两个方面。
从知识技能上讲,它既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是以后学习特殊平行四边形的基础,同时它还进一步培养学生简单的推理能力和图形迁移能力;从思想方法上讲,通过平行四边形和三角形之间的相互转化,渗透了化归思想。
本节课是在学生前面学段已经学过的平行四边形知识、本学段学过的四边形、平行线、三角形的有关知识的基础上来学习的,也可以说是在已有知识的基础上作进一步较系统的整理和研究。
本章内容的学习反复运用了平行线和三角形的知识,从这个角度来看,本章的内容也是前面平行线和三角形等内容的应用和深化一、教学目标:1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想的思维方法来研究问题.二、重点、难点1.重点:平行四边形的判定方法及应用.2.难点:平行四边形的判定定理与性质定理的灵活应用.教学过程:温故知新1.什么是平行四边形?A Array2.如图,在ABCD 中:若AB=2,BO=4, CO=5,∠ABD=120°则:CD=_____,D0=____, BD=______.∠ADC=____., 3.如何判定一个四边形ABCD是否为平行四边形?探究新知:活动1,用手中两块相等的三角板拼出四边形,拼出的各个四边形的两组对边分别相等吗?它们都是平行四边形吗?结论: 两组对边分别相等的四边形是平行四边形。
推理格式:∵ AD=____, AB=_______.∴ 四边形ABCD 是平行四边形。
活动2, 请在草稿纸上画出两条线段AC,BD ,且相交于O 点,然后依次连接点A,B,C,D.请问当交点O 在什么位置时,四边形ABCD 为平行四边形吗?猜测:对角线互相平分的四边形为平行四边形。
课题:18.1.2.1平行四边形的判定(1)【学习目标】理解并掌握平行四边形判定方法,会应用其进行有关的证明.【学习重点】平行四边形的判定的应用【学习难点】平行四边形的判定的推导【方法指导】与矩形的性质对比学习【课前预习案】平行四边形的性质:【课堂探究案】一、探究研讨:探究1:如图1,将两长两短的四根木条用小钉绞合在一起,做成一个四边形,使等长的木条成为对边,转动这个四边形,使它的形状改变。
在变化的过程中,它一直是一个平行四边形吗?由此可得:平行四边形的判定定理1、已知:求证:证明:探究2:如图2,将两根细木条AC、BD的中点重叠,用小钉绞合在一起,用橡皮筋连接木条的顶点,做成一个四边形ABCD,转动两根木条,四边形ABCD一直是一个平行四边形吗?由此可得:平行四边形的判定定理2、已知:求证:证明:二、课堂练习1、求证:两组对角分别相等的四边形是平行四边形2、已知在四边形ABCD中,AB∥CD且AB=CD。
求证:四边形ABCD是平行四边形三、课堂小结:判定一个四边形是平行四边形的方法:【课末达标案】1.根据下列条件,不能判定一个四边形为平行四边形的是( )A.两组对边分别相等B.对角线互相平分C.对角线相等D.两组对边分别平行E.一组对角相等2.能判定一个四边形是平行四边形的条件是()A.一组对角相等B.一组对边平行且相等C.一对邻角互补D.两条对角线互相垂直3.四边形ABCD中,若∠A = ∠C,∠B = ∠D,则下列结论中错误的是()A、AB = CDB、AD∥BCC、∠A = ∠BD、对角线互相平分4.已知在四边形ABCD中,AD∥BC,添加一个条件____________________,使这个四边形为平行四边形.5.已知,四边形ABCD的对角线AC、BD相交于点O,下列5个条件:①AB∥CD;②OA=OC;③AB=CD;④∠BAD=∠DCB;⑤AD∥BC.从中任意选取2个条件,能推出四边形ABCD是平行四边形的有__________。
初中数学平行四边形的性质与判定基础题一、单选题(共10道,每道10分)1.已知□ABCD的周长为32,AB=4,则BC=()A.4B.12C.24D.28答案:B试题难度:三颗星知识点:平行四边形的性质(对边相等)2.在平行四边形中,四个角之比可以成立的是()A.1:2:3:4B.2:2:3:3C.2:3:3:2D.2:3:2:3答案:D试题难度:三颗星知识点:平行四边形的性质(角)3.平行四边形ABCD的周长为22,两条对角线相交于O,△AOB的周长比△BOC的周长大5,则AD的边长为()A.3B.5C.8D.10答案:A试题难度:三颗星知识点:平行四边形对角线互相平分4.平行四边形的两邻边分别为5、6,那么其对角线必()A.大于1B.大于1且小于11C.小于11D.小于11或大于1答案:B试题难度:三颗星知识点:平行四边形对角线5.平行四边形ABCD中,∠B的平分线分AD为两条线段,一条长度为3,一条长度为5,则这个平行四边形的周长是()A.22B.20C.22或26D.10或20答案:C试题难度:三颗星知识点:平行四边形对边相等6.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是()A.17B.34C.68D.105答案:C试题难度:三颗星知识点:平行四边形的性质(面积)7.如图,四边形ABCD是平行四边形,AD=12,AB=13,BD⊥AD,则OB的长以及□ABCD的面积为()A.5,60B.5,30C.2.5,30D.2.5,60答案:D试题难度:三颗星知识点:平行四边形与勾股定理的结合8.如图,直线l1平行于l2,点A、C在直线l1上,点B、D、E、G在直线l2上,且AB∥CD,AE⊥l1,CG⊥l2上,则下列说法不正确的是()A.AB=CDB.A、B两点的距离就是线段AB的长C.AE=CGD.直线l1与直线l2的距离就是线段CD的长答案:D试题难度:三颗星知识点:平行线间的距离9.不能判定四边形ABCD是平行四边形的是()A.AB=CD,AD=BCB.AB∥CD,AB=CDC.AD∥BC,AB=CDD.AB∥CD,AD∥BC答案:C试题难度:三颗星知识点:平行四边形的判定10.如图,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:四边形ABCD是平行四边形.证明:_________________________∵________________∴四边形DEBF是平行四边形∴_________________.又∵AF=CE∴AE=CF∴_______又∵OB=OD∴四边形ABCD是平行四边形.下列选项填入以上空格,正确的是()①OA=OC;②DF=BE,DF∥BE;③如图,连接DE、BF,连接BD,交AC于点O;④OB=OD,OE=OF.A.③④①②B.③②④①C.③①②④D.③②①④答案:B试题难度:三颗星知识点:平行四边形的证明题规范书写。
xx 学校xx 学年xx 学期xx 试卷姓名:_____________ 年级:____________ 学号:______________一、xx 题(每空xx 分,共xx 分)试题1:下列条件中不能判定四边形ABCD 为平行四边形的是( ) A.AB=CD,AD=BC B.AB ∥CD ,AB=CD C.AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC 试题2:已知:四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;② AB=CD, ③AD=BC ,④∠A=∠C ,⑤∠B=∠D ,能使四边形ABCD 成为平行四边形的条件的个数是( ) A.4 B.3 C.2 D.1 试题3:把两个全等的非等腰三角形拼成平行四边形,可拼成的不同平行四边形的个数为( ) A.1B.2C.3D.4 试题4:在四边形ABCD 中,AC 与BD 相交于点O ,如果只给出条件“AB ∥CD ”,那么还不能判定四边形ABCD 为平行四边形,给出以下六个说法中,正确的说法有( )(1)如果再加上条件“AD ∥BC ”,那么四边形ABCD 一定是平行四边形; (2)如果再加上条件“AB =CD ”,那么四边形ABCD 一定是平行四边形; (3)如果再加上条件“∠DAB =∠DCB ”那么四边形ABCD 一定是平行四边形; (4)如果再加上“BC =AD ”,那么四边形ABCD 一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.A.3个B.4个 C.5个 D.6个试题5:已知:四边形ABCD中,AD∥BC,要使四边形ABCD为平行四边形,需要增加条件 .(只需填上一个你认为正确的即可).试题6:如图所示,ABCD中,BE⊥CD,BF⊥AD,垂足分别为E、F,∠EBF=60°AF=3,CE=4.5,则∠C= ,AB= ,BC= .试题7:如图所示,在ABCD中,E,F分别是对角线BD上的两点,且BE=DF,要证明四边形AECF是平行四边形,最简单的方法是根据来证明.试题8:将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______.试题9:已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF 是平行四边形.试题10:如图所示,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.试题11:如图所示,平行四边形ABCD的对角线AC 、BD相交于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.试题12:如图,是平行四边形的对角线上的点,.请你猜想:与有怎样的位置关系和数量关系?并对你的猜想加以证明:试题13:课时三试题14:答案:试题15:一、1.试题1答案:C;试题2答案:B,提示:AD∥BC,添加条件①③④能使四边形ABCD成为平行四边形;试题3答案:C;试题4答案:B;试题5答案:AD=BC(或AB∥CD或∠A=∠C或∠B=∠D);试题6答案:30°,6,9;试题7答案:对角线互相平分;试题8答案:3;试题9答案:在ABCD中,AD=CB,AB=CD,∠D=∠B,∵E、F分别为AB、CD的中点,∴DF=BE,又∵AB∥CD,AB=CD,∴AE=CF,∴四边形AECF是平行四边形.试题10答案:证明:∵ABCD∴AB=CD,AB∥CD∴∠1=∠2AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90°,AE∥CF∴△AEB≌△CFD,∴AE=CF∴AECF为平行四边形试题11答案:证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD又∵AE=CF,∴OE=OF∴四边形BFDE是平行四边形.试题12答案:猜想:,证明:证法一:如图第12-1.四边形是平行四边形.又证法二:如图第12-2.连结,交于点,连结,.四边形是平行四边形,又四边形是平行四边形试题13答案:资料来试题14答案:源:回澜阁试题15答案:教育免费下载天天更新。
综合滚动练习:特殊平行四边形的性质与判定时间:45分钟分数:100分得分:________一、选择题(每小题4分,共32分)1.(益阳中考)下列判断错误的是( )A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形2.正方形是轴对称图形,它的对称轴共有( )A.1条 B.2条 C.3条 D.4条3.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是( ) A.18 B.18 3 C.36 D.36 3第3题图第5题图4.若顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是( )A.矩形B.菱形C.对角线互相垂直的四边形D.对角线相等的四边形5.如图,在矩形ABCD中,AD=2AB,点E,F分别是AD,BC的中点,连接AF与BE,CE与DF分别交于点M,N两点,则四边形EMFN是( )A.正方形 B.菱形C.矩形 D.无法确定6.矩形的一内角平分线把矩形的一条边分成3cm和5cm的两部分,则此矩形的周长为( )A.16cm B.22cmC .26cmD .22cm 或26cm7.如图,矩形ABCD 中,AD =2,AB =3,过点A ,C 作距离为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( ) A. 5 B.136 C .1 D.56第7题图 第8题图 8.如图,在菱形ABCD 中,AB =8,点E ,F 分别在AB ,AD 上,且AE =AF ,过点E 作EG ∥AD 交CD 于点G ,过点F 作FH ∥AB 交BC 于点H ,EG 与FH 交于点O .当四边形AEOF 与四边形CGOH 的周长之差为12时,AE 的值为( )A .6.5B .6C .5.5D .5二、填空题(每小题4分,共24分)9.如图,在矩形ABCD 中,点E 为BC 的中点,且∠AED =90°,AD =10,则AB 的长为________.第9题图第10题图10.如图,延长正方形ABCD的边BC至E,使CE=AC,则∠AFC=________.11.如图,四边形ABCD是平行四边形,点M,N分别在AB,AD上,且AM=AN,BM=DN,MG∥AD,NF∥AB,点F,G分别在BC,CD上,MG与NF相交于点E,则图中的菱形共有________个.第11题图第12题图第13题图12.(内江中考)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=________.13.如图,四边形ABCD中,对角线AC⊥BD,点E,F,G,H分别是各边的中点,若AC=8,BD=6,则四边形EFGH的面积是________.14.(杭州中考)在菱形ABCD中,∠A=30°.在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为________.三、解答题(共44分)15.(10分)如图,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD.求证:AO=OB.16.(10分)(武冈市期中)如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,求证:∠DHO=∠DCO.17.(10分)如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形?并说明理由.18.(14分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.参考答案与解析1.D 2.D 3.B 4.C 5.A 6.D7.D 解析:过点F 作FH ⊥AE ,交AE 于点H .FH =2=AD ,AE ∥CF .∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD ,∴四边形AECF 为平行四边形,∴AF =CE .设DE =x ,∴BF =x ,则FA =3-x .易证△ADE ≌△FHA ,∴AE=FA =3-x .在Rt △ADE 中,由勾股定理得AD 2+DE 2=AE 2即22+x 2=(3-x )2,解得x =56,即DE =56.故选D.8.C 解析:根据菱形的性质得出AD ∥BC ,AB ∥CD ,从而四边形AEOF ,GCHO 都是平行四边形.又因为AE =AF ,于是有AF =FO =OE =AE 和OH =CH =GC =GO ,所以四边形AEOF 与四边形CGOH 是菱形,因此有4AE -4(8-AE )=12,解得AE =5.5.故选C.9.5 10.112.5° 11.3 12.12513.12 14.45°或105° 解析:如图,∵∠BED =120°,EB =ED ,∴∠EBD =∠EDB =30°.∵四边形ABCD 是菱形,∠A =30°,∴∠C =∠A =30°,CB =CD ,∴∠CBD =∠CDB =75°.当点E 在△ABD 内,∠EBC =∠EBD +∠CBD =30°+75°=105°;当点E 在△CBD 内,∠EBC =∠CBD -∠EBD =75°-30°=45°.15.证明:∵四边形ABCD 是矩形,∴∠A =∠B =90°,AD =BC .(4分)∵∠AOC =∠BOD ,∴∠AOC -∠DOC =∠BOD -∠DOC ,即∠AOD =∠BOC .(6分)在△AOD 和△BOC 中,∠A =∠B ,∠AOD =∠BOC ,AD =BC ,∴△AOD ≌△BOC ,∴AO =OB .(10分)16.证明:∵四边形ABCD 是菱形,∴AB ∥CD ,OD =OB ,∠COD =90°.(4分)∵DH ⊥AB ,∴OH =12BD =OB ,(6分)∴∠OHB =∠OBH .∵AB ∥CD ,∴∠OBH =∠ODC .(7分)又∵∠ODC +∠DCO =90°,∠DHO +∠OHB =90°,∴∠DHO =∠DCO .(10分)17.(1)证明:∵点O 为AB 的中点,∴AO =BO .又∵OE =OD ,∴四边形AEBD 是平行四边形.(2分)∵AB =AC ,AD 是△ABC 的角平分线,∴AD ⊥BC ,∴∠ADB =90°,∴平行四边形AEBD 是矩形.(5分)(2)解:当∠BAC =90°时,矩形AEBD 是正方形.(6分)理由如下:∵∠BAC =90°,AB =AC ,AD 是△ABC 的角平分线,∴D 为BC 的中点,∴AD =BD =CD .由(1)知四边形AEBD 是矩形,∴矩形AEBD 是正方形.(10分)18.(1)证明:∵AB =AD ,CB =CD ,AC =AC ,∴△ABC ≌△ADC ,∴∠BAC =∠DAC .(2分)∵AB =AD ,∠BAF =∠DAF ,AF =AF ,∴△ABF ≌△ADF ,∴∠AFB =∠AFD .又∵∠CFE =∠AFB ,∴∠AFD =∠CFE .(5分)(2)解:∵AB ∥CD ,∴∠BAC =∠ACD .又∵∠BAC =∠DAC ,∴∠DAC =∠ACD ,∴AD =CD .(8分)∵AB =AD ,CB =CD ,∴AB =CB =CD =AD ,∴四边形ABCD 是菱形.(10分)(3)解:当BE ⊥CD 时,∠EFD =∠BCD .(11分)理由如下:∵四边形ABCD 为菱形,根据菱形的对称性得∠CBF =∠CDF .∵BE ⊥CD ,∴∠BEC =∠DEF =90°,∴∠CBF +∠BCD =90°,∠CDF +∠EFD =90°,∴∠EFD =∠BCD .(14分)解题技巧专题:圆中辅助线的作法——形成精准思维模式,快速解题◆类型一 遇弦过圆心作弦的垂线或连半径1.如图,以点O 为圆心的两个圆中,大圆的弦AB 切小圆于点C ,OA 交小圆于点D ,若OD =2,tan ∠OAB =12,则AB 的长是( )A .4B .23C .8D .43第1题图 第2题图 2.如图,已知⊙O 的半径OD 与弦AB 互相垂直,垂足为点C ,若AB =16cm ,CD =6cm ,⊙O 的半径为________. ◆类型二 遇直径添加直径所对的圆周角3.如图,AB 是⊙O 的直径,C ,D ,E 都是⊙O 上的点,则∠ACE +∠BDE 等于( )A .60°B .75°C .90°D .120°第3题图 第4题图4.如图,⊙O 是△ABC 的外接圆,CD 是直径,∠B =40°,则∠ACD 的度数是________.5.如图,△ABC 的顶点均在⊙O 上,AD 为⊙O 的直径,AE ⊥BC 于E.求证:∠BAD =∠EAC.类型三遇切线连接圆心和切点6.已知⊙O的半径为1,圆心O到直线l的距离为2,过l上任一点A作⊙O的切线,切点为B,则线段AB长度的最小值为( )A.1 B. 2 C. 3 D.27.如图,从⊙O外一点A引圆的切线AB,切点为B,连接AO并延长交圆于点C,连接BC.若∠A=26°,则∠ACB的度数为________.8.★如图,AB为⊙O的直径,直线CD切⊙O于点D,AM⊥CD于点M,BN⊥CD于N.(1)求证:∠ADC=∠ABD;(2)求证:AD2=AM·AB;(3)若AM =185,sin ∠ABD =35,求线段BN 的长.。
5.5 平行四边形的判定(1)解题示范例已知:如图,在四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD相交于点O,求证:O是BD的中点.审题在四边形ABCD中,有三对相等的线段,AB=CD,AD=BC,AF=CE,由此不难推测出四边形ABCD是平行四边形.结论是O是BD的中点,即说明BO=DO.方案由AB=CD,AD=BC知,四边形ABCD是平行四边形.若能说明四边形BEDF•是平行四边形,O是BD的中点就成立.因此连结BF,DE,不难发现DF∥BE,且DF=•BE,•四边形BEDF为平行四边形.实施连结BF,DE.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.∴AD∥BC.∴DF∥BE.又∵AD=BC,AF=CE,∴DF=BE.∴四边形BEDF是平行四边形.∴BO=DO,即O是BD的中点.反思(1)证明两条线段相等的常用方法有:等腰三角形的两腰相等,•全等三角形的对应边相等,平行四边形的对边相等、对角线互相平分,线段的垂直平分线上的点到线段两端点的距离相等.(2)解决几何问题时,应养成在图形中标注已知条件的习惯,化抽象为直观.(3)结合已知条件和图形特征大胆的猜想是学好几何不可缺少的学习品质.课时训练1.如图1,AB∥CD,要使四边形ABCD是平行四边形,需要增加的条件是______(只需填一个你认为正确的条件即可).(1) (2) (3)2.如图2,在ABCD中,E,F,G,H分别是各边的中点,则四边形EFGH是______.3.如图3,有公共顶点的两个全等三角形,其中一个三角形绕公共顶点O旋转180°后与另一个重合,那么不共点的四个顶点的连线构成的四边形ABCD是________.4.两块全等的三角尺,能拼出不同的平行四边形的个数是().(A)1 (B)2 (C)3 (D)无数个5.如图4,在平面直角坐标系中,O(0,0),A(0,3),B(4,4),C(1,4),则四边形OABC是________.(4) (5) (6)6.如图5,在ABCD中,E,F分别为边AB,DC的中点,则图中共有平行四边形的个数是().(A)3 (B)4 (C)5 (D)67.已知:如图6,在ABCD中,E,F分别为边AB,CD上的点,且AE=CF,求证:DE=BF.8.已知:把两张有一条边相等的平行四边形ABCD,BEFC纸片如图放置,连结AE•和DF,求证:四边形AEFD是平行四边形.9.方格纸上有A,B,C,D,E,F六个点,以其中的四个点为顶点的平行四边形你能作出几个?请作出它们,并与同伴交流.答案:1.如:AB=CD或AD∥BC等 2.平行四边形3.平行四边形 4.C 5.•平行四边形6.B 7.提示:证明四边形BFDE是平行四边形8.提示:证明AD//EF9.AFDC,BFEC,AEDB,共3个。
6.2平行四边形的判定(1)
班级:二( )学号:( )姓名:( )
一、课前练习
1.要使分式
1
x
x -有意义,则x 的取值范围是( ) A .x ≠1 B .x >1 C .x <1 D .x ≠0
2.下列多项式,不能..用平方差公式因式分解的是( ) A .24m -+ B.22x y -- C. 221x y - D. 22()()m a m a --+ 3.已知□ABCD 中,∠A+∠C=200°,则∠B 的度数是( ) A .100° B .160° C .80° D .60° 4.如图,在□ABCD 中,下列结论一定正确的是( ) A .AC=BC B .∠A+∠B=180° C .AB=AD D .∠A=∠B 5.如图,在□ABCD 中,下列结论中错误的是( ) A .∠1=∠2 B .∠BAD=∠BCD
C .AB=C
D D .AC ⊥BD
二、课堂练习
1.例1.证明:两组对边分别相等的四边形是平行四边形。
已知:如图,在四边形ABCD 中,AB =CD ,AD =CB . 求证:四边形ABCD 是平行四边形. 证明: 连接AC. ∵在 和 中
___________()
___________()___________()⎧⎪
⎨⎪⎩
已知已知公共边
∴ ≌ ( )
∴ ∠BAC=∠ ,∠ACB=∠ ( ) ∴ // , // ( , ) ∴四边形ABCD 是平行四边形( )
D
A
C
B
4第题图
2
1
D
A
C
B 第5题图
平行四边形的判定定理(2): 是平行四边形。
∵ , (已知)
∴四边形ABCD 是平行四边形( ) 2.例2.证明:一组对边平行且相等.....的四边形是平行四边形。
已知:如图,在四边形ABCD 中,AD//BC , 。
求证: 。
平行四边形的判定定理(3): 是平行四边形。
∵ , (已知)
∴四边形ABCD 是平行四边形( ) 3.例3.如图,在□ABCD 中,点E 、F 分别是AB 、CD 的中点。
求证:四边形AECF 是平行四边形。
4.巩固练习
1.不能判定一个四边形是平行四边形的条件是()
A.两组对边分别平行 B.一组对边平行另一组对边相等
C.一组对边平行且相等 D.两组对边分别相等
2.如图,在□ABCD中,点E、F分别在边AB、CD上,AE=CF。
求证:四边形AECF是平行四边形。
3.如图,线段AD是线段BC经过平移得到的,分别连接AB,CD,四边形ABCD是平行四边形吗?说说你的理由。
三、课外练习
1.如图,在四边形ABCD中,AD//BC,要判别它是平行四边形还需满足()A.∠A+∠C=180° B.∠B+∠D=180°
C.∠A+∠B=180° D.∠A+∠D=180°
2.如图,AD=BC,要使四边形ABCD是平行四边形,
D C
还需补充的一个条件,下列错误
..的是()
A .AB=DC
B .AD//BC
C .∠A +∠B =180°
D .∠A +∠D =180°
3.小明是这样作平行四边形的:将三角尺ABC 的一边AC 贴着直尺,推移三角尺到A 1B 1C 1的位置,这时四边形ABB 1A 1就是平行四边形。
你能说说小明这样做的道理吗?
4.如图,AC//DE ,点B 在AC 上,且AB =DE =BC .找出图中的平行四边形,并说明理由.
5.如图,E 、F 是四边形ABCD 的对角线AC 上的两点,AF =CE ,DF =BE ,DF //BE .(1)求证:△AFD ≌△CEB ;
(2)连接BF ,DE ,四边形BEDF 是平行四边形吗?请说明理由.
D A
C
E
B
F A
B
D
C
E
第1,2题图
C 1
A 1
B 1
B
C
A。