脉宽调制型(PWM )功率放大器
- 格式:ppt
- 大小:3.09 MB
- 文档页数:42
脉宽调制原理
脉宽调制(Pulse Width Modulation,PWM)是一种常用的调
制技术,通常应用于电子电路中。
脉宽调制的原理是通过改变信号的脉冲宽度来控制电路输出的电平。
脉宽调制一般使用方波信号来进行调制,通过调整方波的高电平时间和低电平时间的比例,来实现对输出电平的控制。
在脉宽调制中,通常有一个固定的载波频率,称为调制频率。
通过控制脉冲的宽度,即高电平时间,来决定输出信号的电平。
当脉冲宽度较窄时,即高电平时间较短,输出信号的电平较低;当脉冲宽度较宽时,即高电平时间较长,输出信号的电平较高。
脉宽调制常用于控制电器设备的功率输出,如直流电机的速度调节、音频信号的放大等。
它可以通过自动控制电路实现动态调节,使得输出信号在一定的范围内连续变化。
脉宽调制技术在工程实践中应用广泛,具有调节灵活、精度高、输出功率大等特点。
同时,它也具有一定的噪声特性,需要在工程设计中充分考虑,采取适当的滤波措施以提高输出信号的质量。
总而言之,脉宽调制是一种基于脉冲宽度调节的技术,通过控制脉冲的宽度来控制输出信号的电平,广泛应用于电子电路中。
现代电力电子及变流技术第四章脉宽调制(PWM)技术脉宽调制技术:按同一比例改变在ur 和uc交点时刻控制IGBT 的通断u r 和uc的点时刻制IGBT 的通断控制公用三角波载波uc 三相的调制信号依次u c u rW单相逆变器结构特点电路结构特征:2个桥臂输出电压:ab ag bg V V V =−结构分析:�每个桥臂存在2个开关状态—桥臂上开关通(用S a =1描述);—桥臂下开关通(用S a =0描述)。
�逆变器共有4种开关状态—S a S b :00,01,10,11。
开关状态与电压的关系4.5 4.5 SVPWMSVPWM 的原理及实现结构特点�两个桥臂电压V ag 和V bg 分别独立可控——控制存在两个自由度;�由于连接了负载,输出电压V ab 具有唯一性——只有一个自由度。
如何分析两维的桥臂电压和一维的输出电压之间的联系?几何分析方法矢量空间�桥臂电压构成两维空间,两个自由度分别代表两个垂直方向——桥臂电压空间;�输出电压只有一个自由度,构成一维空间 ——输出电压空间。
4.5 4.5 SVPWMSVPWM 的原理及实现桥臂电压和输出电压的联系�采用投影方式建立联系;�开关状态(00),(11)形成的两个桥臂电压——对应一个输出电压(0V)。
这一投影具有唯一性投影关系ag ab bg 01111V V V V −⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦V 0是零序电压*11ag 22ab 11bg 220*V V V V ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦逆变器控制方法V 0*为一定范围的任意数注:V 0*取常数(如V i )时,Vag 和Vbg 的驱动波形可以设计。
例:V ab *取0.5V i , V 0*取V iV ag 取0.75V i , V bg 取0.25V ia 桥臂上管b 桥臂下管b 桥臂上管a 桥臂下管4.5 4.5 SVPWMSVPWM 的原理及实现V 0*取其他值会怎样? V 0*有没有一个取值原则?4.5 4.5 SVPWMSVPWM 的原理及实现三相逆变器结构特点结构特征:3个桥臂电路特征:()ng ag bg cg 3V V V V =++结构分析:�每个桥臂存在2个开关状态—桥臂上开关通(用S a =1描述);—桥臂下开关通(用S a =0描述)。
pwm脉宽调制原理
PWM脉宽调制原理
PWM,即脉宽调制(Pulse Width Modulation),是一种通过控制信号的脉冲宽度来实现模拟信号的技术。
在电子领域中,PWM技术被广泛应用于控制系统、变频调速、电源供应等方面。
PWM脉宽调制原理基本上可以概括为通过改变信号的占空比来控制输出信号的电压或功率。
在PWM脉宽调制中,信号的周期是固定的,而脉冲的宽度则根据控制信号的变化而改变。
通过控制脉冲的宽度,可以实现对输出信号的精确控制。
通常情况下,信号的占空比被定义为脉冲的宽度与周期的比值,通常以百分比表示。
PWM脉宽调制技术的原理可以简单地解释为:当信号的占空比增大时,输出信号的电压或功率也会随之增大;反之,当信号的占空比减小时,输出信号的电压或功率也会相应减小。
因此,通过改变信号的占空比,可以实现对输出信号的精确控制。
在实际应用中,PWM脉宽调制技术被广泛应用于电子设备中,如直流电机的调速控制、逆变器的控制、电源供应的调节等。
通过PWM 技术,可以实现对电子设备的精确控制,提高系统的稳定性和效率。
除了在电子设备中的应用外,PWM脉宽调制技术还被广泛应用于照明领域。
通过调节LED灯的PWM信号,可以实现对灯光的亮度和
颜色的精确控制,实现节能和环保的效果。
总的来说,PWM脉宽调制技术是一种非常有效的控制技术,可以广泛应用于电子设备、照明领域等各个领域。
通过控制信号的脉冲宽度,可以实现对输出信号的精确控制,提高系统的稳定性和效率。
PWM技术的不断发展和应用将为电子领域带来更多的创新和发展。
基于P WM 和S i g ma 2D elt a调制的数字音频功率放大器的实现彭振兴,林 涛(同济大学超大规模集成电路研究所,上海市200092)【摘 要】 介绍了一种新型的功率放大器,通过Sig ma 2Delta 调制和P WM (脉宽调制)技术,将音频数字信号转换成P WM 信号,经外接的模拟低通滤波器还原出原始的音频信号。
该功率放大器在保持高品质声音的同时能够极大地提高电源的使用效率。
分析了信号处理过程中非线性误差产生原因,提出了相应的纠正措施,还介绍了P WM 和高阶Sig ma 2Delta 调制器的设计及实现方法。
关键词:音频功率放大,脉宽调制(P WM ),过采样,Sig ma 2Delta 调制中图分类号:T N727.7收稿日期:2005206215;修回日期:2005210213。
1 数字功率放大器传统的音频信号功率放大多是通过模拟线性功率放大器实现的,对于模拟音频信号可以直接进行放大,而对于数字信号则必须通过D /A 转换电路将数字信号转换成模拟信号再进行功率放大,在将数字信号转换成模拟信号后,模拟信号很容易受外界的影响,引起的信号失真经过放大器后也得到了放大,信号失真更加严重。
线性功率放大器根据工作状态一般分为甲类、乙类、甲乙类等。
数字功率放大器可将数字音频信号直接转换成能够驱动负载(如扬声器)的模拟信号,这类音频功率放大器具有极低的功耗。
研究发现,传统的功率放大器,电源的使用效率一般不会高于60%,而数字功率放大器的电源使用效率却能够达到80%~90%。
数字功率放大器的基本结构如图1所示。
图1 数字功率放大器基本结构输入的PC M 音频信号经过过采样插值滤波后,进入调制器转换成P WM (脉宽调制)信号,P WM 信号可以用来控制输出端的开关型功率MOSFET,功率管产生一个大能量的P WM 信号,该信号的电压值由电源电压决定,电流值由负载阻抗和电路形式决定,经带宽为20kHz 低通滤波器还原成原来的模拟音频信号。
PWM的调制频率1. 什么是PWMPWM(Pulse Width Modulation)即脉宽调制,是一种常用的电子调制技术。
它通过改变信号的脉冲宽度来实现对电平的调制。
PWM信号由一个固定频率的周期性方波和一个可变的占空比组成。
占空比是脉冲的高电平时间与一个周期的比值,用百分数表示。
2. PWM的应用PWM广泛应用于各种领域,包括电机控制、照明调光、音频放大器、无线通信等。
其中,电机控制是PWM应用最为广泛的领域之一。
通过调节PWM信号的占空比,可以控制电机的转速和转向。
3. PWM的调制频率PWM的调制频率是指PWM信号的周期,即方波的重复周期。
调制频率通常以赫兹(Hz)为单位表示。
调制频率的选择对于PWM的应用至关重要,不同的应用场景需要选择不同的调制频率。
3.1 低频PWM低频PWM通常指调制频率在几十赫兹以下的PWM信号。
低频PWM适用于一些对精度要求不高的应用,比如LED灯的调光。
由于低频PWM的周期较长,因此人眼无法察觉到LED灯的闪烁,可以实现平滑的调光效果。
3.2 中频PWM中频PWM通常指调制频率在几百赫兹到几千赫兹之间的PWM信号。
中频PWM广泛应用于电机控制领域。
调制频率较高的中频PWM可以提供更高的控制精度和响应速度,适用于需要高精度控制的应用,如无刷直流电机控制。
3.3 高频PWM高频PWM通常指调制频率在几千赫兹到几十千赫兹之间的PWM信号。
高频PWM的周期非常短,可以实现更精细的控制,适用于一些对精度要求非常高的应用,如音频放大器。
4. 如何选择PWM的调制频率选择PWM的调制频率需要考虑多个因素,包括应用需求、系统特性和成本等。
4.1 应用需求根据应用需求选择合适的调制频率非常重要。
对于一些对精度要求不高的应用,如LED灯的调光,低频PWM就可以满足要求。
而对于一些对精度要求较高的应用,如无刷直流电机控制,需要选择中频PWM或高频PWM。
4.2 系统特性系统特性也是选择PWM调制频率的重要考虑因素。
直流电机PWM调速基本原理
PWM方式是在大功率开关晶体管的基极上,加上脉冲宽度可调的方波电压,控制开关管的导通时间t,改变占空比,达到控制目的。
图3.3是直流PWM系统原理框图。
这是一个双闭环系统,有电流环和速度环。
在此系统中有两个调节器,分别调节转速和电流,二者之间实行串级连接,即以转速调节器的输出作为电流调节器的输入,再用电流调节器的输出作为PWM的控制电压。
核心部分是脉冲功率放大器和脉宽调制器。
控制部分采用AT89S52(脉宽调制芯片AT89S52具有欠压锁定、故障关闭和软起动等功能,因而在中小功率电源和电机调速等方面应用较广泛。
AT89S52是电压型控制芯片,利用电压反馈的方法控制PWM信号的占空比,整个电路成为双极点系统的控制问题,简化了补偿网络的设计。
)集成控制器产生两路互补的PWM脉冲波形,通过调节这两路波形的宽度来控制H 电路中的GTR通断时间,便能够实现对电机速度的控制。
为了获得良好的动、静态品质,调节器采用PI调节器并对系统进行了校正。
检测部分中,采用了霍尔片式电流检测装置对电流环进行检测,转速还则是采用了测速电机进行检测,能达到比较理想的检测效果。
图3.3 直流电动机PWM系统原理图。
功率放大器的分类及其参数功率放大器(简称:功放)(Power Amplifier)功率放大器,顾名思义,是将功率放大的放大器。
进入微弱的信号,如话筒、VCD、微波等等送到前置放大电路,放大成足以推动功率放大器信号幅度,最后后级功率放大电路推动喇叭或其它设备,它最大的功用,是当成输出级(Output Stage)使用。
从另一个角度来看,它是在做大信号的电流放大,以达到功率放大的目的。
从广义上来说功率放大器不局限于音频放大,很多场合都会用到它,如射频、微波、激光等等。
功率放大器的分类:1、纯甲类功率放大器纯甲类功率放大器又称为A类功率放大器(Class A),它是一种完全的线性放大形式的放大器。
在纯甲类功率放大器工作时,晶体管的正负通道不论有或没有信号都处于常开状态,这就意味着更多的功率消耗为热量。
纯甲类功率放大器在汽车音响的应用中比较少见,像意大利的Sinfoni高品质系列才有这类功率放大器。
这是因为纯甲类功率放大器的效率非常低,通常只有20-30%,音响发烧友们对它的声音表现津津乐道。
2、乙类功率放大器乙类功率放大器,也称为B类功率放大器(Class B),它也被称为线性放大器,但是它的工作原理与纯甲类功率放大器完全不同。
B类功放在工作时,晶体管的正负通道通常是处于关闭的状态除非有信号输入,也就是说,在正相的信号过来时只有正相通道工作,而负相通道关闭,两个通道绝不会同时工作,因此在没有信号的部分,完全没有功率损失。
但是在正负通道开启关闭的时候,常常会产生跨越失真,特别是在低电平的情况下,所以B 类功率放大器不是真正意义上的高保真功率放大器。
在实际的应用中,其实早期许多的汽车音响功放都是B类功放,因为它的效率比较高。
3、甲乙类功率放大器。
脉宽调制的基本原理
脉宽调制(Pulse Width Modulation,PWM)是一种电子技术,用于将模拟信号转换为数字信号。
它通过调整信号脉冲的宽度来表示模拟信号的幅值。
脉宽调制的基本原理是将一个固定频率的时钟信号与模拟信号进行比较,确定脉冲信号的高电平时间,从而表示模拟信号的幅值。
当模拟信号的幅值较大时,脉冲信号的高电平时间较长,而幅值较小时,脉冲信号的高电平时间较短。
具体来说,脉宽调制的实现方法有多种,其中最常见的是使用比较器和计数器。
比较器将时钟信号与模拟信号进行比较,并输出一个PWM信号。
计数器用于控制PWM信号的频率和高
电平时间。
通过调整计数器的计数值,可以改变PWM信号的
频率,而通过改变比较器的阈值,可以改变PWM信号的高电
平时间。
脉宽调制广泛应用于各种领域,例如电力电子、通信、音频放大器等。
其中最常见的应用是在直流变换器(DC-DC converter)中,用于实现高效率的电能转换。
此外,PWM还
可以用于控制电动机的速度,调节LED的亮度等。
总之,脉宽调制通过调整信号脉冲的宽度来表示模拟信号的幅值。
它的基本原理是比较模拟信号与时钟信号,并根据比较结果生成脉冲信号。
通过控制脉冲信号的频率和高电平时间,可以实现对模拟信号的精确表示和控制。
电力电子技术中的PWM调制技术详解在现代工业领域中,电力电子技术扮演着至关重要的角色。
PWM (脉宽调制)技术作为电力电子技术的核心之一,已经广泛应用于各种电源和驱动系统中。
本文将深入探讨PWM调制技术的原理、应用和优势。
1. PWM调制技术的原理PWM调制技术是通过改变脉冲宽度的方式来控制电路输出的一种方法。
其基本原理是将模拟信号转换为脉冲信号,通过调整脉冲的宽度来控制输出电压或电流的大小。
PWM信号的脉冲宽度与所需输出信号的幅值成正比。
在PWM调制技术中,常用的脉冲产生方法包括比较器法、计数器法和改进型PWM等。
其中,比较器法是最常用的一种方法。
该方法通过一个比较器将输入信号与一定频率、恒定幅度的三角波进行比较,从而产生脉冲宽度调制的信号。
2. PWM调制技术的应用PWM调制技术已经广泛应用于各种电力电子设备和系统中。
以下是几个常见的应用领域:2.1 变频调速系统PWM调制技术在变频调速系统中起到了关键作用。
通过调整PWM 信号的脉冲宽度,可以实现对电机转矩和转速的精确控制。
这种技术的应用使得电机的运行更加稳定、高效,并且节省能源。
2.2 电力逆变器电力逆变器是将直流电能转换为交流电能的设备,广泛应用于太阳能发电、风能发电等领域。
PWM调制技术能够有效地控制逆变器的输出波形质量,提高逆变器的效率和稳定性。
2.3 电源管理系统在电源管理系统中,PWM调制技术能够实现电源的高效转换和稳定输出。
通过精确控制PWM信号的脉冲宽度,可以实现电源的输出电压的调节和稳定,以满足不同电器设备的需求。
3. PWM调制技术的优势PWM调制技术相比传统的模拟控制方法具有以下优势:3.1 高精度控制PWM调制技术能够精确调节输出信号的幅度,通过调整脉冲宽度来实现高精度控制。
这种精准性在很多需要精确控制的领域非常重要,比如电机调速系统和逆变器控制系统。
3.2 高效能转换由于PWM调制技术只有两种状态(高电平和低电平),因此能量损耗相对较小,能够实现高效率的能量转换。
数字功放工作原理数字功放(Digital Power Amplifier)是一种使用数字信号处理技术来实现音频信号功率放大的电子设备。
它采用了数字信号处理器(DSP)和PWM(脉宽调制)技术,能够将数字音频信号转换为模拟信号并进行功率放大,以驱动扬声器产生音频声音。
数字功放的工作原理如下:1. 输入信号处理:数字功放首先接收音频输入信号。
这个信号可以是通过麦克风、CD播放器或其他音频设备提供的模拟信号,也可以是经过模数转换器(ADC)转换为数字信号后的数字音频信号。
2. 数字信号处理:数字功放将输入信号经过数字信号处理器(DSP)进行处理。
DSP可以对音频信号进行各种处理,如均衡、滤波、时延控制、喇叭校准等,以优化音频质量。
3. 数字到模拟转换:经过数字信号处理的音频信号被送入数字到模拟转换器(DAC),将其转换为模拟信号。
DAC会将离散的数字音频样本以一定频率合成为连续的模拟音频信号。
4. 模拟信号放大:转换为模拟信号后,音频信号经过PWM脉宽调制技术被送入功率放大器。
PWM技术将音频信号转换为脉冲信号,通过调整脉冲的宽度来控制输出信号的幅值。
5. 输出功率放大:脉冲信号经过功率放大器进行功率放大,以便驱动扬声器产生大功率的音频声音。
功率放大器的工作原理是通过对电流或电压进行放大,将低功率的音频信号转换为足够大的功率信号。
6. 扬声器输出:经过功率放大后,放大器的输出信号被传送到扬声器,驱动扬声器震动产生声音。
通过数字信号处理和PWM技术的结合,数字功放能够实现高效率的功率放大,具有音频精度高、信噪比好、失真低、功率利用率高等优势。
同时,数字功放还能够实现灵活的数字信号处理和音频参数调整,提供更好的音频体验。