第五章晶体管放大电路的基本知识
- 格式:ppt
- 大小:746.00 KB
- 文档页数:32
单极晶体管放大电路实验报告
一、实验目的
本实验旨在了解单极晶体管放大电路的基本原理,掌握单极晶体管放大电路的设计和调试方法,熟悉实验仪器的使用,培养学生动手能力和实验技能。
二、实验原理
单极晶体管是一种三层结构的半导体器件,由发射极、基极和集电极组成。
其放大电路主要由一个单极晶体管和几个被动元件组成。
当输入信号加到基极时,会使得集电极电流变化,从而输出信号也随之变化。
因此,单极晶体管放大电路可以将输入信号放大并输出。
三、实验器材
1. 单片机开发板
2. 万用表
3. 示波器
4. 功率放大器
四、实验步骤及结果分析
1. 确定工作点:首先根据所选用的型号计算出工作点参数,并设置基准电压。
2. 确定放大倍数:利用万用表测量输入输出信号幅值,并计算出放大
倍数。
3. 调整偏置:根据所选用的型号调整偏置点使得工作在合适状态下。
4. 调整负载:根据所选用的型号调整负载使得输出信号稳定。
5. 测量输出电压:利用示波器测量输出电压,并记录结果。
五、实验结论
通过本次实验,我们了解了单极晶体管放大电路的基本原理和设计方法,掌握了单极晶体管放大电路的调试方法,熟悉了实验仪器的使用。
同时,我们还通过实验得到了实际的数据并进行了分析,从而得出了
正确的结论。
晶体管单管放⼤电路的三种基本接法特点
晶体管单管放⼤电路的三种基本接法:
共射极:射极接地,基极输⼊,集电极输出;
共集电极:集电极接电源,基极输⼊,射极输出;
共基极:基极接固定电压,射极输⼊,集电极输出;
特点:
(1)共射电路既能放⼤电流⼜能放⼤电压,输⼊电阻居三种电路之中,输出电阻较⼤,频带较窄。
常作为低频电压放⼤电路的单元电路。
(2)共集电路只能放⼤电流不能放⼤电压,是三种接法中输⼊电阻最⼤、输出电阻最⼩的电路,并具有电压跟应的特点。
常⽤于电压放⼤电路的输⼊级和输出级,在功率放⼤电路中也常采射极输出的形式
(3)共基电路只能放⼤电压不能放⼤电流,具有电流跟的特点;输⼊电阻⼩,电压放⼤倍数、输出电阻与共射电路相当,是三种接法中⾼频特性最好的电路。
常作为宽频带放⼤电路。
晶体管知识点总结晶体管是一种半导体器件,广泛应用于电子设备中,是现代电子技术的基础。
晶体管的发明和应用,极大地推动了电子技术的发展,使得现代电子设备变得更加小型化、高效、稳定和便携。
下面我们将对晶体管的基本原理、结构、工作原理和应用进行详细介绍。
一、晶体管的基本原理1. 电子运动的基本原理电子是原子的一个组成部分,带有负电荷。
在半导体晶体中,有大量的自由电子,在外加电压的作用下,这些自由电子会受到电场的驱动,从而在晶格中运动。
同时,半导体中还有空穴,即电子从原子轨道中跃迁出去后留下来的空位,空穴带有正电荷,也会在外加电压下发生移动。
2. PN结和二极管的基本原理PN结是由n型半导体和p型半导体组成的结构,它具有正向导通和反向截止的特性。
当PN结处于正向偏置时,n区的自由电子会向p区移动,p区的空穴会向n区移动,导致电子和空穴的复合,形成导电通道,电流得以通过。
而当PN结处于反向偏置时,n区和p区的电荷云层会被电场的作用扩散,形成空间电荷区,此时电流不能通过。
3. 晶体管的基本原理晶体管是由两个PN结构组成的器件,即P型区和N型区交替排列,整体上形成三个电极分别为集电极、发射极和基极。
当在基极和发射极之间加上正向偏置电压时,n区的自由电子会向p区移动,电子和空穴会在P区与N区的交界处结合而产生电流放大的效应。
这样,就实现了晶体管的放大功能,使得电子信号得以放大,并通过集电极输出。
二、晶体管的结构1. 晶体管的主要构成晶体管主要由P型半导体、N型半导体和金属电极组成。
P型半导体富含空穴,电子的迁移率较低;N型半导体富含自由电子,电子的迁移率较高;金属电极则起到了连接内部半导体材料的作用。
2. 晶体管的结构类型晶体管有多种不同的结构类型,包括双极型晶体管、场效应晶体管、异质结晶体管等。
不同结构的晶体管在性能和应用方面都有所不同,需根据具体的应用场景进行选择。
三、晶体管的工作原理1. 晶体管的工作状态晶体管主要有截止状态和放大状态两种工作状态。