《算法分析与设计》实验指导与报告书
- 格式:doc
- 大小:99.50 KB
- 文档页数:16
实验报告题目实验一递归与分治策略一、实验目的1.加深学生对分治法算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
二、实验内容设计一个递归和分治算法,找出数组的最大元素,找出x在数组A中出现的次数。
三、实验要求(1)用分治法求解…问题;(2)再选择自己熟悉的其它方法求解本问题;(3)上机实现所设计的所有算法;四、实验过程设计(算法设计过程)1.设计一个递归算法,找出数组的最大元素。
2.设计一个分治算法,找出x在数组A中出现的次数。
3.写一个主函数,调用上述算法。
五、实验结果分析(分析时空复杂性,设计测试用例及测试结果)时间复杂性:最好情况下,O(n)最坏情况下:O(nlog(n)空间复杂性分析:O(n)六、实验体会通过写递归与分治策略实验,更加清楚的知道它的运行机理,分治法解题的一般步骤:(1)分解,将要解决的问题划分成若干规模较小的同类问题;(2)求解,当子问题划分得足够小时,用较简单的方法解决;(3)合并,按原问题的要求,将子问题的解逐层合并构成原问题的解。
做实验重在动手动脑,还是要多写写实验,才是硬道理。
七、附录:(源代码)#include"stdio.h"#define ElemType intint count(ElemType a[],int i,int j,ElemType x){int k=0,mid; //k用来计数,记录数组中x出现的次数if(i==j){if(a[i]==x) k++;return k;}else{mid=(i+j)/2;k+=count(a,i,mid,x);k+=count(a,mid+1,j,x);}return k;}ElemType Maxitem(ElemType a[],int n){ElemType max=a[n-1],j;if(n==1){max=a[n-1];return max;}else{j=Maxitem(a,n-1);if(j>max) max=j;return max;}}void main(void){ElemType a[]={1,5,2,7,3,7,4,8,9,5,4,544,2,4,123};ElemType b;ElemType x;int n;b=Maxitem(a,15);printf("数组的最大元素为%d\n",b);printf("输入想要计数的数组元素:\n");scanf("%d",&x);n=count(a,0,14,x);printf("%d在数组中出现的次数为%d次\n",x,n);}实验二动态规划——求解最优问题一、实验目的1.加深学生对动态规划算法设计方法的基本思想、基本步骤、基本方法的理解与掌握;2.提高学生利用课堂所学知识解决实际问题的能力;3.提高学生综合应用所学知识解决实际问题的能力。
《算法设计与分析》实验指导书目录实验一单链表的建立插入及删除 (3)实验二多项式加法 (5)实验三集合的表示与操作算法设计 (7)实验四迷宫问题求解 (8)实验五树的建立及遍历 (11)实验六图的遍历的演示 (12)实验七哈希表的设计 (15)实验八Kruskal算法的设计 (17)实验九归并排序的分治策略设计 (19)实验十哈夫曼编码的贪心算法设计 (21)实验十一递归与迭代程序设计 (22)实验十二多段图问题的动态规划算法设计 (24)实验十三作业调度问题 (26)实验十四回溯算法设计 (28)实验十五搜索顺序的选择 (29)实验十六蛇和梯子 (31)实验十七游戏中寻址算法的设计 (34)实验十八旅行商问题 (36)实验十九骑士游历算法设计 (38)实验二十输油管道问题的设计与实现 (40)实验二十一邮局选址问题的设计与实现 (42)实验二十二会场安排问题的设计与实现 (44)实验二十三目录树打印程序的设计 (46)实验二十四最少演员问题 (48)附:实验(设计)报告参考格式 (50)实验一单链表的建立插入及删除[实验目的]1.掌握单链表的建立插入及删除的算法;2.进一步熟悉指针的用法;[预习要求]1.认真阅读教材或参考书, 掌握线性表算法的基本思想;2.写出求解本实验的程序;3.设计好相应的测试用例。
[类型定义]typedef struct Lnode{int data;struct Lnode *next;}Lnode,*linklist;[实验提示]void create(link *h,int n){//创建单链表link p,q;int i;p=(link)malloc(sizeof(node));p->next=null;*h=p;q=p;for(i=1;i<=n;++i){p=(link)malloc(sizeof(node));scanf("%d",&p->data);p->next=null;q->next=p;q=p;}}void print(link h){//输出单链表link p;p=h->next;while(p){printf("%d ",p->data);p=p->next;}}void insertlist(linklist *L,int i,int e){//在单链表的第i个元素之前插入元素值为e的结点}void dellist(linklist *L,int i,int *e){//删除单链表的第i个结点,被删结点通过 e返回}[实验步骤]1.先用插表头或插表尾的方法建立单链表并输出,并测试你的程序,直至正确为止;2.再进行插入和删除程序的设计;3.将你的程序和实录的界面存盘备用。
武汉工程大学计算机科学与工程学院《算法设计与分析》实验报告专业班级实验地点学生学号指导教师学生姓名实验时间实验项目算法基本工具和优化技巧实验类别基本性实验实验目的及要求目的与要求:练习算法基本工具和优化技巧的使用实验内容要点:1、熟悉循环和递归的应用2、熟悉数据结构在算法设计中的应用3、了解优化算法的基本技巧4、掌握优化算法的数学模型成绩评定表类别评分标准分值得分合计上机表现积极出勤、遵守纪律主动完成实验设计任务30分实验报告及时递交、填写规范内容完整、体现收获70分说明:评阅教师:日期:年月日一、狼找兔子问题:一座山周围有n个洞,顺时针编号为0,1,2.,…,n-1。
一只狼从0号洞开始,顺时针方向计数,每当经过第m个洞时,就进洞找兔子。
输入m,n,问兔子有没有幸免的机会?如果有,该藏哪里?代码设计:。
结果:。
二、有52张牌,使他们全部正面朝上,第一轮是从第2张开始,凡是2的倍数位置上的牌翻成正面朝下;第二轮从第3张牌开始,凡是3的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上;第三轮从第4张开始,凡是4的倍数位置上的牌,正面朝上的翻成正面朝下,正面朝下的翻成正面朝上,以此类推,直到翻的牌超过104张为止。
统计最后有几张正面朝上,以及他们的位置号。
代码设计:。
结果:。
三、A、B、C、D、E 5人为某次竞赛的前5名,他们在名次公布前猜名次。
A说:B得第三名,C得第五名。
B说:D得第二名,E得第四名。
C说:B得第一名,E得第四名。
D说:C得第一名,B得第二名。
E说:D得第二名,A得第三名。
结果每个人都猜对了一半,实际名次是什么呢?代码设计:。
结果:。
算法分析与设计实验报告专业班级:姓名:学号:指导老师:实验一递归算法的设计与实现•计算整数的非负整数次幂(1)设计思路对于34按步骤可以分析:34=32*3232=31*3131=31*1对于33按步骤可以分析:33=32*31;32=31*31;31=31*1;分析可以得到:当x n中n为奇数时,x n=x*(x n/2)2当x n中n为偶数的,x n=(x n/2)2;当n/2=0;return 1;一步步进行递归返回计算,如果n位奇数,在进行一部乘以x 否则返回运算结果(2)源程序代码#include<iostream>using namespace std;int power(int x,int n){int y;if(n==0){y=1;}else{y=power(x,n/2);y=y*y;if(n%2==1){y=y*x;}}return y;}void main(){cout<<"请输入一个底数X:";int x;cin>>x;cout<<"请输入一个指数Y: ";int y;cin>>y;if(y<0){cout<<"你的输入有误:请重新输入:"<<endl; cin>>y;}int c;c=power(x,y);cout<<x<<"的"<<y<<"次幂的结果是"<<c<<endl; }(3)代码运行结果(4)时间复杂度令n=2k,则可以得到:f(n)=g(k)=k+1=logn+1=O(logn)2.基于递归算法的插入排序(1)设计思路通过主函数传来一个数组的首地址和数组的长度,然后利用递归的原理,当n=0;程序返回,执行入栈的递归程序,依次比较2个数的大小,3个数的大小等,根据比较的结果将第n个数插入适当的位置。
实验一串匹配程序设计(2学时)一、实验目的(1). 熟练掌握串匹配的含义(2). 掌握BF算法匹配的过程并编程实现(3). 熟悉C++编译环境的基本操作二、实验内容给定两个字符串S和T,用BF算法,在主串S中查找字串T,输出结果,输出时要求有文字说明。
请编写程序。
三、实验要求(1)、熟悉C++编译环境的基本操作(2)、考虑各种可能的情况(匹配成功或不成功)(3)、写出完整的程序四、实验结果实验二排序问题程序设计(2学时)一、实验目的(1). 掌握选择排序和起泡排序的基本思想(2). 掌握两种排序方法的具体实现过程(3). 在掌握的基础上编程实现两种排序方法二、实验内容输入一个待排序的序列,分别用选择排序和起泡排序两种排序方法将其变换成有序的序列,输出结果,输出时要求有文字说明。
请编写程序。
三、实验要求(1)、熟悉C++编译环境的基本操作(2)、考虑各种可能的情况(序列本身已是有序序列,序列不是有序序列)(3)、写出完整程序四、实验结果实验三数字旋转方阵程序设计(2学时)一、实验目的(1). 掌握分治法的设计思想(2). 掌握数字旋转方阵的具体实现过程(3). 熟练掌握二维数组的使用方法(4). 在掌握的基础上编程实现数字旋转方阵的实现过程二、实验内容给出一个初始数据,在此数据的基础上由外层向里层填写数据,完成一个数字旋转方阵,输出结果,输出时要求有文字说明。
请编写程序。
三、实验要求(1)、熟悉C++编译环境的基本操作(2)、考虑各种可能的情况(方阵有一层,两层或更多层)(3)、写出完整程序四、实验结果实验四排序中分治法的程序设计(2学时)一、实验目的(1). 掌握归并排序和快速排序的划分方法(2). 掌握归并排序和快速排序的具体分治策略(3). 在掌握的基础上编程两种排序方法的实现过程二、实验内容给出一个初始序列,分别用归并排序和快速排序两种分治法将所给序列变换为有序序列,输出结果,输出时要求有文字说明。
实验一我保证没有抄袭别人作业!1.实验题目必做:n 用分治思想设计实现二分搜索、合并排序,并且用不同数据量进行实验对比分析。
选做:阶乘(递归与分治)。
2.实验目的掌握设计算法的分治策略,通过实验学习分治策略设计技巧, 理解递归的概念验证二分搜索的时间复杂度。
掌握算法效率的分析和实验验证方法。
3.算法设计3.1 分治法基本思想将一个规模为n的问题分解为k个规模较小的子问题,这些子问题相互独立且与原问题相同。
然后递归的解这些子问题,然后将这些子问题的解合并得到原问题的解。
3.2二分搜索技术分解(devide):将n个元素分成个数大致相同的两半。
此时,原问题a[n]->子问题a[1,n/2]与a[2/n,n] 解决(conquer):取a[n/2]与欲查找的x作比较。
如果x=a[n/2],则找到x,算法终止。
如果x<a[n/2],则我们只要在数组a的左半部继续搜索x。
如果x>a[n/2],则我们只要在数组a的右半部继续搜索x。
合并(combine):此结果无需合并。
3.3合并排序分解(devide):将n个元素分成个数大致相同的两半。
此时,原问题a[n]->子问题a[1,n/2]与a[2/n,n] 解决(conquer):递归解n/2规模的子问题合并(combine):合并已排好序的两部分进行合并。
3.4快速排序分解(devide):找到基准元素,将数组分为三部分,两段。
此时,原问题a[p,r]->子问题a[p,q-1]、a[q]、a[q+1,r]。
解决(conquer):通过递归调用快速排序,对数组a[p,q-1]与a[q+1,r]进行排序。
合并(combine):此结果无需合并,因为子数组都是原址排序得,所以不需要合并操作。
3.5阶乘分解(devide):将n!分成n*(n-1)!,每次使其规模减少一。
解决(conquer):如果n=0,则输出结果1。
如果n=1,则输出结果1。
算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。
实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。
递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。
2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。
②问题的规模可以通过递推式递减,最终递归终止。
③当问题的规模足够小时,可以直接求解。
3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。
可以使用动态规划技术,将算法改为非递归形式。
int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。
1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。
2)分治算法流程:②将问题分解成若干个规模较小的子问题。
③递归地解决各子问题。
④将各子问题的解合并成原问题的解。
3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。
排序流程:②分别对各子数组递归进行归并排序。
③将已经排序好的各子数组合并成最终的排序结果。
实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。
《算法设计与分析》课程实验报告实验序号:10实验项目名称:实验十一回溯法(二)一、实验题目1.图的着色问题问题描述:给定无向连通图G和m种不同的颜色。
用这些颜色为图G的各顶点着色,每个顶点着一种颜色。
如果有一种着色法使G中每条边的2个顶点着不同颜色,则称这个图是m可着色的。
图的m着色问题是对于给定图G和m种颜色,找出所有不同的着色法。
2.旅行商问题问题描述:给出一个n个顶点的带权无向图,请寻找一条从顶点1出发,遍历其余顶点一次且仅一次、最后回到顶点1的最小成本的回路——即最短Hamilton回路。
3.拔河比赛问题描述:某公司的野餐会上将举行一次拔河比赛。
他们想把参与者们尽可能分为实力相当的两支队伍。
每个人都必须在其中一只队伍里,两队的人数差距不能超过一人,且两队的队员总体重应该尽量接近。
4.批处理作业调度问题描述:给定n个作业的集合J=(J1,J2, .. Jn)。
每个作业J都有两项任务分别在两台机器上完成。
每个作业必须先由机器1处理,再由机器2处理。
作业i需要机器j的处理时间为tji(i=1,2, ..n; j=1,2)。
对于一个确定的作业调度,设Fji是作业i在机器j上完成处理的时间,则所有作业在机器2上完成处理的时间和,称为该作业调度的完成时间和。
批处理作业调度问题要求,对于给定的n个作业,制定最佳作业调度方案,使其完成时间和达到最小。
二、实验目的(1)通过练习,理解回溯法求解问题的解状态空间树与程序表达的对应关系,熟练掌握排列树、子集树的代码实现。
(2)通过练习,体会减少搜索解空间中节点的方法,体会解的状态空间树的组织及上界函数的选取对搜索的影响。
(3)通过练习,深入理解具体问题中提高回溯算法效率的方法。
(4)(选做题):在掌握回溯法的基本框架后,重点体会具体问题中解的状态空间搜索时的剪枝问题。
三、实验要求(1)每题都必须实现算法、设计测试数据、记录实验结果,并给出时间复杂度分析。
四、实验过程(算法设计思想、源码)1.图的着色问题(1)算法设计思想用邻接矩阵a[i][j]存储无向图,对于每一个顶点有m种颜色可以涂。
<<算法设计与分析>>实验指导书实验一、回溯法一、实验目的掌握回溯法求解问题的思想,学会利用其原理求解相关问题。
二、实验内容及要求1、八皇后问题八皇后问题是一个古老而著名的问题,是回溯算法的典型例题。
该问题是十九世纪著名的数学家高斯1850年提出:在8X8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行、同一列或同一斜线上,问有多少种摆法。
高斯认为有76种方案。
1854年在柏林的象棋杂志上不同的作者发表了40种不同的解,后来有人用图论的方法解出92种结果。
要求对用C实现的回溯法进行验证,并使其能扩展到任意的皇后数的情况,同时对源程序给出详细的注释。
三、实验步骤1. 理解算法思想和问题要求;2. 编程实现题目要求;3. 上机输入和调试自己所编的程序;4. 验证分析实验结果;5. 整理出实验报告。
四、实验源代码1、八皇后问题(回溯法实现)#define QUEENNO 8#define MAXNO 32#include <stdio.h>#include <stdlib.h>int X[MAXNO];char D[MAXNO][MAXNO];int count=0;void initiate(int n);void nqueen(int n);void display(int n);main(){int queenno=QUEENNO;initiate(queenno);nqueen(queenno);printf("共有%d个解,解已经保存在D盘文件result.txt中\n",count); }void initiate(int n){int i;for(i=0;i<n;i++)X[i]=-1;return;}void nqueen(int n){ int k;X[0]=0;k=0;while(k>=0){X[k]++;while(X[k]<=n&&!place(k)){X[k]++;}if(X[k]<=n){ if(k==n-1) display(n);else {k++;X[k]=0;}}else{ k--;}}}int place(int k){int i;i=0;while(i<k){if((X[i]==X[k])||(abs(X[i]-X[k])==abs(i-k)))return 0;i++;}return 1;}void display(int n){FILE *fw;int i,j;count++;fw=fopen("D:\\result.txt","a");for(i=0;i<n;i++)for(j=0;j<n;j++)D[i][j]='o';for(i=0;i<n;i++)D[i][X[i]-1]='*';fprintf(fw,"%d\n",count);fprintf(fw,"-------------------------\n");for(i=0;i<n;i++)for(j=0;j<n;j++){if(j==n-1)fprintf(fw,"%c \n",D[i][j]);else fprintf(fw,"%c ",D[i][j]); }fprintf(fw,"-------------------------\n");fclose(fw);return;}实验二:分治法(2学时)问题陈述:对所给元素存储于数组中和存储于链表中两中情况,写出自然合并排序算法.解题思路:将待排序元素分成大小大相同的两个集合,分别对两个集合进行排序,最终将排好序的子集合合并成为所要求的排好序的集合.自然排序是通过一次扫描待排元素中自然排好序的子数组,再进行子数组的合并排序.程序代码:#include <iostream.h>const int N=100;void ScanTarget(int target[], int n, int head[], int tail[]);int CountHead(int head[]);void MergeSort(int a[], int head[], int tail[], int m);void MergePass(int x[], int y[], int s, int a[], int b[], int m);void Merge(int c[], int d[], int l, int m, int r);void main(){char a;do{int target[N],head[N],tail[N];int i=0,n,m;for(; i<N; i++){head[i]=-1;tail[i]=-1;}cout<<"请输入要排序的总数:"<<endl;cin>>n;cout<<"请输入要排序的数列:" <<endl;for(i=0; i<n; i++)cin>>target[i];ScanTarget(target,n,head,tail);m=CountHead(head);MergeSort(target,head,tail,m);cout<<"排序后:"<<endl;for(i=0; i<n; i++)cout<<target[i]<<" ";cout<<endl;cout<<"是否继续(y/n):"<<endl;cin>>a;}while(a!='n' && a!='N');}void ScanTarget(int target[], int n, int head[], int tail[])//扫描待排数组;{int i,j=0,k=0;head[k]=0;k++;for(i=1;i<n;i++){if(target[i-1]>target[i]){tail[j++]=i-1;head[k++]=i;}}tail[j]=n-1;}int CountHead(int head[])//求长度;{int i(0);while(head[i]!=-1){i++;}return i;}void MergeSort(int a[], int head[], int tail[], int m){int b[N];int s=1;while(s<m){MergePass(a,b,s,head,tail,m);s+=s;MergePass(b,a,s,head,tail,m);s+=s;}}void MergePass(int x[], int y[], int s, int a[], int b[], int m){int i=0;while(i <= m-2*s){Merge(x,y,a[i],b[i+s-1],b[i+2*s-1]);i=i+2*s;}if(i+s < m){Merge(x,y,a[i],b[i+s-1],b[m-1]);}else{for(int j=i; j<m; j++)for(int k=a[j]; k<=b[j]; k++)y[k]=x[k];}}void Merge(int c[], int d[], int l, int m, int r){int i,j,k;i=l;j=m+1;k=l;while((i<=m) && (j<=r)){if( c[i] <= c[j] )d[k++]=c[i++];else d[k++]=c[j++];}if( i>m ){for(int q=j; q<=r; q++)d[k++]=c[q];}else{for(int q=i; q<=m; q++)d[k++]=c[q];}}时间复杂度:通常情况下用自然合并排序所需要的合并次数较少。
常熟理工学院 《算法分析与设计》实验指导与报告书
____2011-2012______学年 第__1__学期 专 业: 软件工程(服务外包)091班 学 号: Y12309140 姓 名:___________浦菊敏___________ 实验地点:__________ N6-113 _______________ 指导教师:________ 刘在德 _________
计算机科学与工程学院 2011.02 1
实验目录 实验1 求最大公约数.................................................................................................................... 2 实验2 斐波那契数列.................................................................................................................... 5 实验3 最近对问题........................................................................................................................ 6 实验4 堆排序................................................................................................................................ 7 实验5 霍纳法则和二进制幂........................................................................................................ 8 实验6 字符串匹配问题................................................................................................................ 9 实验7 Warshall算法和Floyd算法 ........................................................................................ 10 实验8 最优二叉查找树.............................................................................................................. 11 实验9 Huffman编码* ................................................................................................................ 12 实验10 求解非线性方程*.......................................................................................................... 13 实验11 投资问题*...................................................................................................................... 14
注:(1)实验4和实验5为变治法应用,二选一; (2)实验7和实验8为动态规划法应用,二选一; (3)带*号的实验为选做实验,根据课时及学生实验完成情况机动安排。 2
实验1 求最大公约数 实验目的 (1)求两个自然数m和n的GCD (Greatest Common Divisor); (2)掌握并应用算法的数学分析和后验分析方法; (3)理解这样一个观点:不同的算法能够解决相同的问题,但这些算法的思路不同,时间复杂性也不同。 预习内容 P2 1.1 什么是算法
实验内容 (1)设计出3个版本的求最大公约数的算法; (2)采用C/C++实现算法,利用计数法记录基本语句的执行次数; (3)采用大O符号分析3种算法的时间复杂性; (4)通过分析对比,得出结论。
实验结果(可续页)
1、欧几里德算法程序 #include void main() { int m,n,r; printf("please enter the two numer.\n"); scanf("%d%d",&m,&n); r=m%n; while(r!=0) { m=n; n=r; r=m%n; } printf("The greatest common divisor is %d.\n",n); } //执行了次。
2、连续整数检测算法 #include int min(m,n); int min(m,n) { 3
if(m<=n) return m; else return n; } void main() { int m,n,t; printf("please enter the two numer.\n"); scanf("%d%d",&m,&n); t=min(m,n); for(;;) { if((m%t==0)&&(n%t==0)) { printf("It's %d.\n",t); break; } t--; } } //执行了次。
3、分解质因数程序 #include int min(m,n); int min(m,n) { if(m<=n) return m; else return n; } void main() { int m,n,t; printf("please enter the two numer.\n"); scanf("%d%d",&m,&n); t=min(m,n); 4
for(;;) { if((m%t==0)&&(n%t==0)) { printf("It's %d.\n",t); break; } t--; } } */ #include int zhishu(m) { int i,r; if(m<=2) return 1; for(i=2;i{ r=m%i; if(r==0) return 0; } return 1; } int gcd(m,n) { int i[100],r,j=0,s=1; for(r=1;r<=m/2;r++) { if(zhishu(r)==0) continue; else if((m%r==0)&&(n%r==0)) { i[j]=r; j++; } } for(r=0;rs=s*i[r]; return s;
} void main() 5
{ int m,n,s; printf("Please enter the two number.\n"); scanf("%d%d",&m,&n); s=gcd(m,n); printf("It's %d.\n",s); } //执行了次。
教师评分 实验2 斐波那契数列 实验目的 (1)求斐波那契数列; (2)区分递归和递推思想。
预习内容 P60 2.5 例题:斐波那契数列
实验内容 (1)至少设计出3个版本的求斐波那契数列的算法; (2)采用C/C++实现算法; (3)采用大O符号分析3种算法的时间复杂性; (4)通过分析对比,得出结论。
实验结果(可续页) 6
教师评分 实验3 最近对问题 实验目的 (1)设p1=(x1, y1),p2=(x2, y2),…,pn=(xn, yn)是平面上n个点构成的集合S,设计算法找出集合S中距离最近的点对; (2)进一步掌握递归算法的设计思想以及递归程序的调试技术; (3)理解此观点:分治和递归经常同时应用在算法设计中。 预习内容 P113 4.6.1 最近对问题
实验内容 (1)用分治法求解最近对问题; (2)采用C/C++实现算法,利用计数法记录基本语句的执行次数; (3)分析算法的时间复杂性,并与蛮力法比较,得出结论。
实验结果(可续页) 7
教师评分 实验4 堆排序 实验目的 (1)实现堆的创建和堆排序; (2)理解变治法的思想。
预习内容 P169 6.4 堆和堆排序
实验内容 (1)采用C/C++实现堆创建算法; (2)采用C/C++实现堆排序算法; (3)分析堆排序算法的时间复杂度,并与合并排序、快速排序比较,得出结论。
实验结果(可续页)