当前位置:文档之家› 热处理时间对赤泥粉煤灰微晶玻璃抗压强度影响

热处理时间对赤泥粉煤灰微晶玻璃抗压强度影响

热处理时间对赤泥粉煤灰微晶玻璃抗压强度影响
热处理时间对赤泥粉煤灰微晶玻璃抗压强度影响

工业固体废弃物微晶玻璃

工业固体废弃物微晶玻璃 工业固体废弃物是指工业固体废物,是指在工业生产活动中产生的固体废物。固体废物的一类,简称工业废物,是工业生产过程中排入环境的各种废渣、粉尘及其他废物。可分为一般工业废物(如高炉渣、钢渣、赤泥、有色金属渣、粉煤灰、煤渣、硫酸渣、废石膏、盐泥等)和工业有害固体废物。工业废物消极堆存不仅占用大量土地,造成人力物力的浪费,而且许多工业废渣含有易溶于水的物质,通过淋溶污染土壤和水体。粉状的工业废物,随风飞扬,污染大气,有的还散发臭气和毒气。有的废物甚至淤塞河道,污染水系,影响生物生长,危害人身健康。因此如何有效解决并利用工业固体废弃物成为当今社会亟待解决的问题之一。 自从前苏联利用尾矿废渣制造微晶玻璃后使得利用工业固体废弃物制作微晶玻璃的出现为如何解决工业固体废弃物开启了一丝曙光。而且它具有许多其他方面不具备的优势。从资源方面来说是工业废物普遍存在于世界各地,而且能够变废为宝,实现资源而二次利用;从成本上来说,工业废物本身属于廉价原料,可以就近取材,几乎只考虑运输费用的问题便可,而且能够解决工业废物占地,影响环境与市容的问题;从环保上说,直接采用工业废物为原料,可以避免使用化工原料而附加的一系列污染问题,而且尾矿几乎没有放射性,可以直接利用,对人体没有危害。所以无论从资源,成本,环保方面来说,利用工业废物制备微晶玻璃都是一个十分值得研究的方向。因此,工业固体废弃物微晶玻璃将成为2l世纪的绿色环境新型材料。 (1) 钢渣微晶玻璃 钢渣是炼钢过程中排放出来的固体废弃物,一般呈现黑色,外观与结块的水泥熟料相似,内部可能包裹着部分铁粒,且密度和硬度都很大。从有关资料来看,钢渣主要由氧化硅、氧化铝、氧化铁、氧化钙、氧化镁等组成。不同的钢厂排放的钢渣的化学组成含量也有所不同,一般情况下,CaO占30 %~60 %,Fe2O3占15 %~26 %,SiO2占8 %~23 % ,Al2O3占3 %~8 % ,MgO占4 %~11 %[1]。此外,有的钢渣还可能有少量的V2O5、TiO2、P2O5和Cr2O3等。钢渣中的FeO与Fe2O3不但可以降低熔融温度,还能作为微晶玻璃晶核剂,诱导玻璃析晶。而且TiO2与Cr2O3等也

微晶玻璃的制备方法与应用

X X X X 大学 材料制备原理课程论文 题目微晶玻璃的制备方法与应用 学院材料科学与工程学院 专业班级无机072 学生姓名 2010 年 6 月11 日

微晶玻璃的制备方法与应用 摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等优越的综合性能,已在许多领域得到广泛的应用。本文来主要介绍微晶玻璃的制备方法及其应用。 关键词:微晶玻璃;制备;应用 1.引言 微晶玻璃是将加有晶核剂的特定组合的玻璃,在有控条件(一定温度)下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间。这种结构也决定了其机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优于天石材和陶瓷,可用于建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 2.制备方法 微晶玻璃的制备方法根据其所用原材料的种类、特性、对材料的性能要求而变化,主要的有熔融法、烧结法、溶胶—凝胶法、二次成型工艺、强韧化技术等。 2.1 熔融法 熔融后急冷,退火后在经一定的热处理制度进行成核和晶化以获得晶粒细小、含量多、结构均匀的微晶玻璃制品。热处理制度的确定是微晶玻璃生产的关键技术。作为初步的近似估计,最佳成核温度介于Tg 和比它高50℃的温度之间。晶化温度上限应低于主晶相在一个适当的时间内重熔的温度。通常是25℃~50℃。微晶玻璃的理想热处理制度见图1。 图1 微晶玻璃的理想热处理制度 常用的晶核剂有TiO2,P2O5,ZrO2,CaO,CaF2,Cr2O3、硫化物、氟化物。晶核剂的选择与基础玻璃化学组成有关,也与期望析出的晶相种类有关。Stooky指出,良好的晶核剂应具备如下性能:(1)在玻璃熔融成形温度下,应具有良好的溶解性,在热处理时应具有较小的溶解性,并能降低成核的活化能。(2) 晶核剂质点扩散的活化能要尽量小,使之在玻

粉煤灰简介

粉煤灰简介 1、粉煤灰是怎么产生的? 从煤燃烧后的烟气中收捕下来的细灰称为粉煤灰。粉煤灰是燃煤电厂排出的主要固体废物。 粉煤灰的燃烧过程:煤粉在炉膛中呈悬浮状态燃烧,燃煤中的绝大部分可燃物都能在炉内烧尽,而煤粉中的不燃物(主要为灰分)大量混杂在高温烟气中。这些不燃物因受到高温作用而部分熔融.同时由于其表面张力的作用,形成大量细小的球形颗粒。在锅炉尾部引风机的抽气作用下,含有大量灰分的烟气流向炉尾。随着烟气温度的降低,一部分熔融的细粒因受到一定程度的急冷呈玻璃体状态,从而具有较高的潜在活性。在引风机将烟气排入大气之前,上述这些细小的球形颗粒,经过除尘器,被分离、收集,即为粉煤灰。 粉煤灰是我国当前排量较大的工业废渣之一。现阶段我国年排渣量已达3000万t。随着电力工业的发展,燃煤电厂的粉煤灰排放量逐年增加。大量的粉煤灰不加处理,就会产生扬尘,污染大气;若排入水系会造成河流淤塞,而其中的有毒化学物质还会对人体和生物造成危害。因此粉煤灰的处理和利用问题引起人们广泛的注意。 2、粉煤灰的品种及主要用途 煤在锅炉中燃烧后有两种形状的固态残留物——灰和渣。随烟气从锅炉尾部排出的,主要是经除尘器收集下来的固体颗粒即为粉煤灰,简称灰或飞灰;颗粒较大或呈块状的,是从炉堂底部收集出来的称为炉底渣,简称渣。我们通常讲粉煤灰综合利用,也包括渣在内。 根据燃煤电厂燃烧的煤种不同,排放收集的粉煤灰就有低钙粉煤灰和高钙粉煤灰之分.按照上海市标准DBJ08—230—98<高钙粉煤灰混凝土应用技术规程>的规定,凡氧化钙含量大于8%或游离氧化钙含量大于1%的粉煤灰称为高钙粉煤灰.故一般情况下,高钙灰和低钙灰都是以测定粉煤灰中氧化钙含量或游离氧化钙含量的数值来区分的.通常高钙粉煤灰的颜色偏黄,低钙粉煤灰的颜色偏灰。 随着人们对煤灰研究开发利用的不断深入,粉煤灰综合利用途径趋广泛。目前粉煤灰可应用于墙体材料,水泥生产,混凝土和砂浆,筑路,回填等领域。 3 我国粉煤灰的主要应用途径及评价 目前我国粉煤灰的综合利用技术有近200项,其中得到实施应用的近70项,主要有以下几类: 1) 建材制品方面的应用 此类用灰量约占粉煤灰利用总量的35%左右,主要技术有:粉煤灰水泥(掺量30%以上),代粘土做水泥原料,普通水泥(掺量30%以下),硅酸盐承重砌块和小型空心砌块,加气混凝土砌块及板,烧结陶粒,烧结砖,蒸压砖,蒸养砖,高强度双免浸泡砖,双免砖,钙硅板等。 2) 建设工程方面 此项用灰量占利用总量的10%,主要技术有:粉煤灰用于大体积混凝士,泵送

铁尾矿再选技术现状及研究进展

铁尾矿再选技术现状及研究进展 发表时间:2019-02-26T11:18:05.500Z 来源:《基层建设》2018年第36期作者:黄建军 [导读] 摘要:我国铁尾矿资源丰富,潜在价值巨大,进行铁尾矿再选具有重要的意义。 新疆巴州敦德矿业选矿厂新疆巴州 841300 摘要:我国铁尾矿资源丰富,潜在价值巨大,进行铁尾矿再选具有重要的意义。铁尾矿具有品位低、粒度细、含铁矿物嵌布关系复杂、易泥化的特点。本文综述了常用的铁尾矿再选方法及存在的问题,并在此基础上提出尾矿再选的发展方向。 关键词:铁尾矿;特征;再选 引言: 铁是世界上用量最多的金属,是国家的重要战略资源之一。尽管我国铁矿资源储量位居世界前列,但因人口众多,人均占有量仅仅为世界人均占有量的70%。但是我国铁矿资源品位低,在31.30%左右,同世界平均铁品位45.79%相比有较大的差距,同时铁矿进口逐年扩大,对外依存度不断提高。作为全球第一钢铁生产和消费大国,2011年我国铁矿的进口依存度已高达70%左右¨。。 1铁尾矿再选新技术现状及研究动态 1.1铁尾矿的磁选 部分铁尾矿中铁赋存于磁铁矿以及弱磁性的赤、褐铁矿中,而脉石矿物主要为不具有磁性的石英、方解石等,二者的磁性差异决定可以用磁选回收尾矿中的铁。针对铁尾矿的性质特点,若直接进行磁选则回收指标不理想,在进入磁选前进行细磨可使含铁矿物单体解离,从而提高磁选效果。磁选既简单又方便且不会产生额外污染,现已被广泛地用于铁尾矿再选。 1.2铁尾矿的浮选 采用磁选进行铁尾矿再选,精矿中铁的回收率低,其主要原因是当前磁选设备难以对细粒或微细粒的磁性含铁矿物进行有效的回收,而浮选是根据矿石的表面性质的不同,通过药剂和机械调节,可用浮选法高效分离出目的矿物,是细粒和极细粒物料分选中应用最广的一种选矿方法,近年来被逐渐应用于铁尾矿中铁的回收。 铁尾矿常用的浮选方法有阴离子正浮选、阴离子反浮选、阳离子反浮选。阴离子捕收剂的主要成分是脂肪酸,常用的阴离子捕收剂有RA系列捕收剂、CY系列等;阳离子捕收剂主要为十二胺等伯胺类捕收剂和GE系列阳离子捕收剂。 1.3铁尾矿的联合流程选别 若采用单一磁选,作用在铁尾矿经细磨后产生的微细粒铁矿物分选力非常低,使得细微粒铁矿物在磁选过程中极易流失,影响最终精矿的品位和回收率。若采用单一浮选,正浮选对尾矿适应性差,反浮选对入选铁尾矿品位有较高要求,且药剂成本高。对此,部分学者和企业采用联合流程进行铁尾矿再选。对某地铁尾矿中的铁进行回收,采用螺旋溜槽预富集一强磁选一反浮选硅工艺回收铁精矿,最终获得铁品位62.58%、回收率32.63%的精矿。 2铁尾矿再选的发展方向 2.1生产高附加值的建筑装饰材料 铁尾矿除了可以生产一般的建筑材料外,还可以作为主要原料生产高附加值的建筑装饰材料,如微晶玻璃等。微晶玻璃是一种由基础玻璃控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。微晶玻璃同普通玻璃的区别在于其具有结晶结构,而同陶瓷材料的区别则在于其结晶结构要细得多。利用铁尾矿制备微晶玻璃,可以开发出高性能、低成本的高档建筑装饰或工业耐损耐腐蚀材料,提高了尾矿产品的技术含量和附加值。因此,近年来国内外学者针对此问题开展了一系列的研究。 (1)熔融法。将配合料在高温下熔制为玻璃后直接成型为所需形状的产品,经退火后在一定温度下进行核化和晶化,以获得晶粒细小且结构均匀致密的微晶玻璃制品。熔融法的最大特点是可以沿用任何一种玻璃的成型方法,如压延、压制、吹制、拉制、浇注等,适合自动化操作和制备形状复杂的制品。 (2)烧结法。将配合料经高温熔制为玻璃后倒入水中淬冷,经水淬后的玻璃易于粉碎为细小颗粒,再装入特殊模具中,采用与陶瓷烧结类似的方法,让玻璃粉在半熔融状态下致密化并成核析晶。烧结法适合于熔制温度高的玻璃和难于形成玻璃的微晶玻璃的制备。同时,因颗粒细小,表面积大,比熔融法制得的玻璃更易于晶化,可不加或少加晶核剂。用烧结法制备的尾矿废渣微晶玻璃板材可获得与天然大理石与花岗岩十分相似的花纹,装饰效果好,但存在残留气孔的问题,合格率有待提高。 2.2铁尾矿用于筑路 铁尾矿可用做铺路材料、黄沙替代品、水泥骨料等。铺路材料、黄沙替代品、水泥骨料等是最基本的建筑材料,对化学成分没有严格要求,只要求材料有一定的硬度和粒度。高硅型铁尾矿,尾矿中含硅高,可在选矿过程中采取合理工艺,直接将选矿过程中抛出的废石、磁选过程中产生的尾矿直接利用。用下口铁厂选矿后的废料铁矿石尾矿代替级配碎石做基层,利用铁尾矿4200方,每方石料节约资金25元以上,节省投资105万元,节约了大量资源,保护了当地环境,创造了较好的经济效益和社会效益。 2.3铁尾矿用于水泥生产 尾矿用于生产水泥有两种方法:一是利用尾矿中含铁量高的特点,以尾矿代替通常水泥配比中使用的铁粉,在这种情况下,尾矿在水泥原料配比中的用量小于5%尾矿的耗量不大;二是用尾矿代替水泥原料的主要成分,但一般尾矿成分不能完全符合水泥配比的要求往往需要另外补充某些成分,该利用途径中尾矿消耗量大。杭州市闲林埠钼铁矿研究用钼铁尾矿代替部分水泥原料烧制水泥的生产技术脚,并在余杭县和睦水泥厂的工业性生产中一次试验成功,收到了明显的经济效益。按该厂年产水泥3.5万t计,每年仅降低生产成本一项就可节约资金24.8万元,还可多增产水泥4600多t。 3利用铁尾矿进行生态恢复 利用尾矿进行生态恢复一般可以概括为以下三大阶段:①尾矿复垦规划设计阶段;②尾矿复垦工程实施阶段,即工程复垦阶段;③尾矿工程复垦后改善与管理阶段,除复垦为房屋建筑、娱乐场所、工业设施等建设用地外,对用于农、林、牧、渔、绿化等复垦土地,在工程复垦工作结束后,还必须进行生物复垦,以建立生产力高、稳定性好、具有较好经济和生态效益的植被。复垦规划是复垦工作的准备阶段,决定复垦工程的目的和技术经济是否可行,是后两阶段的依据。复垦工程实施是复垦规划付诸实现的工程阶段,各种土地整治工程,保质、保量、准确、准时是该阶段的关键,但该阶段的完成仅仅只是完成了复垦工作的60%。美国法律规定,该阶段的完成仅退回60%的

垃圾焚烧飞灰微晶玻璃化及Cr固化机理

垃圾焚烧飞灰微晶玻璃化及Cr固化机理 垃圾焚烧是我国城市生活垃圾的主要处理方式之一,其环境问题备受关注。垃圾焚烧飞灰因富含铅、锌、铬、铜等重金属元素,已被列入《国家危险废物名录》(2016版),为HW772-002-18危固。垃圾焚烧飞灰一般采用防渗填埋、水泥固化、熔融固化等方式处置,存在有毒重金属浸出风险。垃圾焚烧飞灰无害化处置资源化利用已经成为亟需研发的重要课题。本研究以生活垃圾焚烧飞灰为原料,废玻璃、粉煤灰、钢渣、酸洗污泥和挥发窑渣等为添加料,制备了多种类型的微晶产品,研究了碱度对微晶玻璃析晶的影响,构建了微晶玻璃快速 析晶模型,揭示了 Cr在微晶玻璃中的固化机理,主要结论如下:以垃圾焚烧飞灰、不锈钢渣和粉煤灰为原料,研究了碱度对透辉石微晶玻璃的影响。基于垃圾焚烧飞灰的高Ca低Si的化学组成特点,调控(Ca+Mg)和(Si+Al)在混合料中的比例,采用高温熔融热处理技术制得了CaO-MgO-Al2O3-SiO2系微晶玻璃。系统研究了碱度 (Ca+Mg)/(Si+Al)的变化对微晶玻璃析晶动力学、桥氧含量、结晶相组成、微观结构、机械物理性能、耐化学腐蚀性的影响。结果表明,当碱度从1.2降低到0.9时,桥氧含量增加,玻璃网络的聚合度增加。硅氧四面体与三个桥氧相连接的结构单元的含量增加致聚合度增加、析晶活化能增加。微晶玻璃的硬度和抗弯强度随碱度的降低而降低,碱度为1.2时,微晶玻璃的抗弯强度、耐酸度和耐碱度分别为120.4 MPa、≥99%和≥99%,均高于《工业用微晶板材》(JC/T 2097-2011) 规定的抗弯强度≥70 MPa、耐酸度≥96%和耐碱度≥98%的要求。以垃

粉 煤 灰 标 准

粉煤灰标准 17.用于水泥和混凝土中的粉煤灰 标准名称用于水泥和混凝土中的粉煤灰 标准类型中华人民共和国国家标准 标准号 GB 1596-91 标准发布单位国家技术监督局发布 标准正文 1 主题内容与适用范围 本标准规定了用于水泥和混凝土中的粉煤灰的技术要求、试验方法和检验规则等。本标准适用于拌制水泥混凝土和砂浆时作掺合料的粉煤灰成品和水泥生产中作混合材料的粉煤灰。 2 引用标准 GB 176 水泥化学分析方法 GB 177 水泥胶砂强度检验方法 GB 2419 水泥胶砂流动度试验方法 3 定义:从煤粉炉烟道气体中收集的粉末称为粉煤灰。 4 技术要求 4.1 拌制水泥混凝土和砂浆时,作掺合料的粉煤灰成品应满足表1要求。 表1 4.2 水泥生产中作活性混合材料的粉煤灰应满足表2要求。 表2

5 试验方法 5.1 烧失量、含水量和三氧化硫 按GB176进行。 5.2 细度 按附录A进行。 5.3 需水量比 按附录C进行。 5.4 28天抗压强度比 按附录C进行。 6 检验规则 6.1 组批与取样 6.1.1 以连续供应的200t相同等级的粉煤灰为一批。不足200t者按一批论,粉煤灰的数量按干灰(含水量小于1%)的重量计算。 6.1.2 取样方法 6.1.2.1 散装灰取样:从运输工具、贮灰库或堆场中的不同部位取15份试样,每份试样1  ̄3kg,混合拌匀,按四分法,缩取出比试验所需量大一倍的试样(称为平均样)。 6.1.2.2 袋装灰取样:从每批任抽10袋,从每袋中分取试样不少于1kg,按6.1.2.1的方法混合缩取平均试样。 6.1.3 拌制水泥混凝土和砂浆时作掺合料的粉煤灰成品,必要时,需方可对粉煤灰的质量进行随机抽样。 6.2 检验项目 6.2.1 型式检验 6.2.1.1 拌制水泥混凝土和砂浆作掺合料的粉煤灰成品,供方必须按4.1条规定的技术要求每半年检验一次。 6.2.1.2 水泥厂启用粉煤灰作活性混合材料时,必须按4.2条规定的技术要求进行检验。作为生产控制,要求烧失量,三氧化硫和含水量每月检验一次,28天抗压强度比每季度检验一次。 6.2.1.3 当电厂的煤种和设备工艺条件变化时,也应及时检验。 6.2.2 交货检验 6.2.2.1 拌制水泥混凝土和砂浆作掺合料的粉煤灰成品,供方必须按6.1条要求,进行细度、烧失量和含水量检验。 6.2.2.2 水泥厂作活性混合材料使用的粉煤灰,供方必须按6.1条要求,进行烧失量和含 水量检验。 6.3 检验结果评定 6.3.1 符合本标准第4章各级技术要求的为等级品。若其中任何一项不符合要要求的,应重新加倍取样,进行复验。复验不合格的需降级处理。 6.3.2 凡低于第4章技术要求中最低级别技术要求的粉煤灰为不合格品。 6.3.3 按4.2条技术要求,28天抗压强度比指标低于62%的粉煤灰,可作为水泥生产中的非活性混合材料。 6.3.4 粉煤灰出厂合格证,内容包括: a.厂名和批号; b.合格证编号及日期; c.粉煤灰的级别及数量; d.质量检验结果。 7 包装、标志、运输和贮存 7.1 袋装粉煤灰的包装袋上应清楚标明“粉煤灰”、厂名、级别、重量、批号及包装日期。 7.2 粉煤灰运输和贮存时,不得与其他材料混杂。并注意防止受潮和污染环境。

微晶玻璃生产工艺设计

铁尾矿微晶玻璃生产工艺 1.微晶玻璃概述 微晶玻璃(CRYSTOE and NEOPARIES)又称微晶玉石或陶瓷玻璃。是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。因其可用矿石、工业尾矿、冶金矿渣、粉煤灰、煤矸石等作为主要生产原料,且生产过程中无污染,产品本身无放射性污染,故又被称为环保产品或绿色材料。 微晶玻璃集中了玻璃、陶瓷及天然石材的三重优点,优於天石材和陶瓷,可用於建筑幕墙及室内高档装饰,还可做机械上的结构材料,电子、电工上的绝缘材料,大规模集成电路的底板材料、微波炉耐热列器皿、化工与防腐材料和矿山耐磨材料等等。是具有发展前途的21世纪的新型材料。 2.利用铁尾矿制备微晶玻璃生产工艺 2.1生产原料及设备 生产原料包括:铁矿尾矿(铁尾矿)、方解石、氧化铝、菱镁矿、纯碱、硼酸、碳酸钡等。仪器设备采用LCT-2型差热分析仪、日立S-450扫描电镜、D/MAX-3C 型X衍射仪、EDAX一9100型能谱分析仪、KZJ5000- l型电动抗折仪等。 2.1.1铁尾矿形貌及成分 铁矿尾矿颜色呈青白色,粒度较细,颗粒小于40目,可以清晰观察到尾矿中含有的晶莹洁白的石英颗粒,尾矿中泥土含量较少,是理想砂质尾矿。该铁矿尾矿经扫描电镜观察及能谱分析,其尾矿形貌特征见图l,能谱图见图2,成分检测结果见表1。 图1 铁矿尾矿形貌特征图2 铁矿尾矿能谱图

微晶玻璃

二硅酸锂微晶玻璃材料综述 何志龙-3112007045 (金属材料强度国家重点实验室, 西安交通大学材料科学与工程学院,西安710049) 摘要:微晶玻璃以其优异的力学、化学、生物等性能,在国防、航空、建筑、电子、光学、化工、机械及医疗等领域作为结构材料、技术材料、光学材料、电绝缘材料等而获得广泛应用,吸引了许多研究者的关注。本文在参考学习了诸多相关文献的基础上,对微晶玻璃材料的制备、性能、应用及研究进展进行了论述,列举了人们在该领域取得的重要研究进展,以及微晶玻璃材料领域存在的研究难题。 关键词:晶化,微晶玻璃,综述,非均匀成核 1 研究背景与意义 自从1957年,美国康宁公司著名玻璃化学家S.D.Stookey研制出第一种微晶玻璃以来,微晶玻璃就凭借其组分广泛、性能优异、品种繁多而著称。由于析出的晶粒尺寸可控,与界面结合强度高,抗弯强度可以达到200MPa以上,大量微晶玻璃体系涌现出来,它们的形成机制也得到大量深入研究。 微晶玻璃又称玻璃陶瓷,它是将某些特定组成的基础玻璃,在一定温度下进行控制晶化,制得的一种同时含有微晶相和玻璃相的多晶固体材料。在热处理过程中,基础玻璃内部产生晶核及晶体长大,因为析出的晶体非常小,被称作微晶玻璃。 微晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或易产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1-0.5μm)和残余玻璃组成的复相;而玻璃则是非晶态或无定形体。微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2 微晶玻璃分类 按照基础玻璃的组成,微晶玻璃主要有以下四大类: (1)硅酸盐类微晶玻璃 由碱金属、碱土金属的硅酸盐晶相组成,主晶相有:透辉石、顽辉石、硅灰石、二硅酸锂等,这些晶相的种类影响微晶玻璃的性能。其中,最早研究的矿渣微晶玻璃和光敏微晶玻璃属此类。

热处理温度对CaO-Al2O3-SiO2系粉煤灰微晶玻璃析晶及性能的影响

- 5 - 第36卷第4期 非金属矿 Vol.36 No.4 2013年7月 Non-Metallic Mines July, 2013 微晶玻璃是经特定组分设计的基础玻璃在加热处理中通过成核和晶化过程制成的一类含有微晶相和玻璃相复合材料,具有玻璃和陶瓷双重特性[1],其机械性能、耐化学腐蚀性、热稳定性和绝缘性能良好,热膨胀系数可调,广泛用于建筑装饰、机械、化工、电子电工、航天等领域[2]。 粉煤灰作为火力发电厂排放的固体工业废渣,主要用于水泥掺和料、路基材料、砌块骨料、土壤改良剂和橡塑填料等[3-4], 其附加值一般较低。粉煤灰中富含SiO 2、 Al 2O 3、CaO 、Fe 2O 3 等[5],可作为制备微晶玻璃的原料。粉煤灰微晶玻璃的制备方法主要有烧结法和熔 融法,近年来人们利用烧结法分别制备了以硅灰石、长石类及辉石类矿物为主晶相的粉煤灰微晶玻璃,并对其配方做了大量研究[6-9]。在烧结析晶过程中所生成的晶相增加了玻璃黏度,进而阻碍玻璃的烧结致密化过程[10]。玻璃的黏度及析晶速率受到热处理温度的影响,通过调整热处理温度可控制析晶和烧结过程,所以热处理温度影响微晶玻璃的晶相种类、含量,显微结构及组织形态等[11], 而这些因素又直接影响微晶玻璃的机械性能[6]和耐酸碱腐蚀性[12]等。因此,有必要开展热处理温度对微晶玻璃烧结过程及性能影响的研究。目前对粉煤灰微晶玻璃的机械性能研究较多[7,9],而烧结过程对微晶玻璃的属性如晶相种类、含量,显微结构及组织形态及化学稳定性的研究较少。 本实验以江油发电厂的粉煤灰为主要原料,配入一定量石灰石和纯碱,采用烧结法制备了粉煤灰微晶热处理温度对CaO-Al 2O 3-SiO 2系粉煤灰微晶玻璃析晶及 性能的影响 曹?超1?彭同江1,2*?孙红娟1,2?丁文金1 (1 西南科技大学 固体废物处理与资源化教育部重点实验室,四川 绵阳 621010;2 西南科技大学 矿物材料及应用研究所,四川 绵阳 621010) 摘?要?以粉煤灰、 石灰石和Na 2CO 3为原料,通过熔融烧结法制备了粉煤灰微晶玻璃。借助DTA 、XRD 及SEM 等分析测试手段,研究了核化温度(760 ℃)及晶化温度(850~1000 ℃)对微晶玻璃析晶行为、显微形貌、烧结性能及化学稳定性的影响。结果表明,样品核化处理后除生成少量霞石相,主体仍为玻璃相;在晶化处理后,所形成的微晶玻璃样品主晶相为钙铝黄长石相;随晶化温度的升高,微晶玻璃样品晶相种类不变,但主晶相含量、线收缩率及体积密度呈现先增高后降低的变化;粉煤灰微晶玻璃具有良好的析晶性能及化学稳定性,在晶化温度为950 ℃时得到的微晶玻璃烧结效果和化学稳定性最好。 关键词?粉煤灰?微晶玻璃?核化?晶化?烧结 中图分类号: TQ171.73+3; X773 文献标识码:A 文章编号:1000-8098(2013)04-0005-04Effects of Heat Treatment Temperature on Crystallization Behavior and Performance of Glass-ceramics of CaO-Al 2O 3-SiO 2 from Coal Fly Ash Cao Chao 1 Peng Tongjiang 1,2* Sun Hongjuan 1,2 Ding Wenjin 1 (1 Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Ministry of Education, Mianyang, Sichuan 621010; 2 Institute of Mineral Materials & Application, Southwest University of Science and Technology, Mianyang, Sichuan 621010)Abstract The glass-ceramics was prepared with coal fly ash, limestone and Na 2CO 3 by sintering process. Effects of nucleation temperature (760 ℃) and crystallization temperature (850~1000 ℃) on crystallization behavior, microstructure, sintering character and chemical stability of glass-ceramics samples were analyzed by means of DTA, XRD, SEM and other analytical methods. The results show that besides a limited amount of nepheline emerges in the nucleating samples, the main form of the sample is glass phase. The main crystalline phase of the obtained glass–ceramics after crystallization is gehlenite (2CaO ·Al 2O 3·SiO 2). With the increasing of heat treatment temperature, the species of the crystalline is the same, but the main crystalline intensity, line shrinkage rate and bulk density increase first, and then decrease. The glass-ceramics have good crystallization properties and chemical stability. The glass-ceramics samples with best sintering character and chemical stability are obtained by crystallizing at 950 ℃. Key words coal fly ash glass-ceramics nucleation crystallization sintering 收稿日期:2013-05-15 基金项目:固体废物处理与资源化教育部重点实验室开放基金(12zxgk04)。 * 通讯作者,E-mail: tjpeng@https://www.doczj.com/doc/ae13438471.html, 。

微晶玻璃

微晶玻璃 摘要:本文介绍了微晶玻璃与普通玻璃和陶瓷的区别,通过分析组成将其分类。 同时描述了微晶玻璃的制备,性质,应用,浅析其发展趋势。 关键词:微晶玻璃组成制备性能应用 Abstract:This paper introduces the difference between microcrystalline glass and common glass and ceramics. Through the analysis of composition classified microcrystalline glass. At the same time, also describe microcrystalline glass’s preparation, property and application. Analysisthe trend of its development. Keywords: Microcrystalline glass preparation property application trend 1 前言 微晶玻璃又称微晶玉石或陶瓷玻璃,是综合玻璃,是一种外国刚刚开发的新型的建筑材料,它的学名叫做玻璃水晶。微晶玻璃和我们常见的玻璃看起来大不相同。它具有玻璃和陶瓷的双重特性,普通玻璃内部的原子排列是没有规则的,这也是玻璃易碎的原因之一。而微晶玻璃象陶瓷一样,由晶体组成,也就是说,它的原子排列是有规律的。所以,微晶玻璃比陶瓷的亮度高,比玻璃韧性强。但晶玻璃既不同于陶瓷,也不同于玻璃。微晶玻璃与陶瓷的不同之处是:玻璃微晶化过程中的晶相是从单一均匀玻璃相或已产生相分离的区域,通过成核和晶体生长而产生的致密材料;而陶瓷材料中的晶相,除了通过固相反应出现的重结晶或新晶相以外,大部分是在制备陶瓷时通过组分直接引入的[1]。微晶玻璃与玻璃的不同之处在于微晶玻璃是微晶体(尺寸为0.1~0.5μm)和残余玻璃组成的复相材料;而玻璃则是非晶态或无定形体。另外微晶玻璃可以是透明的或呈各种花纹和颜色的非透明体,而玻璃一般是各种颜色、透光率各异的透明体。 2分类及其组成 目前,问世的微晶玻璃种类繁多,分类方法也有所不同。通常按微晶化原理分为光敏微晶玻璃和热敏微晶玻璃;按基础玻璃的组成分为硅酸盐系统、铝硅酸盐系统、硼硅酸盐系统、硼酸盐和磷酸盐系统;按所用原料分为技术微晶玻璃(用一般的玻璃原料)和矿渣微晶玻璃(用工矿业废渣等为原料);按外观分为透明微晶玻璃和不透明微晶玻璃;按性能又可分为耐高温、耐腐蚀、耐热冲击、高强度、低膨胀、零膨胀、低介电损耗、易机械加工以及易化学蚀刻等微晶玻璃以及压电微晶玻璃、生物微晶玻璃等 晶玻璃的组成在很大程度上决定其结构和性能。按照化学组成微晶玻璃主要分为四类:硅酸盐微晶玻璃,铝硅酸盐微晶玻璃,氟硅酸盐微晶玻璃,磷酸盐微晶玻璃。 2.1 硅酸盐微晶玻璃 简单硅酸盐微晶玻璃主要由碱金属和碱土金属的硅酸盐晶相组成,这些晶相的性能也决定了微晶玻璃的性能。研究最早的光敏微晶玻璃和矿渣微晶玻璃属于 这类微晶玻璃。光敏微晶玻璃中析出的主要晶相为二硅酸锂(Li 2Si 2 O 5 ),这种晶 体具有沿某些晶面或晶格方向生长而成的树枝状形貌,实质上是一种骨架结构。

微晶玻璃合成与制备综述

微晶玻璃的合成与制备 The Synthesis and Preparation of Microcrystalline glass The school of materials science and engineering, Southwest university of science and technology 摘要:微晶玻璃是一种由基础玻璃严格控制晶化行为而制成的微晶体和玻璃相均匀分布的材料。由于其机械强度高、热膨胀性可调、抗热震性好、耐化学腐蚀、介电损耗低、电绝缘性好等性能,已在许多领域得到广泛应用。本文详细阐述了微晶玻璃的三种制备方法,分析并比较了这三种制备方法的优缺点,并对其未来发展前景做了展望。 Abstract: Microcrystalline glass is a kind of material which is made of glass and ceramics.Due to its properties of high mechanical strength, changeable thermal expansion, good thermal shock resistance, chemical corrosion resistance, low dielectric loss and good electrical insulation, It has been widely used in many fields. This paper described three kinds of method for preparation of glass ceramics, and compared the advantages and disadvantages of each method. At the same time, report the progress in study on glass ceramics at home and abroad, and predicted the future of this material. 关键词:微晶玻璃、制备、进展 Keywords: Microcrystalline glass,Preparation, Progress 1.引言 微晶玻璃是将加有晶核剂的特定组合的玻璃,在一定温度控制下进行晶化热处理,成为具有微晶体和玻璃相均匀分布的复合材料[1]。微晶玻璃由玻璃相与结晶相组成。两者的分布状况随其比例而变化:当玻璃相占的比例大时,玻璃相为连续的基体,晶相孤立地均匀地分布在其中;当玻璃相较少时,玻璃相分散在晶体网架之间,呈连续网状;当玻璃相数量很低,则玻璃相以薄膜状态分布在晶体之间[2]。与玻璃、陶瓷相比较,其结构和性质均不相同,微晶玻璃的性质主要由其中的结晶相矿物组成与玻璃的化学组成及其数量决定,因此它集中了玻璃、陶瓷两者的特点,具体表现为机械强度高,绝缘性能优良,介电损耗少,介电常数稳定,热膨胀系数可在很大范围调节,耐化学腐蚀,耐磨,热稳定性好,使用温度高的良好性能等[3-5]。 微晶玻璃最初(1957年)由感光玻璃发展而来,后衍生到建筑领域并得到广泛应用。在欧美,最先作为建筑装饰材料而进行工业化生产的是矿渣微晶玻璃和岩石微晶玻璃。前苏联于20世纪60年代中期就报道了炉渣微晶玻璃作为建材的实用化,捷克斯洛伐克于20世纪70年代初利用熔融铸造玄武岩制成了耐磨地板材料,美国也在20世纪70年代初生产了建筑岩石微晶玻璃装饰板。在亚洲,日本是最早开发建筑用微晶玻璃的国家,主要采用熔融烧结法进行建筑用微晶玻璃人造大理石的生产,韩国紧跟日本之后也生产出了高档微晶玻璃装饰板[6-9]。 我国对微晶玻璃装饰材料的研制开发始于20世纪70年代,发展较快。在研发初期,大多采用浇筑法整体晶化的方法来生产微晶玻璃板,但发现热处理过程中易出现变形和开裂,铲平质量很不稳定,生产成本高。20世纪90年代初,在借鉴日本的先进经验的基础上采用熔融烧结法研制开发的微晶玻璃装饰板生产技术取得了突破性进展,并已经投入大规模工业化生产[10]。 近年来,建筑微晶玻璃的生产已逐步从日韩等国转移至我国,工艺技术在不断完善中,产品主要出口欧洲和中东等地区,在国内市场前景也十分广阔,目前建筑微晶玻璃的生产基地主要集中在广东、河北、山东等地,生产工艺以烧结法为主,已初步实现了产业化。

粉煤灰的主要特性

粉煤灰的主要特性 一、粉煤灰的主要性状和技术特征 粉煤灰的性状是指粉煤灰颗粒和混合粉料的物理、化学性质以及形态、结构等的统称。粉煤灰性状除包括上述化学成分、矿物组分和颗粒组分外,一般还包括表观色泽、粒径、细度、级配、比表面积、密度、堆积密度、含水率、烧失量、需水量比、火山灰活性以及其他各种物理力学性质和化学性质,特别还应包括均匀性这个重要的信息。粉煤灰一般的性状,因为粉煤灰在水泥和混凝土的应用要比其他用途具有更高的性状要求,仍须摘要说明。 粉煤灰技术特征,这里主要是指粉煤灰用作水泥和混凝土的原材料时,与用途和质量有关的粉煤灰成分、结构和性能的技术信息,也是与粉煤灰混凝土技术相关的重要技术参量。粉煤灰特征化研究,是粉煤灰水泥混凝土技术中的基础研究,直到20世纪80年代,粉煤灰特征化研究随着现代科学测试手段和研究方法的进步,取得了较多的成绩。 (一)、粉煤灰的性状 1.表观色泽 由于成分和组分不同,粉煤灰表观色泽变化很大。低钙粉煤灰随着碳分含量从低到高,从乳白色变至灰黑色。在一般情况下,粗略地可从色泽的变化观察粉煤灰性质的变化。高钙粉煤灰一般呈浅黄色,可反映氧化钙含量。目前,最新的研究认为,粉煤灰色泽不可以反映其结构。 2.粒径和细度 所收集的统灰粒径变化为0.5~300μm,这一范围与水泥接近,但其中大部分的颗粒要比水泥细得多。国内沿用标准筛测定,现在的我国粉煤灰新标准把用于水泥和混凝土的粉煤灰的试验方法和筛余量指标从用80μm标准筛人工筛分法改为用气流筛测定45μm的筛余量。如JGJ28-1986规定,以80μm标准筛测定细度,其筛余量:I级灰不大于5%,II级灰不大于8%,III级不大于25%。因为45μm以下粉煤灰颗料对混凝土性质的贡献较大,GB1596-2005粉煤灰新标准中,采用45μm筛余量(%)为细度指标,规定I级灰不大于12%,II级灰不大于20%,III级灰不大于45%。细度是粉煤灰最重要的参量,有的专家认为可以用来作为评估用于混凝土中粉煤灰质量的基本参量。至于代替细集料或用以改善工作性的粉煤灰细度则不受上述规定的限制。 3.比表面积 因为粉煤灰中密实颗粒和内部表面积很大的多孔颗粒混在一起,用比表面积方法不易准确测定颗粒的粗细。沿用测定水泥比表面积法测定粉煤灰比表面积的变化范围一般为1500~5000cm2/g,仍可用作反映粉煤灰组合颗粒内外表面积的综合情况。 4.颗粒级配 颗粒级配大致可分三种形式: (1)细灰。颗粒级配细于水泥,主要用于钢筋混凝土中取代水泥或水泥混合材料。 (2)粗灰。包括统灰和分选后的粗灰,颗粒级配粗于水泥,主要用于素混凝土和砂浆中取代集料。(3)混灰。与炉底灰混合的粉煤灰,用作取代集料或用作水泥混合材料(尚须与熟料共同磨细或分别麿细),或者作填筑用粉煤灰。 5.密度 普通粉煤灰密度为1.8~2.3g/cm2,约等于硅酸盐水泥的2/3。粉煤灰堆积密度的变化范围为0.6~0.9g/cm3,振实后的堆积密度为1.0~1.3 g/cm3。高钙粉煤灰密度略大。 最近我国用于混凝土的粉煤灰特征化研究完全证实,密度是粉煤灰技术特征中一个很重要的参量,它可用于混凝土用粉煤灰的质量评定和质量控制,特别是能用于粉煤灰质量均匀性评定和控制。 6.需水量比 粉煤灰需水量比是按规定的水泥标准砂浆流动性试验方法,以30%的粉煤灰取代硅酸盐水泥

铁尾矿资源化综合利用的发展

Serial No.490 February.2010现 代 矿 业 MORDE N M I N I N G 总第490期 2010年2月第2期 刘永光,063009河北省唐山市。铁尾矿资源化综合利用的发展 刘永光 王晓雷 (河北理工大学) 摘 要:总结了我国铁尾矿综合利用方面的研究和应用进展,分析了我国铁尾矿二次资源开发方面存在的问题,认为当前加快制定铁尾矿二次资源开发的技术、产业标准,促进其产业化是铁尾矿二次资源开发面临的迫切问题。 关键词:铁尾矿;尾矿再选;尾矿综合利用 中图分类号:T D926.4 文献标识码:A 文章编号:167426082(2010)022******* D evelop m en t of Com prehen si ve Utili za ti on of I ron Ta ili n gs a s Resource L iu Yongguang W ang Xiaolei (Hebei Polytechnic University) Abstract:Su mmary the devel opment of research and app licati on of ir on tailings comp rehensive utili2 zati on in china,analyze the p r oble m s exist in exp l oiting ir on tailings in china,point out the urgent p r ob2 le m s which exp l oiting ir on tailings is facing are accelerate making its standards of technol ogy and indus2 try,p r omote its industrializati on. Keywords:Ir on tailings;Tailings re2concentrati on;Comp rehensive utilizati on of tailings 1 引 言 伴随着钢铁产业的发展,黑色冶金矿山企业以尾矿等形式排弃了大量的工业废料。据不完全统计,目前我国累计堆存的铁尾矿量高达50亿t左右,而且随着铁矿产能的不断提高,尾矿堆存量以5亿t/a的速度在增长。这些工业废料占用了土地资源,污染了环境,需要投入相当大的社会资源去恢复治理。而同时,这些废弃工业废料又是蕴藏了大量资源的“人工矿床”,是宝贵的二次资源。工业废弃物综合处理利用,既提高了资源的利用率,又为环境恢复和治理提供了重要途径,符合国家“十一五”规划提出建设资源节约型、环境友好型社会目标和方向[1]。 铁尾矿作为宝贵的二次资源,其开发利用和天然资源有很大不同,怎样避免铁尾矿开发利用过程中对生态环境的二次污染,保护暂时不可利用的资源,利用铁矿二次资源开发的契机,改善和恢复矿区自然生态环境,使资源的利用率最大化,是目前铁矿二次资源开发过程中迫切需要解决的问题。铁尾矿的综合利用国内外备受关注,主要的综合利用方向包括尾矿中有价金属与非金属元素回收、利用铁尾矿作为采空区的充填材料、铁矿尾矿库复垦植被、尾矿制作建筑材料等方面。铁尾矿的综合利用,不仅可以回收大量矿物资源,提高矿产资源利用率,并且有效地缓解铁尾矿堆存带来的大量生态环境问题,而且对发展矿山循环经济,实现节能减排目标,铁矿采掘的可持续发展具有十分重要的意义。 2 铁尾矿开发利用的发展 一些国家在尾矿再选与有价元素的综合回收方面成就斐然。美国、前苏联等国家在铁选矿厂的尾矿中回收有价金属均取得显著成绩。自20世纪80年代末特别是90年代以来,我国一些矿山企业从提高经济效益考虑,开始对从尾矿中回收有价元素给予关注,并陆续建成了一些尾矿回收选矿厂,取得了明显的经济效益[2]。 2.1 铁尾矿再选和有用矿物的回收 2.1.1 铁尾矿的再选 受技术水平、装备性能和选矿工艺的影响,以及铁精矿价值较低的限制,2002年以前堆存的铁尾砂含铁品位较高,平均在8%以上。如果每年排放尾矿1亿t,则相当于损失金属铁800万t以上。随着选矿技术和铁矿石资源价值的提高,尾矿中的二次 82

相关主题
文本预览
相关文档 最新文档