化工原理(第四版)谭天恩-第二章-流体输送机械
- 格式:ppt
- 大小:4.50 MB
- 文档页数:67
第2章流体输送机械概述2.1 离心泵2.1.1 离心泵的工作原理和主要部件2.1.2 离心泵的基本方程式2.1.3 离心泵的主要性能参数和特性曲线2.1.4 离心泵的气蚀现象和允许安装高度2.1.5 离心泵的工作点与流量调节2.1.6 离心泵的类型、选择与使用2.2 往复泵2.3 离心通风机概述流体输送设备就是向流体作功以提高其机械能的装置,所供能量用以克服沿程阻力、高差、压差等1.管路系统对流体输送机械的要求流体输送是化工生产及日常生活中最常见、最重要的单元操作之一。
从输送的工程目的出发,管路系统对输送机械的要求通常为:①应满足工艺上对流量及能量(压头、风压、或压缩比)的要求;②结构简单,质量轻,设备费低;③操作效率高,日常操作费用低;④能适应物料特性(如黏度、腐蚀性,含固体物质等)要求。
2.输送机械的分类(1)根据被输送流体的种类或状态分类通常输送液体的机械称为泵;输送气体的机械按其产生压强的高低分别称之为通风机、鼓风机、压缩机及真空泵。
(2)按工作原理可分成以下四类:离心式,往复式,旋转式,流体动力作用式。
液体输送机械根据流量和压头的关系,液体输送机械分为离心式和正位移式。
2.1 离心泵2.1.1 离心泵的工作原理和主要部件(1)主要部件①叶轮—通常由6-12片后弯叶片组成,可分为闭式、半闭式和开式三种形式。
将原动机的机械能直接传给液体,以增加其动能和静压能。
②泵壳—呈蜗壳形,是汇集液体和能量转换的场所。
使部分动能转化为静压能。
为了减少液体直接进入泵壳时因碰撞引起的能量损失,再也论和泵壳之间有时还装有一个固定不动而且带有叶片的导轮。
轴封装置——用于泵壳与泵轴间的密封,分填料密封(小型泵)和机械密封(大型泵)两种。
(2)工作原理液体自吸入口吸入后,在高速旋转的叶片上获得能量,在离心力作用下飞向泵壳内,因蜗壳型流道渐宽而将部分动能转化成静压能,于是液体以较高的静压能从排出口排出。
当液体自叶轮中心甩向四周后,叶轮中心产生了低压区,此时外界作用于贮槽上方的压强大于泵吸入口处的压强,在此压差作用下液体被吸入管路。
2-l 在用常温水(其密度为1000kg/m3)测定离心泵性能的实验中,当水的流量为26m3/h时,泵出口压力表读数为 1.52×105Pa,泵入口处真空表读数为185mmHg,轴功率为2.45KW,转速为2900r/min。
真空表与压力表两测压口间的垂直距离为400mm,泵的进、以口管径相等,两测压口间管路的流动阻力可解:×105Pa,18∴41m.∴0。
2-2 某台离心泵在转速为2950r/min时,输水量为18m3/h,压头为20m H2现因电动机损坏,用一转速为2900r/min的电动机代用,问此时泵的流量、压头和轴功率各为多少(泵功效率取60%)?解:转速变化后,其他参数也相应变化。
m 695.171829502900 '' 3=⋅⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=Q n n Q O m H n n H 222H328.192029502900 ' '=⋅⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛= kW g Q H Ne 55.16.0/81.91000328.193600695.17/ ' ' '=⨯⨯⨯==ηρ 2-3己知80Y-60型离心泵输送常温水时的额定流量Q =50m 3/h ,额定压头H =60mH 20,转速n =2950r/min ,效率V =64%。
试求用该泵输送密度为700kg/m 3、粘度为1mm 2/S 的汽油和输送密度为820kg/m 3、粘度为35mm 2/S 的柴油时的性能参数。
解:设常温下水的密度为:3/1000m kg =ρ,粘度为:cP 1=μ输送汽油时:汽油的运动粘度s mm s mm /20/1221<=ν,则粘度的影响可忽略。
h m Q Q /5031==∴,m H H 601==汽油柱,%641==ηη 输送柴油时:柴油的运动粘度s mm s mm /20/35222>=ν,查图可得:%84=ηC ,%100=Q C ,%98=H C则:h m QC Q Q /5015032=⨯== m HC H H 8.5898.0602=⨯==柴油柱 538.084.064.02=⨯==ηηηCkW gH Q N 22.121000538.081.98208.5836005022222=⨯⨯⨯⨯==∴ηρ2-4 在海拔1000m 的高原上,使用一离心泵吸水,该泵的允许吸上真空高度为6.5m ,吸入管路中的全部阻力损失与速度头之和为3mH 20。
化工原理典型例题题解第2章 流体输送机械例1 离心泵的工作点用某一离心泵将一贮罐里的料液送至某高位槽 ,现由于某种原因,贮罐中料液液面升高,若其它管路特性不变,则此时流量将( )。
A 增大B 减少C 不变D 不确定例 2 附图例2 附图解:该题实际上是分析泵的工作点的变动情况。
工作点是泵特性曲线与管路特性曲线的交点,其中任何一条特性曲线发生变化,均会引起工作点的变动,现泵及其转速不变,故泵的特性曲线不变。
将管路的特性曲线方程式列出2421212)(8v q gd d l g P P Z Z H πζλρ++-+-= 现贮槽液面升高,1Z 增加,故管路特性曲线方程式中的截距项数值减小,管路特性曲线的二次项系数不变。
由曲线1变为曲线2,则工作点由A 点变动至B 点。
故管路中的流量增大,因此答案A 正确。
例2 离心泵压头的定义 离心泵的压头是指( )。
A 流体的升举高度; B 液体动能的增加; h m ,Q 3m,H eC 液体静压能的增加;D 单位液体获得的机械能。
解:根据实际流体的机械能衡算式H e =(Z 2-Z 1)+(P 2-P 1)+(u 22-u 12)/2g+ΣH f离心泵的压头可以表现为液体升举一定的高度(Z 2-Z 1),增加一定的静压能(P 2-P 1)/(g ρ),增加一定的动能(u 22-u 12)/(2g)以及用于克服流体流动过程中产生的压头损失ΣH f 等形式,但本质上离心泵的压头是施加给单位液体(单位牛顿流体)的机械能量J(J/N=m).故答案D 正确。
例3离心泵的安装高度H g 与所输送流体流量、温度之间的关系分析离心泵的安装高度H g 与所输送流体流量、温度之间的关系。
解:根据离心泵的必需汽蚀余量(NPSH)r ,计算泵的最大允许安装高度的计算公式为[][]5.0)()10(0+---=∑-r f vgNPSH H g P g P H ρρ (1) 首先分析离心泵的必需汽蚀余量(NPSH)r 的定义过程。
第二章流体输送机械流体输送机械:向流体作功以提高流体机械能的装置。
•输送液体的机械通称为泵;例如:离心泵、往复泵、旋转泵和漩涡泵。
•输送气体的机械按不同的工况分别称为:通风机、鼓风机、压缩机和真空泵。
本章的目的:结合化工生产的特点,讨论各种流体输送机械的操作原理、基本构造与性能,合理地选择其类型、决定规格、计算功率消耗、正确安排在管路系统中的位置等。
第一节离心泵2-1-1 离心泵的操作原理和主要部件 2-1-11、操作原理•由若干个弯曲的叶片组成的叶轮置于具有蜗壳通道的泵壳之内。
• 叶轮紧固于泵轴上泵轴与电机相连,可由电机带动旋转。
• 吸入口位于泵壳中央与吸入管路相连,并在吸入管底部装一止逆阀。
•泵壳的侧边为排出口,与排出管路相连,装有调节阀。
离心泵的工作过程:•开泵前,先在泵内灌满要输送的液体。
•开泵后,泵轴带动叶轮一起高速旋转产生离心力。
液体在此作用下,从叶轮中心被抛向叶轮外周,压力增高,并以很高的速度(15-25 m/s)流入泵壳。
•在蜗形泵壳中由于流道的不断扩大,液体的流速减慢,使大部分动能转化为压力能。
最后液体以较高的静压强从排出口流入排出管道。
•泵内的液体被抛出后,叶轮的中心形成了真空,在液面压强(大气压)与泵内压力(负压)的压差作用下,液体便经吸入管路进入泵内,填补了被排除液体的位置。
离心泵之所以能输送液体,主要是依靠高速旋转叶轮所产生的离心力,因此称为离心泵。
2)泵壳A.泵壳的作用•汇集液体,作导出液体的通道;•使液体的能量发生转换,一部分动能转变为静压能。
B.导叶轮为了减少液体直接进入蜗壳时的碰撞,在叶轮与泵壳之 为了减少液体直接进入蜗壳时的碰撞,在叶轮与泵壳之间有时还装有一个固定不动的带有叶片的圆盘,称为导叶轮。
导叶轮上的叶片的弯曲方向与叶轮上叶片的弯曲方向相反,其弯曲角度正好与液体从叶轮流出的方向相适应,引导液体在泵壳的通道内平缓的改变方向,使能量损失减小,使动能向静压能的转换更为有效。
化工原理第二章流体输送设备
输送设备是工业生产中常用的一类机械设备,它可以负责物料在工厂
内各处之间的移动,包括粉状、粒状或液体状的物料,其目的是为实现物
料的自动传输。
输送设备的发展为物料处理的自动化提供了可靠的基础,
在工厂,许多不同的技术正在使用输送设备来移动物料。
其中,最常用的
是流体输送设备。
流体输送设备主要用于输送以液体或气体为输送介质的物料,如液体、气体、非固体等物料。
它是利用流体动力原理,使用输送介质提供的压力
和动能来输送物料。
它的主要工作原理是利用轴泵(动力泵)将输送介质
的能量转化为压力,然后将其引入输送管道,在输送管道中将输送介质的
动能转移给实际输送的物料,使物料能够朝着设定的方向输送。
流体输送设备的选型和设计依赖于物料的性质、输送介质的类型、输
送路径和输送量,根据这些条件,可以选择合适的输送设备,如螺杆泵、
活塞泵、离心泵等。
此外,流体输送设备还可以采用不同的控制方式来满
足特殊的输送要求。
在流体输送设备的设计和制造中,除了要考虑物料的性质外,还必须
考虑输送环境,包括输送位置、气压和温度等,确定输送设备的结构形式、尺寸和规格。
第二章 流体输送机械1.用离心油泵将甲地油罐的油品送到乙地油罐。
管路情况如本题附图所示。
启动泵之前A 、C 两压力表的读数相等。
启动离心泵并将出口阀调至某开度时,输油量为39 m 3/h ,此时泵的压头为38 m 。
已知输油管内径为100 mm ,摩擦系数为0.02;油品密度为810 kg/m 3。
试求(1)管路特性方程;(2)输油管线的总长度(包括所有局部阻力当量长度)。
解:(1)管路特性方程甲、乙两地油罐液面分别取作1-1’与2-2’截面,以水平管轴线为基准面,在两截面之间列柏努利方程,得到2e e H K Bq =+由于启动离心泵之前p A =p C ,于是g p Z K ρ∆+∆==0则 2e e H Bq = 又 e 38H H ==m])39/(38[2=B h 2/m 5=2.5×10–2 h 2/m 5则 22e e 2.510H q -=⨯(q e 的单位为m 3/h )(2)输油管线总长度2e 2l l u H d gλ+= 39π0.0136004u ⎡⎤⎛⎫⎛⎫=⨯ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦m/s=1.38 m/s于是 e 22229.810.1380.02 1.38gdH l l u λ⨯⨯⨯+==⨯m=1960 m 2.用离心泵(转速为2900 r/min )进行性能参数测定实验。
在某流量下泵入口真空表和出口压力表的读数分别为60 kPa 和220 kPa ,两测压口之间垂直距离为0.5 m ,泵的轴功率为6.7 kW 。
泵吸入管和排出管内径均为80 mm ,吸入管中流动阻力可表达为2f,0113.0h u -=∑(u 1为吸入管内水的流速,m/s )。
离心泵的安装高度为2.5 m ,实验是在20 ℃,98.1 kPa习题1 附图的条件下进行。
试计算泵的流量、压头和效率。
解:(1)泵的流量由水池液面和泵入口真空表所在截面之间列柏努利方程式(池中水面为基准面),得到∑-+++=10,211120f h u p gZ ρ将有关数据代入上式并整理,得48.3581.95.2100010605.3321=⨯-⨯=u184.31=u m/s则 2π(0.08 3.1843600)4q =⨯⨯⨯m 3/h=57.61 m 3/h(2) 泵的扬程29.04m m 5.081.9100010)22060(3021=⎥⎦⎤⎢⎣⎡+⨯⨯+=++=h H H H(3) 泵的效率s 29.0457.6110009.81100%100036001000 6.7Hq g P ρη⨯⨯⨯==⨯⨯⨯=68%在指定转速下,泵的性能参数为:q =57.61 m 3/h H =29.04 m P =6.7 kW η=68% 3.对于习题2的实验装置,若分别改变如下参数,试求新操作条件下泵的流量、压头和轴功率(假如泵的效率保持不变)。
第二章 流体输送机械离心泵特性【2-1】某离心泵用15℃的水进行性能实验,水的体积流量为540m 3/h ,泵出口压力表读数为350kPa ,泵入口真空表读数为30kPa 。
若压力表与真空表测压截面间的垂直距离为350mm ,吸入管与压出管内径分别为350mm 及310 mm ,试求泵的扬程。
解 水在15℃时./39957kg m ρ=,流量/V q m h =3540 压力表350M p kPa =,真空表30V p kPa =-(表压) 压力表与真空表测压点垂直距离00.35h m = 管径..12035031d m d m ==,流速 / ./(.)1221540360015603544V q u m s d ππ===⨯. ../.221212035156199031d u u m s d ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭扬程 222102M V p p u u Ηh ρg g--=++ ()(.)(.)....⨯--⨯-=++⨯⨯332235010301019915603599579812981....m =++=0353890078393 水柱【2-2】原来用于输送水的离心泵现改为输送密度为1400kg/m 3的水溶液,其他性质可视为与水相同。
若管路状况不变,泵前后两个开口容器的液面间的高度不变,试说明:(1)泵的压头(扬程)有无变化;(2)若在泵出口装一压力表,其读数有无变化;(3)泵的轴功率有无变化。
解 (1)液体密度增大,离心泵的压头(扬程)不变。
(见教材) (2)液体密度增大,则出口压力表读数将增大。
(3)液体密度ρ增大,则轴功率V q gHP ρη=将增大。
【2-3】某台离心泵在转速为1450r/min 时,水的流量为18m 3/h ,扬程为20m(H 2O)。
试求:(1)泵的有效功率,水的密度为1000kg/m 3; (2)若将泵的转速调节到1250r/min 时,泵的流量与扬程将变为多少?解 (1)已知/,/V q m h H m kg m ρ===331820 1000水柱, 有效功率 .e V P q gH W ρ==⨯⨯⨯=181000981209813600(2) 转速 /m i n 11450n r =时流量3118V q m h =/,扬程1220m H O H =柱 转速/m i n 21250n r = 流量 ./322111250181551450V V n q q m h n ==⨯= 扬程 .2222121125020149m H O 1450n H H n ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭柱 管路特性曲线、工作点、等效率方程【2-4】用离心泵将水由敞口低位槽送往密闭高位槽,高位槽中的气相表压为98.1kPa ,两槽液位相差4m 且维持恒定。