2003年高考全国卷理科数学试题及答案
- 格式:pdf
- 大小:726.36 KB
- 文档页数:10
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54c o s =x ,则2tg x = ( )(A )247 (B )247-(C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( )(A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)4.函数)cos (sin sin 2x x x y +=的最大值为 ( )(A )21+(B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( )(A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( ) (A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m( )(A )1 (B )43 (C )21 (D )83 8.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1](C )x arcsin +π1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tgθ的取值范围是( )(A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )612.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( )(A )π3 (B )π4 (C )π33(D )π6二.填空题:本大题共4小题,每小题4分,共16分。
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一。
选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( )(A)247 (B)247-(C )724 (D)724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( )(A )2cos -=θρ (B )2cos =θρ (C)2sin =θρ (D )2sin -=θρ3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( )(A )21+ (B)12- (C)2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( )(A )2 (B)22- (C)12- (D )12+6.已知圆锥的底面半径为R,高为3R ,在它的所有内接圆柱中,全面积的最大值是( ) (A )22R π (B )249Rπ (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m( )(A )1 (B )43 (C )21 (D )83 8.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1](C )x arcsin +π1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A(0,0),B(2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tgθ的取值范围是( )(A )(31,1) (B )(31,32) (C )(52,21) (D)(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A)3 (B )31 (C )61(D )612.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( )(A )π3 (B )π4 (C )π33 (D)π6二。
2003年普通高等学校招生全国统一考试 数 学(理工农医类)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .247-C .724 D .724- 2.圆锥曲线的准线方程是θθρ2cos sin 8=( )A .2cos -=θρB .2cos =θρC .2sin -=θρD .2sin =θρ3.设函数的取值范围是则若0021,1)(,.0,,0,12)(x x f x x x x f x >⎪⎩⎪⎨⎧>≤-=- ( )A .(-1,1)B .(-1,+∞)C .),0()2,(+∞⋃--∞D .),1()1,(+∞⋃--∞4.函数)cos (sin sin 2x x x y +=的最大值为 ( )A .21+B .12-C .2D .25.已知圆截得被当直线及直线C l y x l a x a x C .03:)0(4)2()(:22=+->=-+-的弦长为32时,则a =A .2B .22-C .12-D .12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )A .22R πB .249R πC .238R πD .223r π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成的一个首项为41的等差数列,则=-||n m ( )A .1B .43 C .21 D .83 8.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x f x x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π210.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x 1),0,44则若<<x 的取值范围是( )A .)1,31(B .)32,31(C .)21,52(D .)32,52(11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C( )A .3B .31C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( )A .3πB .4πC .3π3D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx -展开式中9x 的系数是 . 14.使1)(log 2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区 域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP的图形的序号是.(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分) 如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G. (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示); (Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分)已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos(=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由. 22.(本小题满分12分,附加题4分)(Ⅰ)设Z}t s,,0|2{2}{t ∈<≤+且是集合t s a s n 中所有的数从小到大排列成的数列,即.,12,10,9,6,5,3654321 ======a a a a a a将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表: 35 69 10 12— — — —— — — — — (i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分)设Z}t s,r,,0|22{2}{r∈<<≤++且是集合t s r b stn 中所有的数都是从小到大排列成的数列,已知k.,1160求=k b2003年普通高等学校招生全国统一考试4数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos r r z+=,则复数.2r z 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1, 3.(4)3sin D E CC A B DC ABC CDEF DE G ADB G DF EFD EF FG FD FD EF FD ED EG FC CD AB A B EB EG EBG A B ABD EB ⊥∴∆∴∈=⋅==∴======∴∠==∴分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(2222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。
32003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。
第I 卷 至10页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷(选择题共60 分).选择题:本大题共 12小题,每小题5分,共60分,在每小题给出的四个选项中,只有 一项是符合要求的 1.已知x(2,0), cosx —,则 tg 2x5 ()(A ) L(B )—(C ) 24(D )矽2424772•圆锥曲线8sin 一的准线方程是()2 cos(A ) cos 2(B ) cos2 (C )sin 2 (D )sin23•设函数 f (x)2 x11 x 0牡,右 f (x °)1 ,则x °的取值范围是( )x 2x 0(A )( 1, 1)(B )(1 , )(C )(2)(0, )(D )(,1)(1,) 4.函数y2sin x(sin x cosx)的最大值为()(A ) 1 2(B ) 2 1(0 2(D ) 25.已知圆 C: (x a)2 (y 2)24 (a0) 及直线l : x y 30 , 当直线 l 被C 截得的弦长为2 . 3时,则am n |(A ) 1(B ) 3(C )丄 (D ) 3428一 2MN 中点的横坐标为,则此双曲线的方程是1至2页,第n 卷36. (A ) 2(B )已知圆锥的底面半径为R, 高为 (C ) 2 1(A ) 2 R 2已知方程(X 2942x m)(x 2 (B ) 2x 3R,在它的所有内接圆柱中,全面积的最大值是((D - R 22(C) £ £n ) 0的四个根组成一个首项为1的的等差数列,则 4&已知双曲线中心在原点且一个焦点为F ( 7 , 0),直线 yx 1与其相交于 M N 两点,x [1] 1]P 3和P 4 (入射角等于反射角),设P 4的坐标为(X 4 , 0),若1 X 4 2,贝U tg 的取(A ) y- 149.函数 f(x)sin x ,2 2 2 (B )二 1 ( C) \43x r的反函数f2 ' 22 y- 1 2(D )2y_ 1 5(A ) arcsinx x [ 1, 1] (B ) (C )arcsinx x[1, 1](D )10•已知长方形的四个顶点A (0, 0), 中点P 0沿与AB 的夹角的方向射到 1(x)arcs in x arcs inxB (2, 0),C ( 2, 1 )和D (0, 1), 一质点从AB 的 BC 上的点R 后,依次反射到CD DA 和 AB 上的点F 2、值范围是 (B ) ( 1,3) 3(C )(A ) ( 1, 31)2 22 211. limC 21C 3 1C 41C n1nn(C 2 C 3C 4C n )(A ) 3(B ) 1(C ) 136(),丄)(D ) (2,)553()(D ) 62,四个顶点在同一球面上,则些球的表面积为((A ) 3(B ) 4(C ) 3 3(D ) 612. 一个四面体的所有棱长都为x [1]1]二.填空题:本大题共4小题,每小题4分,共16分。
2003高考全国Ⅰ理科数学试卷及答案2003年普通高等学校招生考试全国?理科数学一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,41(已知,0),,则 ( ) tgx2,(x,,socx,25247724 (A) (B) (C) (D) ,,724247,8sin2(圆锥曲线的准线方程是 ( ) ,,2cos,(A) (B) (C) (D) ,cos,,,2,cos,,2,sin,,2,sin,,,2,x,,21x,0,13(设函数,若,则的取值范围是 ( ) xf(x),1,f(x),002x,0,x,(A)(,1) (B)(,) ,,,1,1(C)(,)(0,) (D)(,)(1,) ,,,,,,,,,,,2,14(函数的最大值为 ( ) y,2sinx(sinx,cosx)(A) (B) (C) (D)2 1,22,12225(已知圆C:()及直线:,当直线被C截得的弦长为23a,0ll(x,a),(y,2),4x,y,3,0时,则 ( ) a(A) (B) (C) (D) 22,12,12,26(已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是( )3829222 (A) (B) (C) (D) 2,RR,R,R,2342217(已知方程的四个根组成一个首项为的的等差数列,则 |m,n|,(x,2x,m)(x,2x,n),04( )313 (A)1 (B) (C) (D) 8248(已知双曲线中心在原点且一个焦点为F(,0),直线与其相交于M、N两点,MN中点的7y,x,12横坐标为,则此双曲线的方程是 ( ) ,322222222xyxyxyxy (A) (B) (C) (D) ,,1,,1,,1,,1344352253,,,19(函数,的反函数 ( ) f(x),f(x),sinxx,[,]22,arcsinx,,,arcsinx (A) ,1] (B) ,1] x,[,1x,[,1,,arcsinx,,arcsinx (C) ,1] (D) ,1] x,[,1x,[,1P10(已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点沿与0,PAB的夹角的方向射到BC上的点后,依次反射到CD、DA和AB上的点、和(入射角等PPP3124,于反射角),设的坐标为(,0),若,则tg的取值范围是 Px1,x,2444( )2121212 (A)(,1) (B)(,) (C)(,) (D)(,) 33523352222CCC?C,,,,234n11( ( ) lim,1111,,nn(CCC?C),,,,234n2003年普通高等学校招生考试全国?理科数学11 (A)3 (B) (C) (D)66312(一个四面体的所有棱长都为,四个顶点在同一球面上,则些球的表面积为( ) 2(A) (B) (C) (D) 3,4,6,33,二.填空题:本大题共4小题,每小题4分,共16分。
2003年高考试题——数学理(全国卷)及答案D的等差数列,则=-||n m ( ) A .1B .43 C .21 D .838.已知双曲线中心在原点且一个焦点为与其相交于直线1),0,7(-=x y F M 、N 两点,MN 中点的横坐标为,32-则此双曲线的方程是 ( )A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x 9.函数=∈=-)(]23,2[,sin )(1x fx x x f 的反函数ππ( )A .]1,1[,arcsin -∈-x xB .]1,1[,arcsin -∈--x x πC .]1,1[,arcsin -∈+-x x πD .]1,1[,arcsin -∈-x x π10.已知长方形的四个项点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点P 0沿与AB 夹角为θ的方向射到BC 上的点P 1后,依次反射到CD 、DA 和AB 上的点P 2、P 3和P 4(入射解等于反射角),设P 4坐标为(θtg ,2x1),0,44则若<<x 的取值范围是( )A .)1,31( B .)32,31( C .)21,52( D .)32,52( 11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )A .3B .31 C .61 D .612.一个四面体的所有棱长都为2,四个项点在同一球面上,则此球的表面积为 ( ) A .3πB .4πC .3π3 D .6π二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上. 13.92)21(xx-展开式中9x 的系数是 .14.使1)(log2+<-x x 成立的x 的取值范围是 .15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答)16.下列五个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为具所在棱的中点,能得出l ⊥面MNP 的图形的序号是 .(写出所有符合要求的图形序号)三、解答题:本大题共6小题,共74分. 解答应写出文字的说明,证明过程或演算步骤. 17.(本小题满分12分)已知复数z 的辐角为60°,且|1|-z 是||z 和|2|-z 的等比中项. 求||z .18.(本小题满分12分)如图,在直三棱柱ABC —A 1B 1C 1中,底面是等腰直角三形,∠ACB=90°,侧棱AA 1=2,D 、E 分别是CC 1与A 1B 的中点,点E 在平面ABD 上的射影是△ABD 的重心G . (Ⅰ)求A 1B 与平面ABD 所成角的大小(结果用反三角函数值表示);(Ⅱ)求点A 1到平面AED 的距离. 19.(本小题满分12分) 已知.0>c 设P :函数xc y =在R 上单调递减.Q :不等式1|2|>-+c x x 的解集为R ,如果P 和Q 有且仅有一个正确,求c 的取值范围. 20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O (如图)的东偏南)102arccos (=θθ方向300km 的海面P 处,并以20km/h 的速度向西偏北45°方向移动. 台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h 的速度不断增大. 问几小时后该城市开始受到台风的侵袭?21.(本小题满分14分)已知常数,0>a 在矩形ABCD 中,AB=4,BC=4a ,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且DADGCD CF BC BE ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由.22.(本小题满分12分,附加题4分) (Ⅰ)设Z}t s,,0|2{2}{t∈<≤+且是集合t s a s n中所有的数从小到大排列成的数列, 即.,12,10,9,6,5,3654321======a a a a a a将数列}{na 各项按照上小下大,左小右大的原则写成如下的三角形数表: 3 5 6 9 10 12— — — —— — — — —(i )写出这个三角形数表的第四行、第五行各数; (i i )求100a .(Ⅱ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分) 设Z}t s,r,,0|22{2}{r∈<<≤++且是集合t s r b s t n中所有的数都是从小到大排列成的数列,已知k.,1160求=kb2003年普通高等学校招生全国统一考试数 学(理工农医类)答案一、选择题1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题 13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题: 17. 解:设)60sin 60cos r r z+=,则复数.2rz 的实部为2,r z z r z z ==-由题设.12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,112211,,,,,,.1,1, 3.(4)31262,.2,22,23, 3.3622sin .arcsin .3D E CC A B DC ABC CDEF DE G ADB G DF EFD EF FG FD FD EF FD ED EG FC CD AB A B EB EG EBG A B ABD EB ⊥∴∆∴∈=⋅==∴=⨯=====∴===∴∠==⋅=∴分别是的中点又平面为矩形连结是的重心在直角三角形中分于是与平面所成的角是(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数x c y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+).,1[]21,0(.1,,.210,,.21121|2|.2|2|,2,2,2,22|2|+∞⋃≥≤<>⇔>⇔>-+∴-+=∴⎩⎨⎧<≥-=-+的取值范围为所以则正确且不正确如果则不正确且正确如果的解集为不等式上的最小值为在函数c c Q P c Q P c c R c x x c R c x x y c x c c x c x c x x20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+- 其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值.按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设)10(≤≤==k DADCCD CF BC BE 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak )直线OF 的方程为:0)12(2=-+y k ax ①直线GE 的方程为:02)12(=-+--a y x ka ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+a a y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长。
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( )(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ΛΛ ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π6二.填空题:本大题共4小题,每小题4分,共16分。
实用文档2003年全国高等学校招生考试数学理科试卷一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的1.已知2(π-∈x ,0),54cos =x ,则=tgx( )(A )247 (B )247- (C )724 (D )724- 2.圆锥曲线θθρ2cos sin 8=的准线方程是( )(A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( )(A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)4.函数)cos (sin sin 2x x x y +=的最大值为 ( )实用文档(A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l被C 截得的弦长为32时,则a ( )(A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π 7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m( )(A )1 (B )43 (C )21 (D )83 8.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( )实用文档(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1](C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是( )(A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32) 11.=++++++++∞→)(lim 11413122242322nn n C C C C n C C C C ( )(A )3 (B )31 (C )61 (D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面实用文档积为( )(A )π3 (B )π4 (C )π33 (D )π6二、填空题:13.92)21(xx -的展开式中9x 系数是 14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种。
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B)247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是( )(A)2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D)2sin -=θρ3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A)(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为( )(A)21+ (B)12- (C)2 (D )25.已知圆C:4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a( )(A)2 (B)22- (C )12- (D)12+6.已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是( )(A)22R π (B)249R π (C)238R π (D)223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m( )(A )1 (B)43 (C)21 (D )838.已知双曲线中心在原点且一个焦点为F(7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A)14322=-y x (B)13422=-y x (C )12522=-y x (D)15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f( )(A)x arcsin - 1[-∈x ,1] (B)x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D)x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B(2,0),C(2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、D A和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则t gθ的取值范围是 ( ) (A)(31,1) (B )(31,32) (C)(52,21) (D)(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( ) (A)3 (B)31 (C)61(D)6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A)π3 (B)π4 (C)π33 (D )π6二.填空题:本大题共4小题,每小题4分,共16分。
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( )(A )247 (B )247-(C )724 (D)724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A)(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D)(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( )(A)21+ (B )12- (C)2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( )(A )2 (B )22- (C )12- (D)12+6.已知圆锥的底面半径为R ,高为3R,在它的所有内接圆柱中,全面积的最大值是( ) (A )22R π (B )249Rπ (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m( )(A)1 (B)43 (C)21 (D )838.已知双曲线中心在原点且一个焦点为F(7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A)14322=-y x (B)13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π1[-∈x ,1](C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A(0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tgθ的取值范围是( )(A)(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D)612.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( )(A )π3 (B )π4 (C )π33 (D )π6二.填空题:本大题共4小题,每小题4分,共16分。
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( )(A )247 (B )247-(C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( )(A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( )(A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( )(A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( ) (A )22R π (B )249Rπ (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m( )(A )1 (B )43 (C )21 (D )83 8.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1](C )x arcsin +π1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tgθ的取值范围是( )(A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ΛΛ ( )(A )3 (B )31 (C )61(D )612.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( )(A )π3 (B )π4 (C )π33(D )π6二.填空题:本大题共4小题,每小题4分,共16分。
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54c o s =x ,则2tg x = ( )(A )247 (B )247-(C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( )(A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( )(A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( )(A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( ) (A )22R π (B )249Rπ (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m( )(A )1 (B )43 (C )21 (D )83 8.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1](C )x arcsin +π1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tgθ的取值范围是( )(A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )612.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( )(A )π3 (B )π4 (C )π33(D )π6二.填空题:本大题共4小题,每小题4分,共16分。
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至10页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+) 4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( )(A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ΛΛ ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π6二.填空题:本大题共4小题,每小题4分,共16分。
2003 年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 10 页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 (选择题共60 分)一 . 选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合要求的1.已知x(2,0), cos x4,则 tg 2x()5(A )7( B )7 (C )24(D )242424772.圆锥曲线8 sin 的准线方程是()2cos(A ) cos2 ( B ) cos2 (C )sin2(D )sin 23.设函数f (x)2 x1x,若f ( x 0 )1,则x 0 的取值范围是()1x 2x 0(A )( 1, 1)(B )( 1, )( C )( , 2 )(0, )(D )(,1)( 1,)4.函数 y2 sin x(sin x cos x)的最大值为( )(A ) 1 2 (B ) 2 1(C ) 2(D )25.已知圆 C : (xa) 2 ( y2) 2 4 ( a0 )及直线 l : xy 30 ,当直线 l 被 C 截得的弦长为 23 时,则 a()(A )2(B ) 2 2(C )21 (D )216.已知圆锥的底面半径为R ,高为 3R ,在它的所有内接圆柱中,全面积的最大值是()(A )2 R2(B )9R2(C )8R2(D ) 3R24327.已知方程 ( 2 2)( 22) 0 的四个根组成一个首项为1的的等差数列,则 | m n |xxm xx n4( )(A ) 1(B )3(C ) 1(D ) 34288.已知双曲线中心在原点且一个焦点为F (7 ,0),直线 yx 1 与其相交于 M 、N 两点, MN 中点的横坐标为2 ,则此双曲线的方程是( )3(A ) x2y 21( B ) x2y 21( C ) x2y 21 ( D ) x2y 2 13 44352259.函数f ( x)sin x ,x [ , 3] 的反函数 f 1 ( x)()2 2(A )arcsin x x [ 1, 1](B )arcsin x x [ 1,1](C )arcsin x x [ 1,1]( D )arcsin xx[ 1,1]10.已知长方形的四个顶点A ( 0,0),B ( 2,0),C ( 2,1)和D ( 0,1),一质点从 AB 的中点P 0 沿与 AB的夹角的方向射到BC 上的点P 1 后,依次反射到CD 、DA 和 AB 上的点P 2、 P 和 P 4 (入射角等于反3射角),设 P 4的 坐 标 为 ( x 4 , 0 ), 若 1 x 42 , 则 tg的取值范围是()(A )( 1, 1)(B )(1,2)(C )(2,1)(D )( 2, 2)3335253222211. limC 2C 3C 4C n()1111nn(C 2C 3 C 4C n )(A ) 3(B )1( C )1(D ) 66312.一个四面体的所有棱长都为2 ,四个顶点在同一球面上,则些球的表面积为()(A ) 3(B ) 4(C )3 3(D ) 6二. 填空题:本大题共 4 小题,每小题 4 分,共 16 分。
2003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式: 正棱台、圆台的侧面积公式)]sin()[sin(21cos sin βαβαβα-++=⋅ l c c S )(21+'=台侧 其中c '、c 分别表示)]sin()[sin(21sin cos βαβαβα--+=⋅ 上、下底面周长,l 表示斜高或母线长.)]cos()[cos(21cos cos βαβαβα-++=⋅ 球体的体积公式:334R V π=球 ,其中R)]cos()[cos(21sin sin βαβαβα--+-=⋅ 表示球的半径.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷(选择题共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的 1.已知2(π-∈x ,0),54cos =x ,则2tg x = ( ) (A )247 (B )247- (C )724 (D )724-2.圆锥曲线θθρ2cos sin 8=的准线方程是 ( ) (A )2cos -=θρ (B )2cos =θρ (C )2sin =θρ (D )2sin -=θρ 3.设函数⎪⎩⎪⎨⎧-=-2112)(xx f x 00>≤x x ,若1)(0>x f ,则0x 的取值范围是 ( ) (A )(1-,1) (B )(1-,∞+)(C )(∞-,2-)⋃(0,∞+) (D )(∞-,1-)⋃(1,∞+)4.函数)cos (sin sin 2x x x y +=的最大值为 ( ) (A )21+ (B )12- (C )2 (D )25.已知圆C :4)2()(22=-+-y a x (0>a )及直线l :03=+-y x ,当直线l 被C 截得的弦长为32时,则a ( ) (A )2 (B )22- (C )12- (D )12+6.已知圆锥的底面半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( )(A )22R π (B )249R π (C )238R π (D )223R π7.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( )(A )1 (B )43 (C )21 (D )838.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) (A )14322=-y x (B )13422=-y x (C )12522=-y x (D )15222=-y x 9.函数x x f sin )(=,]23,2[ππ∈x 的反函数=-)(1x f ( )(A )x arcsin - 1[-∈x ,1] (B )x arcsin --π 1[-∈x ,1] (C )x arcsin +π 1[-∈x ,1] (D )x arcsin -π 1[-∈x ,1]10.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) (A )(31,1) (B )(31,32) (C )(52,21) (D )(52,32)11.=++++++++∞→)(lim 11413122242322nnn C C C C n C C C C ( )(A )3 (B )31 (C )61(D )6 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则些球的表面积为( ) (A )π3 (B )π4 (C )π33 (D )π62003年普通高等学校招生全国统一考试(全国卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.使1)(log 2+<-x x 成立的x 的取值范围是15.如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种(以数字作答)16.下列5个正方体图形中,l 是正方体的一条对角线,点M 、N 、P 分别为其所在棱的中点,能得出⊥l 面MNP 的图形的序号是 (写出所有符合要求的图形序号)① ② ③ ④ ⑤三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤 17.(本小题满分12分)已知复数z 的辐角为︒60,且|1|-z 是||z 和|2|-z 的等比中项,求||z18.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(I )求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (II )求点1A 到平面AED 的距离 19.(本小题满分12分) 已知0>c ,设D E KBC 1A 1B 1AFCGP:函数x cy=在R上单调递减Q:不等式1|2|>-+cxx的解集为R如果P和Q有且仅有一个正确,求c的取值范围20.(本小题满分12分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东东O偏南102arccos (=θθ)方向300km 的海面P 处,并以20km/h 的速度向西偏北︒45方向移动,台风侵袭的范围为圆形区域,当前半径为60km ,并以10km/h 的速度不断增大,问几小时后该城市开始受到台风的侵袭? 21.(本小题满分14分)已知常数0>a ,在矩形ABCD 中,4=AB ,a BC 4=,O 为AB 的中点,点E 、F 、G 分别在BC 、CD 、DA 上移动,且BE CF DG BC CD DA ==,P 为GE 与OF 的交点(如图),问是否存在两个定点,使P 到这两点的距离的和为定值?若存在,求出这两点的坐标及此定值;若不存在,请说明理由 22.(本小题满分12分,附加题4 分)(I )设}{n a 是集合|22{ts + t s <≤0且Z t s ∈,}中所有的数从小到大排列成的数列,即31=a ,52=a ,63=a ,94=a ,105=a ,126=a ,…将数列}{n a 各项按照上小下大,左小右大的原则写成如下的三角形数表:35 6 9 10 12 — — — —…………⑴写出这个三角形数表的第四行、第五行各数;⑵求100a(II )(本小题为附加题,如果解答正确,加4 分,但全卷总分不超过150分)设}{n b 是集合t s r t s r <<≤++0|222{,且},,Z t s r ∈中所有的数从小到大排列成的数列,已知1160=k b ,求k .2003年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)答案一、选择题:本题考查基本知识和基本运算. 每小题5分,满分60分.1.D 2.C 3.D 4.A 5.C 6.B 7.C 8.D 9.D 10.C 11.B 12.A 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分.13.221-14.(-1,0) 15.72 16.①④⑤ 三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. 解:设)60sin 60cosr r z +=,则复数.2r z 的实部为2,r z z r z z ==-由题设 .12||).(12,12:.012,421,)2)(2(||)1)(1(:|2||||1|2222-=--=-==-++-=+-∴--=---⋅=-z r r r r r r r r r z z z z z z z z 即舍去解得整理得即 18.(Ⅰ)解:连结BG ,则BG 是BE 在ABD 的射影,即∠EBG 是A 1B 与平面ABD 所成的角. 设F 为AB 中点,连结EF 、FC ,.32arcsin.323136sin .3,32,22,2.36321,2)4(.3,1,31.,,,,,,112211所成的角是与平面于是分中在直角三角形的重心是连结为矩形平面又的中点分别是ABD B A EB EG EBG EB B A AB CD FC EG ED FD EF FD FD FG EF EFD DF G ADB G DE CDEF ABC DC B A CC E D ∴=⋅==∠∴===∴===⨯===∴==⋅=∈∴∆∴⊥(Ⅱ)解:,,,F AB EF EF ED AB ED =⋂⊥⊥又.36236232222,.,.,.,.,111111*********的距离为到平面中在的距离到平面是即平面垂足为作面且面平面平面面又面AED A AB B A A A K A AB A AED A K A AED K A K AE K A AE AB A AED AB A AED AED ED AB A ED ∴=⨯=⋅=∆⊥∴⊥=⋂⊥∴⊂⊥∴19.解:函数xc y =在R 上单调递减.10<<⇔c不等式.1|2|1|2|上恒大于在函数的解集为R c x x y R c x x -+=⇔>-+22,2,|2|2,2,|2|2.1|2|121.21,,0.21,, 1.(0,][1,).2x c x c x x c c x c y x x c R c x x c R c c P Q c P Q c c -≥⎧+-=⎨<⎩∴=+-∴+->⇔>⇔><≤≥⋃+∞函数在上的最小值为不等式的解集为如果正确且不正确则如果不正确且正确则所以的取值范围为(以上方法在新疆考区无一人使用,大都是用解不等式的方法,个别使用的图象法) 20.解:如图建立坐标系以O 为原点,正东方向为x 轴正向.在时刻:(1)台风中心P (y x ,)的坐标为⎪⎪⎩⎪⎪⎨⎧⨯+⨯-=⨯-⨯=.22201027300,2220102300t y t x 此时台风侵袭的区域是,)]([)()(22t r y y x x ≤-+-其中,6010)(+=t t r 若在t 时刻城市O 受到台风的侵袭,则有.)6010()0()0(222+≤-+-t y x 即22)22201027300()2220102300(t t ⨯+⨯-+⨯-⨯2412,028836,)6010(22≤≤≤+-+≤t t t t 解得即答:12小时后该城市开始受到台风的侵袭.21.根据题设条件,首先求出点P 坐标满足的方程,据此再判断是否存在的两定点,使得点P 到两点距离的和为定值. 按题意有A (-2,0),B (2,0),C (2,4a ),D (-2,4a )设(01)BE CF DG k k BC CD DA===≤≤ 由此有E (2,4a k ),F (2-4k ,4a ),G (-2,4a -4ak ) 直线OF 的方程为:0)12(2=-+y k ax ① 直线GE 的方程为:02)12(=-+--a y x k a ②从①,②消去参数k ,得点P (x,y )坐标满足方程022222=-+ay y x a整理得1)(21222=-+aa y x 当212=a 时,点P 的轨迹为圆弧,所以不存在符合题意的两点. 当212≠a 时,点P 轨迹为椭圆的一部分,点P 到该椭圆焦点的距离的和为定长 当212<a 时,点P 到椭圆两个焦点(),21(),,2122a a a a ---的距离之和为定值2 当212>a 时,点P 到椭圆两个焦点(0,)21,0(),2122-+--a a a a 的距离之和为定值2a .22.(本小题满分12分,附加题4分)(Ⅰ)解:用(t,s)表示22t s +,下表的规律为3((0,1)=0122+)5(0,2) 6(1,2)9(0,3) 10(1,3) 12(2,3)— — — —…………(i )第四行17(0,4) 18(1,4) 20(2,4) 24(3,4)第五行 33(0,5) 34(1,5) 36(2,5) 40(3,5) 48(4,5)(i i )解法一:因为100=(1+2+3+4+……+13)+9,所以100a =(8,14)=81422+=16640解法二:设0022100t s a +=,只须确定正整数.,00t s 数列}{n a 中小于02t 的项构成的子集为 },0|2{20t t t s s <<≤+ 其元素个数为.1002)1(,2)1(000020<--=t t t t C t 依题意满足等式的最大整数0t 为14,所以取.140=t因为100-.1664022,8s ,181410000214=+=∴=+=a s C 由此解得(Ⅱ)解:,22211603710++==k b令}0|22{2B ,(}1160|{r t s r C B c M t s <<≤++=<∈=其中因}.22222|{}222|{}2|{37107107101010++<<+∈⋃+<<∈⋃<∈=c B c c B c c B c M 现在求M 的元素个数:},100|222{}2|{10<<<≤++=<∈t s r c B c t s r其元素个数为310C : }.70|222{}222|{1071010<<≤++=+<<∈s r c B c r s某元素个数为}30|222{}22222|{:710371071027<≤++=++<<+∈r c B c C r某元素个数为.1451:2327310710=+++=C C C k C另法:规定222r t s++=(r,t,s ),10731160222k b ==++=(3,7,10)则0121222b =++= (0,1,2) 22C 依次为 (0,1,3) (0,2,3) (1,2,3) 23C(0,1,4) (0,2,4)(1,2,4)(0,3,4) (1,3,4)(2,3,4) 24C…………(0,1,9) (0,2,9)………… ( 6,8,9 )(7,8,9) 29C(0,1,10)(0,2,10)………(0,7,10)( 1,7,10)(2,7,10)(3,7,10)…… 27C +422222397()4145.k C C C C =+++++=。
2 23 22 2 7 x 222003 年普通高等学校招生全国统一考试(全国卷)数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷 1 至 2 页,第Ⅱ卷 3 至 10 页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题共 60 分)一.选择题:本大题共 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合要求的1.已知 x ∈ (-,0), cos x = 4,则tg 2x =( )(A ) 72425 (B ) - 724(C )24724 (D ) 72. 圆锥曲线=8sin的准线方程是()cos 2(A ) cos = -2 (B ) cos = 2 (C ) sin = 2(D ) sin = -2 ⎧⎪2-x - 1 x ≤ 03.设函数 f (x ) = ⎨ 1 ,若 f (x 0 ) > 1 ,则 x 0 的取值范围是 ( )⎪⎩x 2x > 0 (A )( - 1,1)(B )( - 1, + ∞ )(C )( - ∞ , - 2 ) ⋃ (0, + ∞ )(D )( - ∞ , - 1) ⋃ (1, + ∞ )4. 函数 y = 2 s in x (sin x + cos x ) 的最大值为()(A ) 1 +(B )- 1(C )(D )25. 已知圆 C : (x - a )2 + ( y - 2)2 = 4 (a > 0 )及直线l : x - y + 3 = 0 ,当直线l 被 C 截得的弦长为 2时,则 a ( )(A )(B ) 2 - (C ) - 1(D )+ 16. 已知圆锥的底面半径为 R ,高为 3R ,在它的所有内接圆柱中,全面积的最大值是()(A ) 2R 2(B ) 9R 24(C ) 8R 23(D )3R 227. 已知方程(x 2- 2x + m )(x 2- 2x + n ) = 0 的四个根组成一个首项为 1 的的等差数列,则| m - n |=4( ) (A )1(B )3 4(C ) 12(D ) 388. 已知双曲线中心在原点且一个焦点为F ( ,0),直线 y = x - 1 与其相交于M 、N 两点,MN 中点的横 2坐标为-,则此双曲线的方程是()3(A ) - y = 1 3 4 (B ) x 4 - y 2 = 3 (C ) x 5 - y 2 = 2 x 2 (D )(D ) 2- y 2= 5 3 -19. 函数 f (x ) = sin x , x ∈[ , 2 ]的反函数 f 2(x ) = ( )22-2 1 2 112 NlPMl2 3 4 n(A ) - arcsin x x ∈[-1,1] (B ) -- a rcsin x x ∈[-1,1](C )+ a rcsin x x ∈[-1,1](D )- a rcsin xx ∈[-1,1]10. 已知长方形的四个顶点 A (0,0),B (2,0),C (2,1)和 D (0,1),一质点从 AB 的中点 P 0 沿与 AB的夹角的方向射到 BC 上的点 P 1 后,依次反射到 CD 、DA 和 AB 上的点 P 2 、 P 3 和 P 4 (入射角等于反射 角 ), 设P 4 的 坐 标 为 ( x 4 , 0), 若 1 < x 4 < 2 , 则 tg的 取 值 范 围 是( )(A )( 1 ,1) (B )( 1, 2)(C )( 2 , 1)(D )(2 , 2) 3335253C 2 + C 2 + C 2 + + C 211. lim2 3 4 n=()n →∞n (C 1+ C 1+ C 1+ + C 1)(A )3(B ) 131 (C )6(D )612.一个四面体的所有棱长都为,四个顶点在同一球面上,则些球的表面积为()(A ) 3(B ) 4(C ) 3 3(D ) 6二.填空题:本大题共 4 小题,每小题 4 分,共 16 分。