压力容器材质选用及安全技术.doc
- 格式:doc
- 大小:46.00 KB
- 文档页数:12
压力容器安全技术范本一、背景介绍压力容器是一种用于储存和运输压缩气体、液体或蒸汽的装置,广泛应用于化工、石油、能源等行业。
然而,由于其压力高、储存容量大的特点,一旦安全问题发生,后果将不堪设想。
因此,压力容器的安全技术显得尤为重要。
本文将探讨压力容器的安全技术范本。
二、安全设计原则1. 强度设计原则:在设计压力容器时,应确保其强度足以承受内外压力的作用,以防止容器爆炸或泄漏。
2. 材料选用原则:选择适合的材料来制造压力容器,材料应具有耐压、耐腐蚀和耐磨损等特性。
3. 结构设计原则:结构设计应遵循均布应力原则,以确保容器的均衡承受压力。
4. 安全附件原则:在压力容器上安装安全附件,如安全阀、过热保护装置等,以防止过压和过热引起的事故。
三、安全制造流程1. 原材料检验:对所有用于制造压力容器的原材料进行严格的质量检验,确保材料符合相关标准和规定。
2. 制造过程监控:严格控制制造过程中的各个环节,监控焊接、热处理等工艺参数,以确保制造质量。
3. 非破坏性检测:利用X射线、超声波等非破坏性检测方法对制造后的压力容器进行全面检测,确保容器的质量。
4. 试压试验:在容器制造完成后,进行试压试验,以验证容器的耐压性能和密封性能。
四、安全运输措施1. 防护措施:在运输过程中,对压力容器进行合理的包装和固定,以防止容器的碰撞和倾倒。
2. 速度控制:控制运输车辆的速度,以减少冲击力对压力容器的影响。
3. 安全教育培训:对参与压力容器运输的人员进行安全教育培训,提高其安全意识和操作技能。
五、安全使用要求1. 检查维护:定期对压力容器进行检查,确保其运行状态良好,不存在泄漏等安全隐患。
2. 温度控制:对容器周围的温度进行控制,以防止温度过高造成容器爆炸的危险。
3. 物料控制:严格控制容器内的物料,杜绝危险品和易燃易爆物料的使用。
6、安全应急预案1. 火灾应急预案:制定压力容器火灾的应急预案,包括使用灭火设备、疏散逃生等措施。
压力等级划分压力容器的设计压力(p)划分为低压、中压、高压和超高压四个压力等级:(1)低压(代号L)0.1MPa≤p<1.6MPa(2)中压(代号M)1.6MPa≤p<10.0MPa(3)高压(代号H)10.0MPa≤p<100.0MPa(4)超高压(代号U)p≥100.0MPa。
品种划分压力容器按在生产工艺过程中的作用原理,分为反应压力容器、换热压力容器、分离压力容器、储存压力容器。
具体划分如下:(1)反应压力容器(代号R):主要是用于完成介质的物理、化学反应的压力容器,如反应器、反应釜、分解锅、硫化罐、分解塔、聚合釜、高压釜、超高压釜、合成塔、变换炉、蒸煮锅、蒸球、蒸压釜、煤气发生炉等。
(2)换热压力容器(代号E):主要是用于完成介质的热量交换的压力容器,如管壳式余热锅炉、热交换器、冷却器、冷凝器、加热器、消毒锅、染色器、烘缸、蒸炒锅、预热锅、溶剂预热器、蒸锅、蒸脱机、电热蒸汽发生器、煤气发生炉水夹套等。
(3)分离压力容器(代号S):主要是用于完成介质的流体压力平衡缓冲和气体净化分离的压力容器,如分离器、过滤器、集油器、缓冲器、洗涤器、吸收塔、铜洗塔、干燥塔、汽提塔、分汽缸、除氧器等。
(4)储存压力容器(代号C,其中球罐代号B):主要是用于储存、盛装气体、液体、液化气体等介质的压力容器,如各种型式的储罐。
在一种压力容器中,如同时具备两个以上的工艺作用原理时,应当按工艺过程中的主要作用来划分品种。
相关规定标准与其他技术标准,与其他管理规定的关系:本规程是固定式压力容器的基本安全性能保证,也是必须满足和达到的安全要求,其他标准不得低于本规程的各项规定不符合本规定时,如何处理:指“三新”试验、研究数据报告报国家质检总局委托技术机构评审、处理,并将结果经总局批准后进行试制相关标准(1)国标GB150-2011压力容器GB151-1999钢制管壳式换热器GB18442-2001低温绝热压力容器GB50094-98球形储罐施工及验收规范GB50128-2005立式圆筒形钢制焊接储罐施工及验收规范3(2)机械部JB4700--2000压力容器法兰JB4708-2000钢制压力容器焊接工艺评定JB/T4709-2000钢制压力容器焊接规程JB4710-2005钢制塔式容器JB4726-2000压力容器用碳素钢和低合金钢锻件JB4727-2000低温压力容器用低合金钢锻件JB4728-2000压力容器用不锈钢锻件JB4731-2005钢制卧式容器JB4732-95钢制压力容器-分析设计标准及标准释义JB/T4734-2002铝制焊接容器JB/T4735-1997钢制焊接常压容器JB4736-2002补强圈JB/T4745-2002钛制焊接容器JB/T5104-91焊接接头脆性破坏的评定JB6917-1998制冷装置用压力容器JB/T6920-1993管壳式油冷器用换热管JB/T8930-1999冲压工艺质量控制规范(3)石油部SY/T0404-98加热炉工程施工及验收规范SY/T0419-97油田专用水套加热炉制造、安装及验收规范SY/T0448-97油田油气处理用钢制压力容器施工及验收规范SY/T0449-97油气田用钢制常压容器施工及验收规范SY/T0469-98石油建设工程质量检验评定标准(油田钢制容器及加热炉制作)SY/T0538-2004管式回热炉规范SY/T4004-90管式加热炉工程施工及验收规范SY4024-93石油建设工程质量检验评定标准(通则)SY4026-93石油建设工程质量检验评定标准(储罐工程)SY/T4041-95油田专用湿蒸汽发生器安装及验收规范SY/T4069-93石油建设工程质量检验评定标准(油田钢制容器制作)SY4081-95钢质球形储罐抗震鉴定技术标准SY6279-1997大型塔类设备吊装安全规程SY6444-2000石油工程建设施工安全规定SY6457-2000含硫天然气管道安全规程SY/T10006-2000结构钢管制造规范化工HG20517-92钢制低压湿式气柜HG20536-93聚四氟乙烯衬里设备HG20545-92化学工业炉受压元件制造技术条件HG/T20589-96化学工业炉受压元件强度计算规定HG21502.1-92钢制立式圆筒形固定顶储罐系列HG21502.2-92钢制立式圆筒形内浮顶储罐系列HG21503-92钢制固定式薄管板列管换热器HG21504.1~2-92玻璃钢储槽标准系列HG21504.1-92玻璃钢储槽标准系列VN0.5-100立方米HG21504.2-92拼装式玻璃钢储罐标准系列(VN100-500立方米)HG21505-92组合式社镜HG21506-92补强圈HG/T3112-1998浮头列管式石墨换热器HG/T3113-1998YKA型圆块孔式石墨换热器HG/T3114-1998聚丙烯海尔环填料HG/T3116-1998玻璃设备、管道和配件检验、安装和使用的一般规则HG/T3117-1998耐酸陶瓷容器HG/T3124-1998焊接金属波纹管釜用机械密封技术条件HG/T3126-1998搪玻璃蒸馏容器HG3129-98整体多层加紧式高压容器HGJ208-83高压化工设备施工及验收规范HGJ209-83中低压化工设备施工及验收规范HGJ210-83圆桶形钢制焊接贮罐施工及验收规范HGJ211-85化工塔类设备施工及验收规范HGJ212-83金属焊接结构湿式气柜施工及验收规范10HGJ226-87管式炉安装工程施工及验收规范HGJ230-88乙烯装置裂解炉施工及技术规程(4)中石化SH3074-95石油化工钢制压力容器SH3075-95石油化工钢制压力容器材料选用标准SH3512-2002球形储罐工程施工工艺标准SH3513-2000石油化工铝制料仓施工及验收规范SH3524-99石油化工钢制塔、容器现场组焊施工工艺标准15SH3065-94石油化工管式炉急弯弯管技术标准SH3074-95石油化工钢制压力容器SH3075-95石油化工钢制压力容器材料选用标准SH3086-1998石油化工管式炉钢结构工程及部件安装技术条件SH3087-1997石油化工管式炉耐热钢铸件技术标准SH/T3112-2000石油化工管式炉炉管胀接工程技术条件SH/T3113-2000石油化工管式炉燃烧器工程技术条件SH/T3114-2000石油化工管式炉耐热铸铁件工程技术条件SH/T3414-1999钢制立式轻质油罐罐下采样器选用、检验及验收SH3504-2000催化裂化装置反应再生系统设备施工及验收规范SH3506-2000管式炉安装工程施工及验收规范SH3512-2002球形储罐工程施工工艺标准16SH3513-2000石油化工铝制料仓施工及验收规范SH3529-93石油化工企业厂区竖向布置工程施工及验收规范SH3530-2001石油化工立式圆筒形钢制储罐施工工艺标准SH3532-95石油化工换热设备施工及验收规范SH3534-2001石油化工筑炉工程施工及验收规范SH/T3537-2002立式圆筒形低温储罐施工技术规程压力压力容器的压力可以来自两个方面,一是压力是容器外产生(增大)的,二是压力是容器内产生(增大)的。
大型球罐材料选用及安装要求大型球罐是一种常见的压力容器,广泛应用于石化、化工、石油、天然气等行业。
其主要功能是用于储存和输送气体或液体,要求具备良好的耐压性能和防腐能力。
为了确保球罐的安全可靠运行,选用合适的材料并按照正确的安装要求进行安装是非常重要的。
一、大型球罐的材料选用大型球罐的材料选用是保证安全运行的首要因素之一。
常用的大型球罐材料包括碳钢、不锈钢、合金钢和玻璃钢等。
不同的材料在耐压性能、防腐性能、成本等方面具有不同的特点,需要根据实际工艺要求和工作环境选择合适的材料。
1. 碳钢:碳钢具有良好的强度和塑性,适用于一般的工艺要求。
其主要缺点是易被腐蚀。
为了提高碳钢的防腐性能,通常会进行防腐涂层的处理。
2. 不锈钢:不锈钢具有良好的耐腐蚀性能,尤其是耐高温和耐酸碱性能。
常用的不锈钢材料有304、316等,其成本相对较高,适用于具有较高防腐要求的工艺。
3. 合金钢:合金钢具有优良的机械性能和耐腐蚀性能,适用于高温和高压工况。
常用的合金钢材料有16MnR、15CrMoR等。
4. 玻璃钢:玻璃钢是一种具有良好的耐腐蚀性能和绝缘性能的复合材料,具有较高的耐压性能。
常用于一些特殊工艺要求。
在选材时,需要综合考虑以下几个因素:1. 工艺要求:根据工艺要求选择合适的耐腐蚀材料,确保球罐在储存和输送过程中不会被介质侵蚀。
2. 工作环境:考虑球罐所处的环境条件,如温度、湿度、腐蚀性气体等因素,选择能够适应这些环境的材料。
3. 安全性能:选材时需考虑球罐的耐压性能,确保材料可以承受工作压力,并留有一定的安全余量。
4. 经济性:在满足工艺要求和安全性的前提下,选择成本相对较低的材料。
二、大型球罐的安装要求1. 基础设计:球罐的安装首先需要进行基础设计,确保基础承载能力足够,并满足球罐的稳定性要求。
2. 检查和清理:在进行安装之前,需要对球罐进行彻底检查和清理,确保内壁无杂质、无明显缺陷。
3. 安装位置:球罐的位置应合理选择,避免与其他设备、建筑物或热源接触,保证安全操作和维护空间。
压力容器材质选用及安全技术加入日期:2008-8-13 | 来源:程力压力容器第一节材料的选用压力容器的用途极广,工作条件也千差万别,因此在容器的设计过程中正确地选择材料是一件极为复杂而又特别重要的工作。
很多压力容器造成事故的重要原因之一就是选用材料不当。
例如,采用焊接性差的钢材焊制压力容器时,就容易在焊接接头中产生裂缝;有些镍铬不锈钢的压力容器,常因钢号或成分选用不当,在使用中发生晶间腐蚀、应力腐蚀等形式的破坏;选用铁素体钢制造低温压力容器时,如钢的转变温度高于容器的工作温度,则容器工作时就容易发生脆性破坏。
所以,在选择压力容器用钢时,必须根据容器的工作条件(如壁温、压力、介质腐蚀性、介质对材料的脆化作用及其是否易燃、易爆、有毒等)选择具有合适力学性能、物理性能和耐腐蚀性能的材料,所选用的材料还必须考虑加工工艺的影响(可焊性、是否便于加工),并考虑其经济合理性及来源等情况。
对于压力容器的设计者,充分了解各种材料的性能(物理性能、力学性能等)以及影响材料性能的各种因素是十分必要的。
一、材料的性能1.力学性能材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。
压力容器用材料的常规力学性能指标主要包括强度、硬度、塑性和韧性等。
(1)强度是指金属材料在外力作用下对变形或断裂的抗力。
强度指标是设计中决定许用应力的重要依据,是材料抵抗外力作用能力的标志。
常用的强度指标有屈服强度σs或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD,设计中许用应力都是根据这些数值决定的。
另外,材料的屈强比(σs/σb)也是反映材料承载能力的一个指标,不同材料具有不同的屈强比,即使是同一种材料,其屈强比也随着材料热处理情况及工作温度的不同而有所变化。
(2)塑性是指金属材料在断裂前发生塑性变形的能力。
塑性指标主要有伸长率δ、断面收缩率φ、冲击韧性ak等。
用塑性好的材料制造容器,可以缓和局部应力的不良影响,有利于压力加工,不易产生脆性断裂,对缺口、伤痕不敏感,并且在发生爆炸时不易产生碎片。
压力容器安全教育培训一、压力容器基本知识1.压力容器的定义:压力容器是指能够承受一定压力的密闭设备,用于存储液体或气体。
2.压力容器的类型:按照设计压力、形状、用途等分类,如常压容器、低压容器、高压容器等。
3.压力容器的设计、制造和使用原理:压力容器的设计应遵循力学原理,制造应遵循相关标准和规范,使用应遵循操作规程。
二、压力容器的安全要求1.压力容器的材质:应选用符合相关标准的材料,如不锈钢、碳钢等,并考虑耐腐蚀、耐高温等性能。
2.压力容器的承载能力:应按照设计压力和使用工况进行校核,确保承载能力满足要求。
3.压力容器的耐腐蚀性:应根据存储介质的特性选择合适的防腐涂层或材料,如油漆、不锈钢等。
4.压力容器的泄露控制:应配备合适的密封件和密封方式,确保泄露风险得到有效控制。
5.压力容器的相关法规和标准:应遵循国家相关法规和标准,如《压力容器安全技术监察规程》、《压力容器安全性能监督检验规则》等。
三、压力容器的维护保养1.压力容器日常维护:定期检查容器表面是否有裂纹、腐蚀、泄露等问题,确保容器处于良好状态。
2.压力容器清洗:定期对容器进行清洗,清除内部残留物和污垢,保证容器内部清洁。
3.压力容器修磨:对容器表面缺陷进行修复,如焊接瑕疵、磨损等,恢复容器使用性能。
4.压力容器更换:根据容器损坏程度和安全性能要求,对容器进行更换,确保安全使用。
5.维护记录和档案管理:记录容器的维护保养过程,建立完善的档案管理体系,为容器安全使用提供保障。
四、压力容器的安全操作规程1.压力容器操作参数:严格遵守设计压力、操作温度等操作参数,避免超负荷运行。
2.压力容器操作步骤:按照操作规程进行操作,先打开进口阀,再关闭出口阀,确保操作顺序正确。
3.压力容器安全防范措施:操作时应佩戴安全帽、防护手套等安全防护设备,避免意外伤害。
4.压力容器事故处理:发生事故时,应迅速切断电源,疏散人员,采取有效措施进行抢救和处理。
5.压力容器应急预案:制定应急预案,对可能发生的事故进行预先防范和应对准备。
压力容器安全阀的选用和安装模版一、引言随着工业发展,压力容器的使用也越来越广泛。
而压力容器的安全是保障人员和设备安全的关键。
在压力容器中,安全阀是一种非常重要的安全装置,它能够在压力超过设定值时自动打开,释放过压,保护压力容器的安全。
本文将介绍压力容器安全阀的选用和安装模版。
二、压力容器安全阀的选用1. 根据使用环境选择材质压力容器安全阀的材质应根据使用环境来选择。
常见的材质有铜、不锈钢、铸铁等。
在腐蚀性环境下,应选择耐腐蚀性能好的材质,如不锈钢。
在高温环境下,应选择能耐高温的材质,如铜合金。
2. 根据工作压力选择安全阀类型和规格根据压力容器的工作压力选择安全阀的类型和规格。
一般来说,工作压力较小的压力容器可以选择弹簧式安全阀。
工作压力较大的压力容器则需要选择膜片式安全阀或全开式安全阀。
在选择规格时,要根据压力容器的工作压力和流量来确定。
3. 根据使用介质选择密封材料安全阀的密封材料应根据使用介质选择。
常见的密封材料有橡胶、聚四氟乙烯等。
在腐蚀性介质中,应选择耐腐蚀的密封材料。
4. 根据国家标准选择合格产品选择压力容器安全阀时,应根据国家标准选择合格产品。
国家标准对压力容器安全阀的技术要求、安全性能、试验方法等都有详细规定。
选择合格产品可以保证安全阀的质量和安全性能。
三、压力容器安全阀的安装模版1. 确定安装位置安全阀的安装位置应在压力容器的出口处,以确保能够及时释放过压。
安全阀的安装位置应远离火源和易燃易爆物品,并且便于操作和维修。
2. 安装阀座和安全阀安装阀座时,应确保阀座和压力容器的连接紧密,并且有足够的强度。
安装安全阀时,应根据安装要求调整安全阀的压力调整螺杆,使其能够在设定压力下工作。
3. 连接压力表和排气管道在安全阀的出口处,应连接一个压力表,用于监测压力容器的压力。
排气管道应安装在安全阀的出口处,并且要保证畅通无阻。
4. 进行试验安装完成后,应进行安全阀的试验。
试验时,应先按照手动操作方式进行试验,检查安全阀的密封性和动作是否正常。
一、标准和规范◆GB150-2011 压力容器◆GB713-2008 锅炉和压力容器用钢板◆GB/T 8163-2008 流体输送用无缝钢管◆GB/T 25198-2010 压力容器封头◆NB/T47016-2011 承压设备产品焊接试件的力学性能◆NB/T47013-2011 承压设备无损检测◆NB/T47001-2009 钢制液化石油气卧式储罐形式与基本参数◆NB/T47008-2010 承压设备用碳素钢和合金钢锻件◆NB/T47003.1-2009 钢制常压容器◆JB/T4712-2007 鞍式支座◆JB/T4736-2002 补强圈◆HG 20581-1998 钢制化工容器材料选用规定◆HG 20582-1998 钢制化工容器强度计算规定◆HG 20583-1998 钢制化工容器结构设计规定◆HG 20592-1997 钢制管法兰型式、参数(欧洲体系)◆HG 20593-1997 板式平焊钢制管法兰(欧洲体系)◆HG 20594-1997 带颈平焊钢制管法兰(欧洲体系)◆HG 20595-1997 带颈对焊钢制管法兰(欧洲体系)◆HG 20596-1997 整体钢制管法兰(欧洲体系)◆HG 20597-1997 承插焊钢制管法兰(欧洲体系)二、制造规范压力容器必须按照TSG R0004-2009《固定式压力容器安全监察规程》和GB150-2011《压力容器》的规定执行(一)材料材料生产单位应当按相应材料标准和订货合同的规定向用户提供质量证原件,并且在材料上的明显部位作出清晰、牢固的钢印标志或其他标志,其内容应当包括材料标准号、牌号、规格、炉(批)号、材料生产单位名称(或厂标)及检验印鉴标志。
材料质量证明书的内容应当齐全、清晰,并且加盖材料生产单位质量检验章。
压力容器专用钢板的生产单位应当取得相应的特种设备制造许可证。
(二)焊接工艺和焊工1、压力容器产品施焊前,受压元件焊缝、与受压元件相焊的焊缝、熔入永久焊缝内的定位焊缝、受压元件母材表面堆焊与补焊以及上述焊缝的返修焊2、缝都应当进行焊接工艺评定或者有经评定合格的焊接工艺支持;3、质检人员应当全过程监督焊接工艺的评定过程;4、焊接工艺评定完成后,焊接工艺评定报告和焊接工艺指导书应当经过焊接责任工程师审核,技术负责人批准,并且经过监检机构签章确认后存入技术档案;5、焊接工艺评定技术档案应当保存至该工艺评定失效为止,焊接工艺评定试样应当保存5年;6、焊接压力容器的焊工,应当按照相应安全技术规范的规定考核合格。
压力容器安全技术操作规程压力容器是在工业生产过程中经常使用的设备之一,其具有容积小,结构强度高,运输方便等特点。
然而,由于其内部压力较高,使用过程中存在安全风险,因此需要严格遵守压力容器安全技术操作规程。
本文将以2000字的篇幅详细介绍压力容器安全技术操作规程。
一、压力容器安全技术操作规程的背景和意义压力容器是承压工作的设备,其在工业生产中广泛应用于石油化工、电力、航空航天等行业。
由于内部压力较高,一旦出现安全事故,后果将不堪设想。
高强度压力容器是由金属材料制成的,其承受压力的能力取决于材料的强度,如果超过了材料的极限强度,就会导致容器破裂。
而压力容器安全技术操作规程的制定旨在确保在使用过程中,严格控制容器的工作压力和使用条件,以保障其安全运行。
二、压力容器安全技术操作规程的主要内容1. 压力容器的选择和设计:根据使用场所和工作要求,选择适合的压力容器型号和规格,并确保其设计符合相关技术标准和规范。
2. 压力容器的安装和验收:在安装压力容器之前,应对其进行严格的验收,确保其符合设计规范,并按照相关操作规程进行安装。
安装过程中应注意容器的定位、固定和防震措施等,保证容器的稳定性和安全性。
3. 压力容器的运行和维护:在使用压力容器时,必须按照操作规程进行运行,并进行定期的检修和维护。
包括对容器压力的监测、阀门的操作、密封件的检查和更换等。
4. 压力容器的保护和防护:对于压力容器,应设置安全保护装置,如压力表、安全阀等,确保容器内压力始终在安全范围内,并及时采取相应的措施,防止容器过压或发生其他安全事故。
5. 压力容器的报警和应急措施:在发生压力容器安全事故或异常情况时,应及时启动报警装置,并立即采取相应的应急措施,如紧急排气、停止使用等,以降低事故的危害。
6. 压力容器的强度检验和定期评估:对于使用一段时间后的压力容器,应定期进行强度检验和评估,以确保其在使用过程中的安全性。
检验包括容器壁厚度的测量、焊缝的检测等。
2.管壳式换热器下面以管壳式换热器的重要部件为例,介绍其结构设计的要点。
(1)管箱包括管箱短节和分程隔板(多程换热器)两部分。
管箱短节结构设计要保证“最小内侧深度”的要求。
①轴向开口的单程管箱,不得小于接管内直径的1/3。
②多程管箱,应保证两程间最小流通面积不小于1.3倍每程管子的流通面积。
此外,短节筒体厚度必须满足刚度要求。
分程隔板结构设计要点如下。
①保证强度要求(承受两侧流体压差)和刚度要求。
②水平分程隔板应开设φ6mm的排净孔。
③对于大直径和两侧流体温差很大时,宜设计为双层结构的分程隔板。
④分程隔板下缘应与管箱密封面齐平。
(2)圆筒固定管板式换热器最小厚度应不小于6mm(高合金钢筒体不小于4.5mm),圆筒的最小厚度随公称直径增大而增厚。
必须指出,圆筒的长度是在以换热管长度为标准长度的前提下按结构计算确定的,否则会造成换热管的不标准而带来材料的严重浪费。
(3)接管其结构设计应符合有关规定。
此外,接管应与壳体表面齐平;接管应尽量沿壳体的径向或轴向设置;接管与外部管线可采用焊接连接;设计温度不低于300℃时,必须采用整体法兰;必要时可设置温度计口、压力表接口及液面计接口;对于不能利用接管(或接口)进行放气和排液的换热器,应在管程和壳程的最高点设置放气口,最低点设置排液口,其DNmin=20mm;立式换热器在需要时可设置溢流口。
(4)换热管U形弯管段的弯曲半径应不小于2倍管子外径。
如果需要,允许换热管拼接,但拼接焊缝不得超过1条(直管)或2条(U形管),且最小管长不得小于300mm。
(5)管板结构设计时必须注意与螺栓、螺母、垫片、管箱的正确、合理和可靠的接合,而且还要考虑为了强化传热而进行分程等方面的要求。
①管板上管孔的布置必须符合换热管标准排列形式的要求,即正三角形排列、转角正三角形排列、正方形排列、转角正方形排列等四种形式。
②管孔中心距一般不得小于1.25倍的换热管外径,即t≥1.25d0。
压力容器材质选用及安全技术加入日期:2008-8-13 | 来源:程力压力容器第一节材料的选用压力容器的用途极广,工作条件也千差万别,因此在容器的设计过程中正确地选择材料是一件极为复杂而又特别重要的工作。
很多压力容器造成事故的重要原因之一就是选用材料不当。
例如,采用焊接性差的钢材焊制压力容器时,就容易在焊接接头中产生裂缝;有些镍铬不锈钢的压力容器,常因钢号或成分选用不当,在使用中发生晶间腐蚀、应力腐蚀等形式的破坏;选用铁素体钢制造低温压力容器时,如钢的转变温度高于容器的工作温度,则容器工作时就容易发生脆性破坏。
所以,在选择压力容器用钢时,必须根据容器的工作条件(如壁温、压力、介质腐蚀性、介质对材料的脆化作用及其是否易燃、易爆、有毒等)选择具有合适力学性能、物理性能和耐腐蚀性能的材料,所选用的材料还必须考虑加工工艺的影响(可焊性、是否便于加工),并考虑其经济合理性及来源等情况。
对于压力容器的设计者,充分了解各种材料的性能(物理性能、力学性能等)以及影响材料性能的各种因素是十分必要的。
一、材料的性能1.力学性能材料在一定温度条件和外力作用下,抵抗变形和断裂的能力称为材料的力学性能。
压力容器用材料的常规力学性能指标主要包括强度、硬度、塑性和韧性等。
(1)强度是指金属材料在外力作用下对变形或断裂的抗力。
强度指标是设计中决定许用应力的重要依据,是材料抵抗外力作用能力的标志。
常用的强度指标有屈服强度σs或σ0.2和抗拉强度σb,高温下工作时,还要考虑蠕变极限σn和持久强度σD,设计中许用应力都是根据这些数值决定的。
另外,材料的屈强比(σs/σb)也是反映材料承载能力的一个指标,不同材料具有不同的屈强比,即使是同一种材料,其屈强比也随着材料热处理情况及工作温度的不同而有所变化。
(2)塑性是指金属材料在断裂前发生塑性变形的能力。
塑性指标主要有伸长率δ、断面收缩率φ、冲击韧性ak等。
用塑性好的材料制造容器,可以缓和局部应力的不良影响,有利于压力加工,不易产生脆性断裂,对缺口、伤痕不敏感,并且在发生爆炸时不易产生碎片。
作为化工容器用的钢,要求伸长率δ不低于14%,冲击韧性ak在使用温度下不低于35J/cm2。
(3)韧性是指金属材料抵抗冲击负荷的能力。
韧性常用冲击功Ak和冲击韧性值ak表示。
Ak值或ak 值除反映材料的抗冲击性能外,还对材料的一些缺陷很敏感,能灵敏地反映出材料品质、宏观缺陷和显微组织方面的微小变化。
而且Ak对材料的脆性转化情况十分敏感,低温冲击试验能检验钢的冷脆性。
表示材料韧性的一个新的指标是断裂韧性,它是反映材料对裂纹扩展的抵抗能力。
(4)硬度是衡量材料软硬程度的一个性能指标。
硬度试验的方法较多,原理也不相同,测得的硬度值和含义也不完全一样。
最常用的是静负荷压入法硬度试验,即布氏硬度(HB)、洛氏硬度(HRA,HRB,HRC)、维氏硬度(HV),其值表示材料表面抵抗坚硬物体压入的能力。
而肖氏硬度(HS)则属于回跳法硬度试验,其值代表金属弹性变形功的大小。
因此,硬度不是一个单纯的物理量,而是反映材料的弹性、塑性、强度和韧性等的一种综合性能指标。
材料力学性能的各因素之间是相互联系又相互制约的。
有些材料强度较高,但它的伸长率及冲击韧性却很低。
因此,选材时不能只看其单一的性能指标,而应对材料力学性能的诸因素作全面分析。
2.物理性能在容器设计中,应注意到材料的物理性能。
例如,在计算容器的温差应力时,就要用到材料的线胀系数α;在设计换热器及计算容器外壳热损失时,还要用到材料的热导率入等。
因此,材料的使用场合不同,对材料物理性能亦有不同的要求。
主要的物理性能指标有密度ρ,热导率λ,比热容c,熔点tm,线胀系数α,电阻率ρr,弹性模量E等。
常用钢材的物理性能见表2—1。
3.耐腐蚀性能化工厂中经常处理有腐蚀性的介质,故设计化工容器时,在很多场合下,耐腐蚀性对材料的选择起决定性的作用。
材料的耐蚀程度会影响设备使用寿命、产品的质量,有时甚至影响化学反应的进行。
因此,考虑材料的耐蚀性是化工容器材料选择中的一个重要问题。
材料的腐蚀速度在工程上常用Ka(mm/a)来表示,材料腐蚀速度在1mm/a以下的,可认为能用于化工容器。
有关材料的耐蚀性可在材料腐蚀和防腐手册中查得。
4.制造工艺性能材料的制造工艺性能包括可锻性、可焊性、切削加工性及研磨、冲压性能、热处理性能等。
对制造化工容器的钢材来说,焊接性能和压力加工性能就显得更为重要。
(1)可焊性是指金属材料在一定的焊接工艺条件下能否获得优良焊接接头的性能。
一种金属,如果能用较普通又简便的焊接工艺获得优质接头,则认为这种金属具有良好的可焊性;反之,如果要用很复杂或特殊的焊接工艺才能获得优质接头,则认为它的可焊性差。
通常,把金属材料在焊接时产生裂纹的敏感性及焊接接头区力学性能的变化作为评价材料可焊性的主要指标。
钢材焊接性能的好坏主要取决于它的化学组成。
而其中影响最大的是碳元素,也就是说金属含碳量的多少决定了它的可焊性。
钢中的其他合金元素大部分也不利于焊接,但其影响程度一般都比碳小得多。
钢中含碳量增加,淬硬倾向就增大,塑性则下降,容易产生焊接裂纹。
所以含碳量越高,可焊性越差。
所以,常把钢中含碳量的多少作为判别钢材可焊性的主要标志。
含碳量小于0.25%的碳钢和低合金钢,一般都具有良好的可焊性。
含碳量增加,大大增加焊接的裂纹倾向,所以,含碳量大于0.25%的钢材不应用于制造锅炉、压力容器。
在特殊条件下,如选用含碳量超过0.25%的材料(有些低合金钢可焊性较差,必须采取特殊的焊接工艺),必须得到设计单位总技术负责人批准。
制造单位应对这类材料进行焊接性能试验和焊接工艺评定,合格后,报省级以上锅炉压力容器安全监察机构备案。
制造一般受压容器所用钢材的含碳量最好不大于0.25%。
(2)其他材料成型的主要方法是滚卷与冲压。
材料中的夹渣、气孔等缺陷易在加工过程中形成裂纹或微裂纹。
材料的冷作硬化性会降低塑性指标,而且会在受热时出现结晶粗化,降低强度。
一般材料的残余变形超过3%时,需经退火处理。
5.价格与采源设备成本的很大一部分决定于材料的价格。
因此,在选用材料时,应了解它们的价格。
如果将碳素钢板Q235-A的价格定为1,其余的板材相对价格大致有如下关系,16MnR为1.4、20R(20g)为1.8、铬钢(1Cr13,2Cr13)为5.1、高合金钢0Cr18Ni10为14.1。
当然,采用价廉的材料不一定在经济上就是合理的,因为价贵的材料可能具有较好的性能,用它可以制成器壁较薄而轻的容器,而且使用年限也比较长,经济效果更好。
分析材料的经济性不能仅看它们的价格,同时要看国家的资源情况。
应多用普通易取的材料,少用昂贵稀缺的材料;多用国产材料,少用或不用进口材料。
二、影响材料性能的因素影响材料性能的因素主要有冶炼方法、合金元素、制造工艺、操作温度、介质的腐蚀性等。
1.冶炼方法炼钢过程是把生铁中含有的大量有害杂质元素,在氧化反应作用下转变成氧化物进入炉气和炉渣中排除生产较纯金属的过程,所以炼钢过程也是氧化过程。
根据冶炼方法和使用设备不同,可分平炉钢、转炉钢、电炉钢和坩埚钢。
按炼钢炉炉衬不同,还可分为酸性钢和碱性钢。
根据钢锭型式和脱氧情况,又可分镇静钢、半镇静钢和沸腾钢。
目前,压力容器主要用碱性平炉钢和碱性电炉钢。
由于碱性炉熔炼去磷能力很好,因此厚截面钢板一般都采用这种方法冶炼,使钢中磷含量降至最低。
另外,电炉操作时,可以倾倒放渣,不断地调整炉渣量,使易氧化的元素,如铬和锰等具有较高的回收率,可以获得硫化物和氧化物夹杂很低的高纯净钢。
其次,由于压力容器的操作压力和容器容积不断增加,特大型锻件的需要量也随之增多,这种锻件的压缩变形较小,热处理后不易获得此钢种应能达到的力学性能,因此提高钢的纯度是特别重要的。
为了提高低合金钢的可焊性,消除白点和开裂,必须降低钢锭(尤其是大型锻件的钢锭)中的氢含量。
目前,一般采用真空除气技术降低氢含量,改善锻件(尤其是特大型锻件)的纯度。
除此而外,真空除气还能减少钢中的氧和氮含量。
减少含氧量也就是减少了脱氧剂的用量,使钢更加纯净。
经真空去气处理的钢,因非金属夹杂物减少,改善了钢的疲劳特性。
2.合金元素为了提高钢的力学性能,必须在钢中添加一些合金元素,其中最主要的有锰、硅、铬、镍、钼、钛、铌、钒、铝和铜等。
这些元素添加在钢中后,对钢的物理性能和力学性能影响很大。
根据元素加入量多少和搭配关系,可以产生下述三种情况。
①强度与碳钢相同时,韧性大大提高。
②强度提高,韧性仍不低于碳钢。
③强度和韧性都提高。
(1)锰是炼钢时用锰铁脱氧而残留在钢中的。
作为合金元素加入钢中的锰,能够提高钢的强度性能和奥式体钢的组织稳定性,截面较大的工件可以获得较均匀的细化组织。
如锰含量增加到10%~15%时,可获得韧性和强度都好的奥式体钢,耐腐蚀性也很好,因此压力容器用碳素钢锰含量都很高。
锰的不利影响是增加钢的过热敏感性和回火脆性。
锰是最便宜的合金元素,资源丰富,我国常用锰钢代替镍铬钢。
(2)硅通常钢中硅含量在0.2%~0.3%范围内。
如钢中硅的含量超过0.5%时,则认为硅是作为特殊的合金元素加人的。
硅能提高钢的强度、耐腐蚀性和耐热性。
硅含量高达15%~20%时,即高硅铸铁,具有特别好的耐酸腐蚀性能。
含硅钢在氧化气氛中加热时,表面形成一层SiO2,从而提高钢在高温时的抗氧化能力,因此在铬、铬铝、铬镍钢中加入一定量的合金元素硅,将增加这些钢的高温抗氧化能力。
锰钢加硅也能提高它的抗氧化性能,但含量过高时,钢表面脱碳倾向加剧。
硅易在钢中产生带状组织,从而使钢材横向性能低于纵向性能,脆性转变温度升高,韧性和可焊性降低。
(3)铬能提高钢的强度、硬度、耐磨性和耐腐蚀性,铬钢具有良好的综合力学性能,经淬火回火处理的铬钢,铬元素一般不降低其韧性。
铬是决定不锈钢耐腐蚀性能的主要元素,钢中铬含量越高,其抗腐蚀性能越好。
通常,不锈钢的铬含量高于13%。
由于铬能提高铬镍调质钢和高铬高碳钢的淬透性,因此冷却时要防止由组织应力而产生裂纹。
高铬钢(含铬量超过12%~14%时)的导热性能很差,在热加工加热时应注意缓慢地升温,并有足够的保温匀热时间。
高铬钢在成型加工时,每次变形量要小些。
(4)镍能使钢具有很高的强度、塑性和韧性。
当镍含量少于20%时,其强度随镍含量增高而增加,塑性随镍含量增高而降低。
当镍含量高于20%时,强度逐渐降低,但塑性提高。
镍能提高钢的抗疲劳性能,减少钢对缺口的敏感性,降低钢的低温脆性转变温度。
镍能够提高钢对大气、海水、酸(当镍含量超过15%~20%时,对硫酸、盐酸均有很高的耐腐蚀能力)、碱、盐等耐腐蚀性能。
镍对钢的耐腐蚀性能的影响,通常是使它与铬配合时才能充分地表现出来。
因为镍是形成奥氏体的合金元素,若在钢中只加入镍,而不加入铬,要使低碳镍钢获得纯的奥式体组织,只有镍含量超过24%时才能比较明显地提高钢的耐腐蚀性能。